CHARACTERISTIC DISTRIBUTIONS ON 4-DIMENSIONAL ALMOST COMPLEX MANIFOLDS

BORIS S. KRUGLIKOV
Department of Mathematics and Statistics
University of Tromsø
9037 Tromsø, Norway
E-mail: kruglikov@math.uit.no

Abstract

In this paper the Nijenhuis tensor characteristic distributions on a non-integrable four-dimensional almost complex manifold is investigated for integrability, singularities and equivalence.

1. Introduction. For a non-integrable four-dimensional almost complex manifold we will canonically define a distribution Π^{2} by the Nijenhuis tensor N_{J}. In Section 2 we complete the description [K1] of invariants of an almost complex structure in dimension four, using this distribution. In Sections 3-4 we describe singularities of Π^{2}. We show they are standard if our field of planes is considered as a distribution, but they become quite specific if it is considered as a differential system.

In Sections 5-6 we study moduli and hyperbolicity of the germ of a neighborhood of a pseudoholomorphic curve. Section 7 is devoted to a geometric meaning of the integrability of the Nijenhuis tensor characteristic distribution Π^{2} and its relation to a question of V. Arnold.

In $[\mathrm{HH}]$ Hirzebruch and Hopf proved the following topological result: If a 4-dimensional manifolds admits a rank 2 distribution, it admits an almost complex structure as well. Moreover if the manifold admits two almost complex structures, defining opposite orientations, then it admits a rank 2 distribution.

We associate a rank 2 distribution to a non-integrable almost complex structure, realizing the above topological correspondence (to one side) canonically on the differential level. Note that any almost complex structure on a 4 -dimensional manifold can be perturbed to be non-integrable outside a discrete set.

[^0]2. Local classification of almost complex structures in dimension 4. Let $(M, J \in \operatorname{Aut}(T M))$ be an almost complex manifold of dimension $4, J^{2}=\mathbf{- 1}$. Its Nijenhuis tensor is the following $(2,1)$-tensor
\[

$$
\begin{equation*}
N_{J} \in \Lambda^{2} T^{*} M \otimes T M, \quad N_{J}(\xi, \eta)=[J \xi, J \eta]-J[J \xi, \eta]-J[\xi, J \eta]-[\xi, \eta] . \tag{1}
\end{equation*}
$$

\]

Integrability of J is expressed via it as $N_{J}=0([\mathrm{NW}])$.
This tensor satisfies the property $N_{J}(J \xi, \eta)=N_{J}(\xi, J \eta)=-J N_{J}(\xi, \eta)$ and so can be considered as an antilinear map $N_{J}: \Lambda^{2} \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \mathbb{C}^{2}=\left(T_{x} M^{4}, J\right)$. The image is invariant under J and if $N_{J} \neq 0$ it is a complex line $\mathbb{C} \subset \mathbb{C}^{2}$.

Thus in the domain where the structure J is non-integrable a canonical distribution is obtained:

Definition 1. We call $\Pi^{2}=\operatorname{Im} N_{J} \subset T M$ the Nijenhuis tensor characteristic distribution on a 4-dimensional almost complex manifold $\left(M^{4}, J\right)$.

This distribution Π^{2} is in general situation non-integrable. Therefore it has a nontrivial derivative $\Pi^{3}=\partial \Pi^{2}$, which is defined as the differential system with $C^{\infty}(M)$ module of sections $\mathcal{P}_{3}=C^{\infty}\left(\Pi^{3}\right)$ generated by the self-commutator of the submodule $\mathcal{P}_{2}=C^{\infty}\left(\Pi^{2}\right) \subset \mathcal{D}(M): \mathcal{P}_{3}=\left[\mathcal{P}_{2}, \mathcal{P}_{2}\right] . \Pi^{3}$ is not a distribution everywhere and its singularities form a stratified submanifold Σ_{1}^{2} of codim $=2$.

The distribution Π^{3} on $M \backslash \Sigma_{1}^{2}$ is generically non-integrable, so that $\partial \Pi^{3}=T M$ (or $\left.\left[\mathcal{P}_{2}, \mathcal{P}_{3}\right]=\mathcal{D}(M)\right)$ outside a stratified submanifold Σ_{2}^{2} of codim $=2$.

