GEOMETRY AND TOPOLOGY OF CAUSTICS — CAUSTICS '02 BANACH CENTER PUBLICATIONS, VOLUME 62 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2004

CHARACTERISTIC DISTRIBUTIONS ON 4-DIMENSIONAL ALMOST COMPLEX MANIFOLDS

BORIS S. KRUGLIKOV

Department of Mathematics and Statistics University of Tromsø 9037 Tromsø, Norway E-mail: kruglikov@math.uit.no

Abstract. In this paper the Nijenhuis tensor characteristic distributions on a non-integrable four-dimensional almost complex manifold is investigated for integrability, singularities and equivalence.

1. Introduction. For a non-integrable four-dimensional almost complex manifold we will canonically define a distribution Π^2 by the Nijenhuis tensor N_J . In Section 2 we complete the description [K1] of invariants of an almost complex structure in dimension four, using this distribution. In Sections 3–4 we describe singularities of Π^2 . We show they are standard if our field of planes is considered as a distribution, but they become quite specific if it is considered as a differential system.

In Sections 5–6 we study moduli and hyperbolicity of the germ of a neighborhood of a pseudoholomorphic curve. Section 7 is devoted to a geometric meaning of the integrability of the Nijenhuis tensor characteristic distribution Π^2 and its relation to a question of V. Arnold.

In [HH] Hirzebruch and Hopf proved the following topological result: If a 4-dimensional manifolds admits a rank 2 distribution, it admits an almost complex structure as well. Moreover if the manifold admits two almost complex structures, defining opposite orientations, then it admits a rank 2 distribution.

We associate a rank 2 distribution to a non-integrable almost complex structure, realizing the above topological correspondence (to one side) canonically on the differential level. Note that any almost complex structure on a 4-dimensional manifold can be perturbed to be non-integrable outside a discrete set.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C15, 35A20; Secondary 58D27, 32H15. The paper is in final form and no version of it will be published elsewhere.

2. Local classification of almost complex structures in dimension **4.** Let $(M, J \in \operatorname{Aut}(TM))$ be an almost complex manifold of dimension $4, J^2 = -1$. Its Nijenhuis tensor is the following (2, 1)-tensor

(1) $N_J \in \Lambda^2 T^* M \otimes TM, \quad N_J(\xi,\eta) = [J\xi, J\eta] - J[J\xi,\eta] - J[\xi, J\eta] - [\xi,\eta].$

Integrability of J is expressed via it as $N_J = 0$ ([NW]).

This tensor satisfies the property $N_J(J\xi,\eta) = N_J(\xi,J\eta) = -JN_J(\xi,\eta)$ and so can be considered as an antilinear map $N_J : \Lambda^2 \mathbb{C}^2 \to \mathbb{C}^2$, $\mathbb{C}^2 = (T_x M^4, J)$. The image is invariant under J and if $N_J \neq 0$ it is a complex line $\mathbb{C} \subset \mathbb{C}^2$.

Thus in the domain where the structure J is non-integrable a canonical distribution is obtained:

DEFINITION 1. We call $\Pi^2 = \text{Im } N_J \subset TM$ the Nijenhuis tensor characteristic distribution on a 4-dimensional almost complex manifold (M^4, J) .

This distribution Π^2 is in general situation non-integrable. Therefore it has a nontrivial derivative $\Pi^3 = \partial \Pi^2$, which is defined as the differential system with $C^{\infty}(M)$ module of sections $\mathcal{P}_3 = C^{\infty}(\Pi^3)$ generated by the self-commutator of the submodule $\mathcal{P}_2 = C^{\infty}(\Pi^2) \subset \mathcal{D}(M)$: $\mathcal{P}_3 = [\mathcal{P}_2, \mathcal{P}_2]$. Π^3 is not a distribution everywhere and its singularities form a stratified submanifold Σ_1^2 of codim = 2.

The distribution Π^3 on $M \setminus \Sigma_1^2$ is generically non-integrable, so that $\partial \Pi^3 = TM$ (or $[\mathcal{P}_2, \mathcal{P}_3] = \mathcal{D}(M)$) outside a stratified submanifold Σ_2^2 of codim = 2.