If $x \notin \Sigma_{1}^{2}$ then $\Pi_{x}^{2} \subset \Pi_{x}^{3}$ has a transversal measure. In fact since the J-antilinear isomorphism $N_{J}\left(\cdot, \xi_{3}\right): \Pi_{x}^{2} \rightarrow \Pi_{x}^{2}$ is orientation reversing, there exist vectors $\xi_{1}, \xi_{2} \in \Pi_{x}^{2}$, $\xi_{3} \in \Pi_{x}^{3} \backslash \Pi_{x}^{2}$ such that $N_{J}\left(\xi_{1}, \xi_{3}\right)=\xi_{1}, N_{J}\left(\xi_{2}, \xi_{3}\right)=-\xi_{2}$. These ξ_{1}, ξ_{2} are defined up to multiplication by a constant, while $\xi_{3}\left(\bmod \Pi_{x}^{2}\right)$ is defined up to multiplication by ± 1. Therefore Π^{3} / Π^{2} is normed. By a similar reason $T_{x} M / \Pi_{x}^{3}$ is normed outside Σ_{1}^{2} via the vector $\xi_{4}=J \xi_{3}$.

Note that $\Pi_{x}^{3} / \Pi_{x}^{2}$ is oriented. Actually $\left[\xi_{1}, \xi_{2}\right]\left(\bmod \Pi_{x}^{2}\right)$ depends only on the values of ξ_{1}, ξ_{2} at the point x. It is a vector $f \xi_{3}\left(\bmod \Pi_{x}^{2}\right)$ for some f. So if we require $\xi_{2}=J \xi_{1}$ then ξ_{3} can be chosen so that $f>0$. This produces a coorientation on $\Pi_{x}^{2} \subset \Pi_{x}^{3}$ and then via J a coorientation on $\Pi_{x}^{3} \subset T_{x} M$.

Moreover the requirement $f=1$ determines canonically vector field ξ_{1} (still however up to ± 1) and hence $\xi_{2}=J \xi_{1}$. Then we set $\xi_{3}=\left[\xi_{1}, \xi_{2}\right]$ and $\xi_{4}=J \xi_{3}$. So the pair $\left(\xi_{1}, \xi_{2}\right)$ is defined canonically up to a sign and the pair $\left(\xi_{3}, \xi_{4}\right)$ is absolutely canonical. The following statement generalizes Theorem 7 [K1]:

Theorem 1. Let an almost complex structure J be of general position. Then at a generic point $x \in M^{4}$ the canonical frame $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$ is defined. It restores uniquely the almost complex operator J and the tensor N_{J} by the tables:

X	$J X$
ξ_{1}	ξ_{2}
ξ_{2}	$-\xi_{1}$
ξ_{3}	ξ_{4}
ξ_{4}	$-\xi_{3}$

$N_{J}(\uparrow, \leftarrow)$	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}
ξ_{1}	0	0	ξ_{1}	$-\xi_{2}$
ξ_{2}	0	0	$-\xi_{2}$	$-\xi_{1}$
ξ_{3}	$-\xi_{1}$	ξ_{2}	0	0
ξ_{4}	ξ_{2}	ξ_{1}	0	0

Note that reducing a geometric structure to a frame ($\{e\}$-structure) solves completely the equivalence problem. The idea is as follows. Consider the moduli of the problem, i.e. functions $c_{j k}^{i}$ given by the formula $\left[\xi_{j}, \xi_{k}\right]=\sum c_{j k}^{i} \xi_{i}$. Denote by $\mathbb{A}=\left\{c_{j k}^{i}\right\}$ the space of all invariants and by $\Phi: M \rightarrow \mathbb{A}$ the "momentum map" $x \mapsto\left\{c_{j k}^{i}(x)\right\}$. Then two equivalent structures have the same images and the equivalence follows. See $[\mathrm{S}]$ for more details.
3. Singularities of a Nijenhuis tensor characteristic distribution. A distribution $V=V_{1}$ is called completely non-holonomic if one of its successive derivatives $V_{i}=\partial V_{i-1}$ equals the whole tangent bundle $T M$ and the minimal such $i=r$ is called the degree of non-holonomy (can vary from point to point). The growth vector of a distribution at a point $x \in M$ is the sequence of the dimensions $\left(\mathrm{rk}_{x} V_{1}, \ldots, \mathrm{rk}_{x} V_{r(x)}\right)$.

Generically a Nijenhuis tensor characteristic distribution is completely non-holonomic outside a discrete subset in M. In an open dense set the growth vector is $(2,3,4)$. Then it is an Engel distribution, which has the following local normal form ([E]):

$$
\Pi^{2}=\left\langle\xi_{1}=\partial_{3}, \xi_{2}=\partial_{4}-x_{3} \partial_{2}-x_{2} \partial_{1}\right\rangle ; \quad \partial_{i}:=\partial / \partial x_{i}
$$

Locally this Π^{2} can be realized as a Nijenhuis tensor characteristic distribution ([K2]). In fact, consider two transversal symmetries of the distribution: $\eta_{1}=\partial_{1}, \eta_{2}=\partial_{2}-x_{4} \partial_{1}$. Define the almost complex structure by the formula

$$
\begin{equation*}
J \xi_{1}=\varphi \xi_{2}, J \eta_{1}=\eta_{2} ; \quad \varphi \neq 0 \tag{2}
\end{equation*}
$$

Then one easily checks that $\operatorname{Im} N_{J}=\Pi^{2}$ whenever $\left(\partial_{\eta_{1}} \varphi\right)^{2}+\left(\partial_{\eta_{2}} \varphi\right)^{2} \neq 0$.
Moreover the following statement holds:
Proposition 2. Let Π be an analytic distribution of rank 2 in \mathbb{R}^{4}. Then it can be locally realized as a Nijenhuis tensor characteristic distribution.

Proof. Let Π^{2} be generated by $\xi_{1}=\partial_{3}$ and $\xi_{2}=\partial_{4}+h_{1} \partial_{1}+h_{2} \partial_{2}$. A pair of generators can always be chosen in such a form. Consider ξ_{2} as a vector field in $\mathbb{R}^{3}\left(x_{1}, x_{2}, x_{4}\right)$ depending on a parameter x_{3}. It has two independent symmetries $\eta_{1}, \eta_{2} \in \mathcal{D}\left(\mathbb{R}^{3}\right):\left[\eta_{i}, \xi_{2}\right]=0$. Let us differentiate these fields by the parameter: $\partial_{3} \eta_{i}=\left[\partial_{3}, \eta_{i}\right]=a_{i}^{j} \eta_{j}+b_{i} \xi_{2}$.

Define the almost complex structure by the formula

$$
J \xi_{1}=\varphi \xi_{2}, J \eta_{1}=\alpha \eta_{1}+\beta \eta_{2} ; \quad \beta, \varphi \neq 0
$$

The condition $\operatorname{Im} N_{J}=\Pi^{2}$ is equivalent to the system

$$
\left\{\begin{array}{l}
\varphi \partial_{\xi_{2}} \alpha=\alpha \partial_{\xi_{1}} \alpha-\frac{1+\alpha^{2}}{\beta} \partial_{\xi_{1}} \beta+\left[a_{1}^{1}\left(1+\alpha^{2}\right)-a_{1}^{2} \alpha \frac{1+\alpha^{2}}{\beta}+a_{2}^{1} \alpha \beta-a_{2}^{2}\left(1+\alpha^{2}\right)\right] \\
\varphi \partial_{\xi_{2}} \beta=\beta \partial_{\xi_{1}} \alpha-\alpha \partial_{\xi_{1}} \beta+\left[a_{1}^{1} \alpha \beta+a_{1}^{2}\left(1-\alpha^{2}\right)+a_{2}^{1} \beta^{2}-a_{2}^{2} \alpha \beta\right]
\end{array}\right.
$$

and the inequality $\left(\partial_{\eta_{1}} \varphi-b_{1} \alpha-b_{2} \beta\right)^{2}+\left(\partial_{\eta_{2}} \varphi-b_{1} \frac{1-\alpha^{2}}{\beta}+b_{2} \alpha\right)^{2}>0$. The system is in the Cauchy-Kovalevskaya form and so possesses a local solution. After this the inequality is arranged to hold.

Theorem 3. Nijenhuis tensor characteristic distributions in the domain of non-integrability for J have the same singularities as the usual two-dimensional distributions in \mathbb{R}^{4}.

Proof. Let us first define the degeneration locus of a distribution. Introduce the partial order on the growth vectors: $\left(m_{1}, \ldots, m_{s}\right) \leq\left(n_{1}, \ldots, n_{r}\right)$ iff $s \geq r$ and $m_{i} \leq n_{i}$ for $i=1, \ldots, r$. Fix one growth vector I. Then the degeneration locus $\Sigma_{I} \subset M$ is the set of points with the growth vector less than or equal to I. Proposition 2 (it holds formally as well-on the jets of the structure) and the Thom transversality theorem imply that for a typical J the sets Σ_{I} are nice subvarieties, stratifying the manifold M. The statement follows.

The generic degenerations of two-plane fields in \mathbb{R}^{4}, up to codimension 3 , were classified by Zhitomirskii $[\mathrm{Z}]$. Let us show how generic codimension 2 singularities are realized as a Nijenhuis tensor characteristic distribution.

There are two different types of such singularities, defined by the growth vectors $I_{1}=(2,2,4)$ and $I_{2}=(2,3,3,4)$. All other growth vectors are subordinated to these two and hence the singular set is

$$
\Sigma=\Sigma_{1}^{2} \cup \Sigma_{2}^{2}, \quad \Sigma_{i}^{2}=\Sigma_{I_{i}}
$$

Generically the loci Σ_{i}^{2} are smooth 2-dimensional submanifolds ([Z]), which intersect nontransversally along a curve Σ_{1}^{1}. There is also a curve $\Sigma_{2}^{1} \subset \Sigma_{2}^{2}$ separating the locus into the elliptic/hyperbolic parts $\Sigma_{2 \pm}^{2}$.