If $x \notin \Sigma_1^2$ then $\Pi_x^2 \subset \Pi_x^3$ has a transversal measure. In fact since the *J*-antilinear isomorphism $N_J(\cdot,\xi_3): \Pi_x^2 \to \Pi_x^2$ is orientation reversing, there exist vectors $\xi_1, \xi_2 \in \Pi_x^2$, $\xi_3 \in \Pi_x^3 \setminus \Pi_x^2$ such that $N_J(\xi_1,\xi_3) = \xi_1, N_J(\xi_2,\xi_3) = -\xi_2$. These ξ_1,ξ_2 are defined up to multiplication by a constant, while $\xi_3 \pmod{\Pi_x^2}$ is defined up to multiplication by ± 1 . Therefore Π^3/Π^2 is normed. By a similar reason $T_x M/\Pi_x^3$ is normed outside Σ_1^2 via the vector $\xi_4 = J\xi_3$.

Note that Π_x^3/Π_x^2 is oriented. Actually $[\xi_1, \xi_2] \pmod{\Pi_x^2}$ depends only on the values of ξ_1, ξ_2 at the point x. It is a vector $f\xi_3 \pmod{\Pi_x^2}$ for some f. So if we require $\xi_2 = J\xi_1$ then ξ_3 can be chosen so that f > 0. This produces a coorientation on $\Pi_x^2 \subset \Pi_x^3$ and then via J a coorientation on $\Pi_x^3 \subset T_x M$.

Moreover the requirement f = 1 determines canonically vector field ξ_1 (still however up to ± 1) and hence $\xi_2 = J\xi_1$. Then we set $\xi_3 = [\xi_1, \xi_2]$ and $\xi_4 = J\xi_3$. So the pair (ξ_1, ξ_2) is defined canonically up to a sign and the pair (ξ_3, ξ_4) is absolutely canonical. The following statement generalizes Theorem 7 [K1]:

THEOREM 1. Let an almost complex structure J be of general position. Then at a generic point $x \in M^4$ the canonical frame $(\xi_1, \xi_2, \xi_3, \xi_4)$ is defined. It restores uniquely the almost complex operator J and the tensor N_J by the tables:

X	JX	$N_J(\uparrow,\leftarrow)$	ξ_1	ξ_2	ξ_3	ξ_4
ξ_1	ξ_2	ξ_1	0	0	ξ_1	$-\xi_2$
ξ_2	$-\xi_1$	ξ_2	0	0	$-\xi_2$	$-\xi_1$
ξ_3	ξ_4	ξ_3	$-\xi_1$	ξ_2	0	0
ξ_4	$-\xi_3$	ξ_4	ξ_2	ξ_1	0	0

Note that reducing a geometric structure to a frame ($\{e\}$ -structure) solves completely the equivalence problem. The idea is as follows. Consider the moduli of the problem, i.e. functions c_{jk}^i given by the formula $[\xi_j, \xi_k] = \sum c_{jk}^i \xi_i$. Denote by $\mathbb{A} = \{c_{jk}^i\}$ the space of all invariants and by $\Phi : M \to \mathbb{A}$ the "momentum map" $x \mapsto \{c_{jk}^i(x)\}$. Then two equivalent structures have the same images and the equivalence follows. See [S] for more details.

3. Singularities of a Nijenhuis tensor characteristic distribution. A distribution $V = V_1$ is called *completely non-holonomic* if one of its successive derivatives $V_i = \partial V_{i-1}$ equals the whole tangent bundle TM and the minimal such i = r is called the degree of non-holonomy (can vary from point to point). The growth vector of a distribution at a point $x \in M$ is the sequence of the dimensions $(\operatorname{rk}_x V_1, \ldots, \operatorname{rk}_x V_{r(x)})$.