The codimension 2 loci of $\Pi^{2}=\left\langle\xi_{1}, \xi_{2}\right\rangle$ have the following normal forms:

$$
\begin{aligned}
\Sigma_{1}^{2} \backslash \Sigma_{1}^{1}: & \xi_{1}=\partial_{3}, \xi_{2}=\partial_{4}-x_{3} x_{4} \partial_{2}-x_{3}^{2} \partial_{1} \\
\Sigma_{2+}^{2}: & \xi_{1}=\partial_{3}, \xi_{2}=\partial_{4}-\left(\frac{1}{3} x_{3}^{3}+x_{3} x_{4}^{2}\right) \partial_{2}-x_{3} \partial_{1} \\
\Sigma_{2-}^{2}: & \xi_{1}=\partial_{3}, \xi_{2}=\partial_{4}-x_{3}^{2} x_{4} \partial_{2}-x_{3} \partial_{1}
\end{aligned}
$$

In each of these cases the choice $\eta_{1}=\partial_{1}, \eta_{2}=\partial_{2}$ and formula (2) will lead to realization $\Pi^{2}=\operatorname{Im} N_{J}$. The cases of higher degenerations are studied similarly.
4. Singularities of $\Pi=\operatorname{Im} N_{J}$ as of a differential system. As differential systems Nijenhuis tensor characteristic distributions have singularities different from those of the usual differential systems in \mathbb{R}^{4} : The rank of a Nijenhuis tensor characteristic distribution is even and so is 2 or 0 .

Proposition 4. For a generic structure J the set where $N_{J}=0$ (the rank of Π falls to zero) is a discrete set $\Sigma^{0} \subset M^{4}$. For each point of Σ^{0} there is a centered coordinate neighborhood $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ around it such that the almost complex structure is given by the formula

$$
J \partial_{x_{i}}=\alpha_{i} \partial_{x_{i}}+\left(1+\beta_{i}\right) \partial_{y_{i}}, \quad J \partial_{y_{i}}=-\frac{1+\alpha_{i}^{2}}{1+\beta_{i}} \partial_{x_{i}}-\alpha_{i} \partial_{y_{i}}, \quad i=1,2
$$

where the functions α_{i}, β_{i} are of the second order of smallness at the origin.
Proof. Singularities of the differential system $\Pi=\operatorname{Im} N_{J}$ are given by the vector equation $N_{J}(\xi, \eta)=0$ for some J-independent vector fields ξ, η, and so are generically isolated points given by the integrability condition $N_{J}=0$.

To get the other claim recall ([K1]) that an almost complex structure can be approximated by a complex structure to the second order of smallness at the integrability points.

Let $\left(w_{1}, w_{2}\right)$ be the corresponding complex coordinates. By a theorem of Nijenhuis and Woolf [NW] (see also Proposition 9 below) there are two J-holomorphic foliations by disks C^{1}-close to the foliations $\left\{w_{i}=\right.$ const. $\}$ at the origin, $i=1,2$. Let z_{1} be a complex coordinate on the disk of the first family passing the origin and z_{2}-on the second. They define the complex coordinate system $\left(z_{1}, z_{2}\right)$ in a neighborhood of the origin with the required properties.

Remark 1. For $\operatorname{dim} M>4$ the set where $N_{J}=0$ is generically empty.
Let $\alpha_{i}^{\diamond}, \beta_{i}^{\diamond}$ be the quadratic parts of α_{i}, β_{i}. Using the coordinate system from Proposition 4 we calculate: $\Pi^{2}=\operatorname{Im} N_{J}=\left\langle\xi_{1}, \xi_{2}=J \xi_{1}\right\rangle$, where linearizations of the generators at the origin are

$$
\xi_{1}^{0}=\left(-\frac{\partial \beta_{1}^{\diamond}}{\partial x_{2}}-\frac{\partial \alpha_{1}^{\diamond}}{\partial y_{2}}\right) \partial_{x_{1}}+\left(\frac{\partial \alpha_{1}^{\diamond}}{\partial x_{2}}-\frac{\partial \beta_{1}^{\diamond}}{\partial y_{2}}\right) \partial_{y_{1}}+\left(\frac{\partial \beta_{2}^{\diamond}}{\partial x_{1}}+\frac{\partial \alpha_{2}^{\diamond}}{\partial y_{1}}\right) \partial_{x_{2}}+\left(\frac{\partial \beta_{2}^{\diamond}}{\partial y_{1}}-\frac{\partial \alpha_{2}^{\diamond}}{\partial x_{1}}\right) \partial_{y_{2}}
$$

and $\xi_{2}^{0}=J_{0} \xi_{1}^{0}$ (J_{0} is the constant coordinate extension of J from the origin).
Thus we see that the linearization of the considered differential system is special, not as for the usual differential systems. If we consider linear vector fields ξ_{i}^{0} as linear operators, we represent the first order approximation of Π by a two-dimensional subspace $V^{2} \subset \operatorname{gl}(4)$. The condition $V^{2}=\left\langle X_{1}, X_{2}=J X_{1}\right\rangle$ for some $J^{2}=\mathbf{- 1}$ characterizes admissible 2-planes and thus linearizations. The higher order terms in ξ_{1}, ξ_{2} are special as well.
5. Moduli of a PH-curve neighborhood. Let \mathcal{C}^{2} be a pseudoholomorphic (PH-) curve, i.e. a surface with J-invariant tangent bundle. At every point $x \in \mathcal{C}$ we have two J-invariant planes $T_{x} \mathcal{C}^{2}$ and Π_{x}^{2}, which generically intersect by zero, except at a finite number of points $\Sigma_{0}^{\prime} \subset \mathcal{C}$. The sets $\Sigma_{1}^{\prime}=\Sigma_{1}^{2} \cap \mathcal{C}$ and $\Sigma_{2}^{\prime}=\Sigma_{2}^{2} \cap \mathcal{C}$ are generically finite as well. The arrangement of all these points

$$
\Sigma^{\prime}=\Sigma_{0}^{\prime} \cup \Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime} \subset \mathcal{C}
$$

gives a (finite-dimensional) invariant of \mathcal{C}.
For points $x \in \mathcal{C} \backslash \Sigma_{1}^{\prime}$ we define field of directions $L^{1}=T \mathcal{C} \cap \Pi^{3}$. The integral curves of this 1-distribution foliate the set $\mathcal{C} \backslash \Sigma_{1}^{\prime}$ and in general \mathcal{C} foliates with only non-degenerate singular points. Denote the number of elliptic points by $e\left(L^{1}\right)$ and the number of hyperbolic points by $h\left(L^{1}\right)$. One can prove:

Proposition 5. Under C^{1}-small perturbation of the structure J the foliation L^{1} has minimal number of singularities: $\min \{e(L), h(L)\}=0$, $\max \{e(L), h(L)\}=|\chi(\mathcal{C})|$. For instance if $\mathcal{C}=T^{2}$ we get a foliation without singularities.

Due to Section 2 the foliation L^{1} is oriented, cooriented and has parallel and transverse measures outside Σ^{\prime}. Thus there exist canonical vector fields v_{1} along L^{1} and $v_{2}=J v_{1}$ transverse to it. Consequently the curve \mathcal{C} has a lot of dynamical invariants like winding classes of v_{1} and v_{2}. Moreover, decomposing

$$
\left[v_{1}, v_{2}\right]=\gamma_{1} v_{1}+\gamma_{2} v_{2}
$$

we obtain two invariant (under pseudoholomorphic isomorphisms) functions γ_{1}, γ_{2}. These together with the germs of the functions $c_{j k}^{i}$ from Section 2 form moduli of the \mathcal{C}-neigh-
borhoods germ. They solve the equivalence problem for PH-embeddings $\mathcal{C}^{2} \rightarrow M^{4}$ (of general position).

Example. Let $M=T^{2}(\varphi, \psi) \times \mathbb{R}^{2}(x, y)$ be equipped with the structure

$$
\begin{array}{ll}
J \partial_{x}=\partial_{y} ; & J \partial_{\varphi}=\frac{2-\rho y^{2}}{2} \partial_{\psi}+\frac{y^{2}}{2} \partial_{\varphi}+x \partial_{x} \\
J \partial_{y}=-\partial_{x} ; & J \partial_{\psi}=\frac{4+y^{4}}{2 \rho y^{2}-4} \partial_{\varphi}-\frac{y^{2}}{2} \partial_{\psi}+\frac{x y^{2}}{\rho y^{2}-2} \partial_{x}+\frac{2 x}{\rho y^{2}-2} \partial_{y}
\end{array}
$$

Then $\mathcal{C}=\{x=y=0\}$ is a PH-torus and the winding number of v_{1} is ρ. Similarly one shows the other considered invariants are non-trivial.
6. Hyperbolicity of a PH-curve neighborhood. In this section we consider the case of PH-tori $\mathcal{C}=T^{2}$. We assume for simplicity that the normal bundle is topologically trivial, though in general case the result is the same.