Generically a Nijenhuis tensor characteristic distribution is completely non-holonomic outside a discrete subset in M. In an open dense set the growth vector is (2, 3, 4). Then it is an *Engel distribution*, which has the following local normal form ([E]):

$$\Pi^2 = \langle \xi_1 = \partial_3, \, \xi_2 = \partial_4 - x_3 \partial_2 - x_2 \partial_1 \rangle; \qquad \partial_i := \partial / \partial x_i.$$

Locally this Π^2 can be realized as a Nijenhuis tensor characteristic distribution ([K2]). In fact, consider two transversal symmetries of the distribution: $\eta_1 = \partial_1$, $\eta_2 = \partial_2 - x_4 \partial_1$. Define the almost complex structure by the formula

(2)
$$J\xi_1 = \varphi\xi_2, \ J\eta_1 = \eta_2; \qquad \varphi \neq 0.$$

Then one easily checks that $\operatorname{Im} N_J = \Pi^2$ whenever $(\partial_{\eta_1} \varphi)^2 + (\partial_{\eta_2} \varphi)^2 \neq 0$.

Moreover the following statement holds:

PROPOSITION 2. Let Π be an analytic distribution of rank 2 in \mathbb{R}^4 . Then it can be locally realized as a Nijenhuis tensor characteristic distribution.

Proof. Let Π^2 be generated by $\xi_1 = \partial_3$ and $\xi_2 = \partial_4 + h_1 \partial_1 + h_2 \partial_2$. A pair of generators can always be chosen in such a form. Consider ξ_2 as a vector field in $\mathbb{R}^3(x_1, x_2, x_4)$ depending on a parameter x_3 . It has two independent symmetries $\eta_1, \eta_2 \in \mathcal{D}(\mathbb{R}^3)$: $[\eta_i, \xi_2] = 0$. Let us differentiate these fields by the parameter: $\partial_3 \eta_i = [\partial_3, \eta_i] = a_i^j \eta_j + b_i \xi_2$.

Define the almost complex structure by the formula

$$J\xi_1 = \varphi\xi_2, \ J\eta_1 = \alpha\eta_1 + \beta\eta_2; \ \ \beta, \varphi \neq 0.$$

The condition $\operatorname{Im} N_J = \Pi^2$ is equivalent to the system

$$\begin{cases} \varphi \partial_{\xi_2} \alpha = \alpha \partial_{\xi_1} \alpha - \frac{1+\alpha^2}{\beta} \partial_{\xi_1} \beta + \left[a_1^1 (1+\alpha^2) - a_1^2 \alpha \frac{1+\alpha^2}{\beta} + a_2^1 \alpha \beta - a_2^2 (1+\alpha^2) \right] \\ \varphi \partial_{\xi_2} \beta = \beta \partial_{\xi_1} \alpha - \alpha \partial_{\xi_1} \beta + \left[a_1^1 \alpha \beta + a_1^2 (1-\alpha^2) + a_2^1 \beta^2 - a_2^2 \alpha \beta \right] \end{cases}$$

and the inequality $(\partial_{\eta_1}\varphi - b_1\alpha - b_2\beta)^2 + (\partial_{\eta_2}\varphi - b_1\frac{1-\alpha^2}{\beta} + b_2\alpha)^2 > 0$. The system is in the Cauchy-Kovalevskaya form and so possesses a local solution. After this the inequality is arranged to hold.

THEOREM 3. Nijenhuis tensor characteristic distributions in the domain of non-integrability for J have the same singularities as the usual two-dimensional distributions in \mathbb{R}^4 .

B. KRUGLIKOV

Proof. Let us first define the degeneration locus of a distribution. Introduce the partial order on the growth vectors: $(m_1, \ldots, m_s) \leq (n_1, \ldots, n_r)$ iff $s \geq r$ and $m_i \leq n_i$ for $i = 1, \ldots, r$. Fix one growth vector I. Then the degeneration locus $\Sigma_I \subset M$ is the set of points with the growth vector less than or equal to I. Proposition 2 (it holds formally as well—on the jets of the structure) and the Thom transversality theorem imply that for a typical J the sets Σ_I are nice subvarieties, stratifying the manifold M. The statement follows.

The generic degenerations of two-plane fields in \mathbb{R}^4 , up to codimension 3, were classified by Zhitomirskii [Z]. Let us show how generic codimension 2 singularities are realized as a Nijenhuis tensor characteristic distribution.