Recall that the Kobayashi pseudometric d_{M} measures the distance between points via pseudoholomorphic disks ([Ko, KO]). An almost complex manifold is called Kobayashi hyperbolic if d_{M} is a metric. Let $\|\cdot\|$ be a norm on $T M$.

Proposition 6. Let \mathcal{O} be a small neighborhood of a pseudoholomorphic torus $T^{2} \subset\left(M^{4}, J\right)$. Then the domain $\mathcal{O} \backslash T^{2}$ is not Kobayashi-hyperbolic.

Moreover, for some constant $C>0$ and any $R>0$ there exists a smooth family of PH-disks $f_{\alpha}^{R}: D_{R} \rightarrow \mathcal{O}$, with uniformly bounded norms $\left\|\left(f_{\alpha}^{R}\right)_{*}(z)\right\| \leq C$ satisfying $\left\|\left(f_{\alpha}^{R}\right)_{*}(0)\right\|=1$, that fills some smaller neighborhood $\mathcal{O}^{\prime} \subset \mathcal{O}$ of $T^{2}:$

$$
\mathcal{O}^{\prime} \subset \bigcup_{\alpha} f_{\alpha}^{R}\left(D_{R}\right)
$$

Proof. Let us take the universal covering $\hat{\mathcal{O}} \simeq \mathbb{C} \times D^{2}$ of \mathcal{O}. The torus is covered by the entire line $\mathbb{C} \rightarrow T^{2}$. Changing the structure J at infinity in $\hat{\mathcal{O}}$ and near the boundary to the integrable one we glue the manifold to the product $S^{2} \times S^{2}$ with the line \mathbb{C} being glued to the first factor S_{1}^{2}. Then the introduction of the taming symplectic product structure $\omega=\omega_{1} \oplus \omega_{2}$ yields a foliation of $S_{1}^{2} \times S_{2}^{2}$ by PH-spheres S^{2} in the homology class of the first factor if we additionally demand that the homology class $\left[S_{1}^{2}\right]$ of the first sphere-factor is symplectically indecomposable (for example, if $\omega_{1}\left(S_{1}^{2}\right)=k \omega_{2}\left(S_{2}^{2}\right)$, $k \in \mathbb{N}$). Here we use the fact that the dimension is 4 : due to positivity of intersections [M1] we actually have a foliation ([M2]).

This foliation of $S^{2} \times S^{2}$ gives a family of big PH-disks on $\hat{\mathcal{O}}$ parametrized by the radius R of disk in \mathbb{C} out of which the almost complex structure is changed. The estimates follow from the Brody reparametrization lemma as in [KO]. Pulling-back we get the required family.

We now consider filling by pseudoholomorphic cylinders $\mathcal{C}_{R}=[-R ; R] \times S^{1} \subset \mathbb{C} \backslash\{0\}$, which is topologically different from the disk-filling (Fig. 1).

Proposition 7. In the statement of Proposition 6 we can change disks D_{R} to the cylinders \mathcal{C}_{R} and get for every $R>0$ a filling family of PH-cylinders $f_{\alpha}^{R}: \mathcal{C}_{R} \rightarrow \mathcal{O}$ with
uniformly bounded norms and normalization $\left\|\left(f_{\alpha}^{R}\right)_{*}(0)\right\|=1$:

$$
\mathcal{O}^{\prime} \subset \bigcup_{\alpha} f_{\alpha}^{R}\left(\mathcal{C}_{R}\right) .
$$

Figure 1. Filling by PH-cylinders
Proof. Actually take a covering of the neighborhood \mathcal{O} which corresponds to one cycle of the torus. The torus is covered by the entire cylinder $\mathcal{C}_{\infty} \rightarrow T^{2}$. We can change the almost complex structure J at infinity so that it makes possible to "pinch" each end of the cylinder. This means we perturb the structure J so that it is standard integrable outside some $\mathcal{C}_{R_{2}} \subset \mathcal{C}_{\infty}$ and the support is also a big cylinder $\mathcal{C}_{R_{1}}$. Then we glue the ends to the disks. This operation gives us a sphere S^{2} instead of the cylinder $\mathcal{C}_{\infty}=\mathbb{R} \times S^{1}$. We can also assume that neighborhoods of two cylinder ends are pinched (Fig. 2).

Figure 2. Cutting and gluing
Thus we have a neighborhood U of the sphere S_{0}^{2}. It is foliated by PH-spheres close to S_{0}^{2}. Actually, we can change the structure J near the boundary of this neighborhood, glue and get the manifold product $\hat{M}=S^{2} \times S^{2}$. As before it is foliated by PH-spheres. Thus U is foliated by PH -spheres and in the preimage they give a PH -foliation by cylinders.