There are two different types of such singularities, defined by the growth vectors $I_1 = (2, 2, 4)$ and $I_2 = (2, 3, 3, 4)$. All other growth vectors are subordinated to these two and hence the singular set is

$$\Sigma = \Sigma_1^2 \cup \Sigma_2^2, \qquad \Sigma_i^2 = \Sigma_{I_i}.$$

Generically the loci Σ_i^2 are smooth 2-dimensional submanifolds ([Z]), which intersect nontransversally along a curve Σ_1^1 . There is also a curve $\Sigma_2^1 \subset \Sigma_2^2$ separating the locus into the elliptic/hyperbolic parts $\Sigma_{2\pm}^2$.

The codimension 2 loci of $\Pi^2 = \langle \xi_1, \xi_2 \rangle$ have the following normal forms:

$$\begin{split} \Sigma_1^2 \setminus \Sigma_1^1 : & \xi_1 = \partial_3, \ \xi_2 = \partial_4 - x_3 x_4 \partial_2 - x_3^2 \partial_1; \\ \Sigma_{2+}^2 : & \xi_1 = \partial_3, \ \xi_2 = \partial_4 - \left(\frac{1}{3} x_3^3 + x_3 x_4^2\right) \partial_2 - x_3 \partial_1; \\ \Sigma_{2-}^2 : & \xi_1 = \partial_3, \ \xi_2 = \partial_4 - x_3^2 x_4 \partial_2 - x_3 \partial_1. \end{split}$$

In each of these cases the choice $\eta_1 = \partial_1$, $\eta_2 = \partial_2$ and formula (2) will lead to realization $\Pi^2 = \text{Im } N_J$. The cases of higher degenerations are studied similarly.

4. Singularities of $\Pi = \text{Im } N_J$ as of a differential system. As differential systems Nijenhuis tensor characteristic distributions have singularities different from those of the usual differential systems in \mathbb{R}^4 : The rank of a Nijenhuis tensor characteristic distribution is even and so is 2 or 0.

PROPOSITION 4. For a generic structure J the set where $N_J = 0$ (the rank of Π falls to zero) is a discrete set $\Sigma^0 \subset M^4$. For each point of Σ^0 there is a centered coordinate neighborhood (x_1, y_1, x_2, y_2) around it such that the almost complex structure is given by the formula

$$J\partial_{x_i} = \alpha_i \partial_{x_i} + (1 + \beta_i) \partial_{y_i}, \quad J\partial_{y_i} = -\frac{1 + \alpha_i^2}{1 + \beta_i} \partial_{x_i} - \alpha_i \partial_{y_i}, \qquad i = 1, 2,$$

where the functions α_i, β_i are of the second order of smallness at the origin.

Proof. Singularities of the differential system $\Pi = \text{Im } N_J$ are given by the vector equation $N_J(\xi, \eta) = 0$ for some *J*-independent vector fields ξ, η , and so are generically isolated points given by the integrability condition $N_J = 0$.

To get the other claim recall ([K1]) that an almost complex structure can be approximated by a complex structure to the second order of smallness at the integrability points. Let (w_1, w_2) be the corresponding complex coordinates. By a theorem of Nijenhuis and Woolf [NW] (see also Proposition 9 below) there are two *J*-holomorphic foliations by disks C^1 -close to the foliations $\{w_i = \text{const.}\}$ at the origin, i = 1, 2. Let z_1 be a complex coordinate on the disk of the first family passing the origin and z_2 —on the second. They define the complex coordinate system (z_1, z_2) in a neighborhood of the origin with the required properties.

REMARK 1. For dim M > 4 the set where $N_J = 0$ is generically empty.