Remark 2. Neighborhoods of PH-spheres $\mathcal{C}=S^{2}$ are also non-hyperbolic and if the normal bundle is topologically trivial can be foliated by close PH-spheres. Small neighborhood of PH-curves of higher genus $\mathcal{C}=S_{g}^{2}, g>1$, are Kobayashi hyperbolic.

Moreover the above non-hyperbolicity for the cases $g=0,1$ can be strengthened as follows: Even the punctured neighborhoods $\mathcal{O} \backslash \mathcal{C}$ are non-hyperbolic.
7. Arnold's question. In [A2] (1993-25) Arnold asks about almost complex version for his Floquet-type theory of elliptic curves neighborhoods ([A1]) in the spirit of the Moser's KAM-type theorem ([Mo]). Namely he asks if a germ of neighborhood \mathcal{O} of a PH-torus $\mathcal{C}=T^{2} \subset\left(M^{4}, J\right)$ is determined by its normal bundle $N_{\mathcal{C}} M$.

The following result is a direct consequence of the definition:
Proposition 8. If $F: M^{4} \rightarrow \mathcal{C}^{2}$ is a (local) PH-surjection and the structure J is non-integrable, then the Nijenhuis tensor characteristic distribution Π^{2} is integrable and is tangent to the fibers of F.

Thus there is a functional obstruction to the equivalence of the \mathcal{C}-germ in M^{4} and of the \mathcal{C}-germ in the normal bundle (we do not discuss here the normal bundle: If $\operatorname{dim} M=4$, the almost complex structure on $N_{\mathcal{C}} M$ can be obtained via linearization along a family of transversal PH-disks; for the general case see [K3]). Integrability and transversality of Π^{2} to the torus \mathcal{C} is a necessary, but by no means sufficient condition for the existence of an equivalence: There are other functional moduli.

In search of a proper generalization of Arnold's result we notice that a neighborhood of an elliptic curve in a complex surface is foliated by half-infinite cylinders: They are given as $|z|=$ const. in the representation of the neighborhood as $\mathbb{C}^{2}(z, w) /(z, w) \sim$ $(z+2 \pi, w) \sim(z+\nu, \lambda w)$, where $\nu \in \mathbb{C} \backslash \mathbb{R}$ and $\lambda \in \mathbb{C} \backslash\{0\}$ (see [A1] for the representation). The hypothesis is then that for a non-integrable perturbation J of the complex structure J_{0} most of the cylinders persist (as in Moser's theory).

Let us sketch how to prove existence of one such a half-cylinder. In Proposition 7 we have constructed a pre-compact family of finite cylinders f_{α}^{R} for different R. If it winds up to the curve \mathcal{C} (as in the holomorphic normal form with $|\lambda| \neq 1$), then one can extract a subsequence $f_{\alpha_{k}}^{R_{k}}$ with $R_{k} \rightarrow \infty$ converging to a pseudoholomorphic curve due to the standard technique ([G, MS]). This is the required half-cylinder.

There are no tools however to complete this construction to a PH-foliation (also a filling is problematic - a remark of V. Bangert). Note though that even if we construct a foliation, it is not necessarily so nice as its holomorphic original. To explain this let us notice the following fact, which is a corollary of a theorem by Nijenhuis and Woolf [NW]:

Proposition 9. A small neighborhood \mathcal{O} of a PH -curve $\mathcal{C} \subset M^{4}$ can be foliated by transversal PH-disks D^{2}.

Now consider a neighborhood of a PH-curve \mathcal{C} with topologically trivial normal bundle and suppose we have a foliating family $f_{\alpha}: \mathcal{B} \rightarrow \mathcal{O}$ with unbounded or compact leaves in it. Let $D_{\varphi}, \varphi \in \mathcal{C}$, be the family of normal disks from Proposition 9. Then every path $\gamma(t)$ on \mathcal{C} with $\gamma(0)=\varphi_{0}, \gamma(1)=\varphi_{1}$ gives a mapping $\Phi_{\gamma}: D_{\varphi_{0}} \rightarrow D_{\varphi_{1}}$ of shift along the leaves of f_{α}. For a loop γ we have an automorphism of D_{φ}. Since f_{α} is a foliation there
is no local holonomy: $\Phi_{\gamma}=$ id for contractible loops γ. Thus we can consider the map $\pi_{1}(\mathcal{C}) \rightarrow \operatorname{Aut}\left(D_{\varphi}\right)$.

Definition 2. We call $\Phi_{\gamma} \in \operatorname{Aut}\left(D_{\varphi}\right)$ the monodromy map along $\gamma \in \pi_{1}(\mathcal{C})$ and $\Phi_{\gamma}: D_{\varphi_{0}} \rightarrow D_{\varphi_{1}}$ the transport map.