Let $\alpha_i^{\diamond}, \beta_i^{\diamond}$ be the quadratic parts of α_i, β_i . Using the coordinate system from Proposition 4 we calculate: $\Pi^2 = \text{Im } N_J = \langle \xi_1, \xi_2 = J\xi_1 \rangle$, where linearizations of the generators at the origin are

$$\xi_1^0 = \left(-\frac{\partial \beta_1^\diamond}{\partial x_2} - \frac{\partial \alpha_1^\diamond}{\partial y_2} \right) \partial_{x_1} + \left(\frac{\partial \alpha_1^\diamond}{\partial x_2} - \frac{\partial \beta_1^\diamond}{\partial y_2} \right) \partial_{y_1} + \left(\frac{\partial \beta_2^\diamond}{\partial x_1} + \frac{\partial \alpha_2^\diamond}{\partial y_1} \right) \partial_{x_2} + \left(\frac{\partial \beta_2^\diamond}{\partial y_1} - \frac{\partial \alpha_2^\diamond}{\partial x_1} \right) \partial_{y_2}$$

and $\xi_2^0 = J_0 \xi_1^0$ (J_0 is the constant coordinate extension of J from the origin).

Thus we see that the linearization of the considered differential system is special, not as for the usual differential systems. If we consider linear vector fields ξ_i^0 as linear operators, we represent the first order approximation of Π by a two-dimensional subspace $V^2 \subset \text{gl}(4)$. The condition $V^2 = \langle X_1, X_2 = JX_1 \rangle$ for some $J^2 = -1$ characterizes admissible 2-planes and thus linearizations. The higher order terms in ξ_1, ξ_2 are special as well.

5. Moduli of a PH-curve neighborhood. Let C^2 be a pseudoholomorphic (PH-) curve, i.e. a surface with *J*-invariant tangent bundle. At every point $x \in C$ we have two *J*-invariant planes $T_x C^2$ and Π_x^2 , which generically intersect by zero, except at a finite number of points $\Sigma'_0 \subset C$. The sets $\Sigma'_1 = \Sigma_1^2 \cap C$ and $\Sigma'_2 = \Sigma_2^2 \cap C$ are generically finite as well. The arrangement of all these points

$$\Sigma' = \Sigma'_0 \cup \Sigma'_1 \cup \Sigma'_2 \subset \mathcal{C}$$

gives a (finite-dimensional) invariant of \mathcal{C} .

For points $x \in \mathcal{C} \setminus \Sigma'_1$ we define field of directions $L^1 = T\mathcal{C} \cap \Pi^3$. The integral curves of this 1-distribution foliate the set $\mathcal{C} \setminus \Sigma'_1$ and in general \mathcal{C} foliates with only non-degenerate singular points. Denote the number of elliptic points by $e(L^1)$ and the number of hyperbolic points by $h(L^1)$. One can prove:

PROPOSITION 5. Under C^1 -small perturbation of the structure J the foliation L^1 has minimal number of singularities: $\min\{e(L), h(L)\} = 0$, $\max\{e(L), h(L)\} = |\chi(\mathcal{C})|$. For instance if $\mathcal{C} = T^2$ we get a foliation without singularities.

Due to Section 2 the foliation L^1 is oriented, cooriented and has parallel and transverse measures outside Σ' . Thus there exist canonical vector fields v_1 along L^1 and $v_2 = Jv_1$ transverse to it. Consequently the curve C has a lot of dynamical invariants like winding classes of v_1 and v_2 . Moreover, decomposing

$$[v_1, v_2] = \gamma_1 v_1 + \gamma_2 v_2,$$

we obtain two invariant (under pseudoholomorphic isomorphisms) functions γ_1, γ_2 . These together with the germs of the functions c_{jk}^i from Section 2 form *moduli* of the *C*-neigh-

borhoods germ. They solve the equivalence problem for PH-embeddings $\mathcal{C}^2 \to M^4$ (of general position).

EXAMPLE. Let $M = T^2(\varphi, \psi) \times \mathbb{R}^2(x, y)$ be equipped with the structure

$$J\partial_x = \partial_y; \qquad J\partial_\varphi = \frac{2 - \rho y^2}{2} \partial_\psi + \frac{y^2}{2} \partial_\varphi + x \partial_x; J\partial_y = -\partial_x; \qquad J\partial_\psi = \frac{4 + y^4}{2\rho y^2 - 4} \partial_\varphi - \frac{y^2}{2} \partial_\psi + \frac{xy^2}{\rho y^2 - 2} \partial_x + \frac{2x}{\rho y^2 - 2} \partial_y.$$

Then $C = \{x = y = 0\}$ is a PH-torus and the winding number of v_1 is ρ . Similarly one shows the other considered invariants are non-trivial.