For example there is no monodromy for the sphere $\mathcal{C}=S^{2}$ and each choice of local coordinates in a normal disk $D_{\varphi_{0}}$ gives coordinates for the others D_{φ}.

Let now $\mathcal{C}=T^{2}(2 \pi, \nu)$ and we have a foliating family f_{α} of half-infinite cylinders. Since every leaf \mathcal{B} is a cylinder, there is no monodromy along one generating cycle. Normalize it to be the cycle $\varphi \mapsto \varphi+2 \pi$. Denote by Φ_{ν} the monodromy along the other cycle $\varphi \mapsto \varphi+\nu$.

Unlike the complex case, the almost complex monodromy can be non-holomorphic mapping of the fibers: It is possible to construct examples of PH -foliations with any prescribed monodromy Φ_{ν}.

Moreover even if the monodromy is complex, the transport maps $\Phi_{\gamma}:\left(D_{\varphi_{0}}, J\right) \rightarrow$ $\left(D_{\varphi_{1}}, J\right)$ can be non-complex. In fact there are functional obstructions for the transports to be complex:

Theorem 10. Let \mathcal{C} be a PH-curve in a 4-dimensional manifold (M, J) and let $f_{\alpha}: \mathcal{B} \rightarrow \mathcal{O}$ be a local PH-foliating family in some neighborhood \mathcal{O} of \mathcal{C}. Then if all transport maps Φ_{γ} are holomorphic, then the Nijenhuis tensor characteristic distribution Π^{2} is integrable and is tangent to the leaves of f_{α}.

Proof. Actually this is because the foliation provides a local bundle $\pi: \mathcal{O} \rightarrow D_{\varphi}$ and so Proposition 8 applies.

Again the integrability is not a sufficient condition: There are other moduli.
So we see that the existence of foliating PH-family with complex transports (as in the original holomorphic case) is generically obstructed, and the obstructions are of the same nature as for the existence of equivalence between a germ of a neighborhood of a PHcurve \mathcal{C} and its normal bundle (though in the first case the Nijenhuis tensor characteristic distribution is tangent to the curve \mathcal{C}, while in the second one it is transversal).

References

[A1] V. I. Arnol'd, Supplementary chapters to the theory of ordinary differential equations, Nauka, Moscow, 1978 (Russian); English transl.: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1988.
[A2] Arnol'd's Problems, FAZIS, Moscow, 2000 (Russian); English transl. to appear.
[E] F. Engel, Zur Invariantentheorie der Systeme von Pfaff'schen Gleichungen, Berichte Ges. Leipzig, Math-Phys. Classe XLI (1889), 157-176.
[G] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
[HH] F. Hirzebruch, H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
[Ko] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
[KO] B. Kruglikov, M. Overholt, Pseudoholomorphic mappings and Kobayashi hyperbolicity, Differential Geom. Appl. 11 (1999), 265-277.
[K1] B. S. Kruglikov, Nijenhuis tensors and obstructions for pseudoholomorphic mapping constructions, Mat. Zametki 63 (1998), 541-561 (Russian); English transl.: Math. Notes 63 (1998), 476-493.
[K2] B. S. Kruglikov, Some classificational problems in four-dimensional geometry: distributions, almost complex structures and Monge-Ampère equations, Mat. Sb. 189:11 (1998), 61-74 (Russian); English transl.: Sb. Math. 189 (1998), 1643-1656.
[K3] B. S. Kruglikov, Nijenhuis tensors in pseudoholomorphic curves neighborhoods, University of Troms \varnothing, preprint 00-40 (2000); e-print: http://arXiv.org/abs/math.DG/0105130
[M1] D. McDuff, The local behavior of holomorphic curves in almost complex 4-manifolds, J. Differential Geom. 34 (1991), 143-164.
[M2] D. McDuff, Blow ups and symplectic embeddings in dimension 4, Topology 30 (1991), 409-421.
[MS] D. McDuff, D. Salamon, J-holomorphic Curves and Quantum Cohomology, Univ. Lecture Ser. 6, Amer. Math. Soc., Providence, 1994.
[Mo] J. Moser, On the persistence of pseudo-holomorphic curves on an almost complex torus, Invent. Math. 119 (1995), 401-442.
[NW] A. Nijenhuis, W. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. (2) 77 (1963), 424-489.
[S] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964.
[Z] M. Ya. Zhitomirskii, Normal forms of germs of two-dimensional distributions on R^{4}, Funktsional. Anal. i Prilozhen. 24:2 (1990), 81-82 (Russian); English transl.: Funct. Anal. Appl. 24 (1990), 150-152.

[^0]: 2000 Mathematics Subject Classification: Primary 53C15, 35A20; Secondary 58D27, 32H15.
 The paper is in final form and no version of it will be published elsewhere.