6. Hyperbolicity of a PH-curve neighborhood. In this section we consider the case of PH-tori $C = T^2$. We assume for simplicity that the normal bundle is topologically trivial, though in general case the result is the same.

Recall that the Kobayashi pseudometric d_M measures the distance between points via pseudoholomorphic disks ([Ko, KO]). An almost complex manifold is called Kobayashi hyperbolic if d_M is a metric. Let $\|\cdot\|$ be a norm on TM.

PROPOSITION 6. Let \mathcal{O} be a small neighborhood of a pseudoholomorphic torus $T^2 \subset (M^4, J)$. Then the domain $\mathcal{O} \setminus T^2$ is not Kobayashi-hyperbolic.

Moreover, for some constant C > 0 and any R > 0 there exists a smooth family of PH-disks $f_{\alpha}^{R} : D_{R} \to \mathcal{O}$, with uniformly bounded norms $\|(f_{\alpha}^{R})_{*}(z)\| \leq C$ satisfying $\|(f_{\alpha}^{R})_{*}(0)\| = 1$, that fills some smaller neighborhood $\mathcal{O}' \subset \mathcal{O}$ of T^{2} :

$$\mathcal{O}' \subset \bigcup_{\alpha} f_{\alpha}^R(D_R)$$

Proof. Let us take the universal covering $\hat{\mathcal{O}} \simeq \mathbb{C} \times D^2$ of \mathcal{O} . The torus is covered by the entire line $\mathbb{C} \to T^2$. Changing the structure J at infinity in $\hat{\mathcal{O}}$ and near the boundary to the integrable one we glue the manifold to the product $S^2 \times S^2$ with the line \mathbb{C} being glued to the first factor S_1^2 . Then the introduction of the taming symplectic product structure $\omega = \omega_1 \oplus \omega_2$ yields a foliation of $S_1^2 \times S_2^2$ by PH-spheres S^2 in the homology class of the first factor if we additionally demand that the homology class $[S_1^2]$ of the first sphere-factor is symplectically indecomposable (for example, if $\omega_1(S_1^2) = k\omega_2(S_2^2)$, $k \in \mathbb{N}$). Here we use the fact that the dimension is 4: due to positivity of intersections [M1] we actually have a foliation ([M2]).

This foliation of $S^2 \times S^2$ gives a family of big PH-disks on $\hat{\mathcal{O}}$ parametrized by the radius R of disk in \mathbb{C} out of which the almost complex structure is changed. The estimates follow from the Brody reparametrization lemma as in [KO]. Pulling-back we get the required family.

We now consider filling by pseudoholomorphic cylinders $C_R = [-R; R] \times S^1 \subset \mathbb{C} \setminus \{0\}$, which is topologically different from the disk-filling (Fig. 1).

PROPOSITION 7. In the statement of Proposition 6 we can change disks D_R to the cylinders C_R and get for every R > 0 a filling family of PH-cylinders $f_{\alpha}^R : C_R \to \mathcal{O}$ with

uniformly bounded norms and normalization $||(f_{\alpha}^{R})_{*}(0)|| = 1$:

Figure 1. Filling by PH-cylinders

Proof. Actually take a covering of the neighborhood \mathcal{O} which corresponds to one cycle of the torus. The torus is covered by the entire cylinder $\mathcal{C}_{\infty} \to T^2$. We can change the almost complex structure J at infinity so that it makes possible to "pinch" each end of the cylinder. This means we perturb the structure J so that it is standard integrable outside some $\mathcal{C}_{R_2} \subset \mathcal{C}_{\infty}$ and the support is also a big cylinder \mathcal{C}_{R_1} . Then we glue the ends to the disks. This operation gives us a sphere S^2 instead of the cylinder $\mathcal{C}_{\infty} = \mathbb{R} \times S^1$. We can also assume that neighborhoods of two cylinder ends are pinched (Fig. 2).

Figure 2. Cutting and gluing

Thus we have a neighborhood U of the sphere S_0^2 . It is foliated by PH-spheres close to S_0^2 . Actually, we can change the structure J near the boundary of this neighborhood, glue and get the manifold product $\hat{M} = S^2 \times S^2$. As before it is foliated by PH-spheres. Thus U is foliated by PH-spheres and in the preimage they give a PH-foliation by cylinders.

REMARK 2. Neighborhoods of PH-spheres $\mathcal{C} = S^2$ are also non-hyperbolic and if the normal bundle is topologically trivial can be foliated by close PH-spheres. Small neighborhood of PH-curves of higher genus $\mathcal{C} = S_q^2$, g > 1, are Kobayashi hyperbolic.

Moreover the above non-hyperbolicity for the cases g = 0, 1 can be strengthened as follows: Even the punctured neighborhoods $\mathcal{O} \setminus \mathcal{C}$ are non-hyperbolic.

7. Arnold's question. In [A2] (1993-25) Arnold asks about almost complex version for his Floquet-type theory of elliptic curves neighborhoods ([A1]) in the spirit of the Moser's KAM-type theorem ([Mo]). Namely he asks if a germ of neighborhood \mathcal{O} of a PH-torus $\mathcal{C} = T^2 \subset (M^4, J)$ is determined by its normal bundle $N_{\mathcal{C}}M$.

The following result is a direct consequence of the definition:

PROPOSITION 8. If $F : M^4 \to C^2$ is a (local) PH-surjection and the structure J is non-integrable, then the Nijenhuis tensor characteristic distribution Π^2 is integrable and is tangent to the fibers of F.

Thus there is a functional obstruction to the equivalence of the C-germ in M^4 and of the C-germ in the normal bundle (we do not discuss here the normal bundle: If dim M = 4, the almost complex structure on $N_C M$ can be obtained via linearization along a family of transversal PH-disks; for the general case see [K3]). Integrability and transversality of Π^2 to the torus C is a necessary, but by no means sufficient condition for the existence of an equivalence: There are other functional moduli.

In search of a proper generalization of Arnold's result we notice that a neighborhood of an elliptic curve in a complex surface is foliated by half-infinite cylinders: They are given as |z| = const. in the representation of the neighborhood as $\mathbb{C}^2(z, w)/(z, w) \sim$ $(z+2\pi, w) \sim (z+\nu, \lambda w)$, where $\nu \in \mathbb{C} \setminus \mathbb{R}$ and $\lambda \in \mathbb{C} \setminus \{0\}$ (see [A1] for the representation). The hypothesis is then that for a non-integrable perturbation J of the complex structure J_0 most of the cylinders persist (as in Moser's theory).

Let us sketch how to prove existence of one such a half-cylinder. In Proposition 7 we have constructed a pre-compact family of finite cylinders f_{α}^{R} for different R. If it winds up to the curve C (as in the holomorphic normal form with $|\lambda| \neq 1$), then one can extract a subsequence $f_{\alpha_{k}}^{R_{k}}$ with $R_{k} \to \infty$ converging to a pseudoholomorphic curve due to the standard technique ([G, MS]). This is the required half-cylinder.

There are no tools however to complete this construction to a PH-foliation (also a filling is problematic—a remark of V. Bangert). Note though that even if we construct a foliation, it is not necessarily so nice as its holomorphic original. To explain this let us notice the following fact, which is a corollary of a theorem by Nijenhuis and Woolf [NW]:

PROPOSITION 9. A small neighborhood \mathcal{O} of a PH-curve $\mathcal{C} \subset M^4$ can be foliated by transversal PH-disks D^2 .

Now consider a neighborhood of a PH-curve \mathcal{C} with topologically trivial normal bundle and suppose we have a foliating family $f_{\alpha} : \mathcal{B} \to \mathcal{O}$ with unbounded or compact leaves in it. Let $D_{\varphi}, \varphi \in \mathcal{C}$, be the family of normal disks from Proposition 9. Then every path $\gamma(t)$ on \mathcal{C} with $\gamma(0) = \varphi_0, \gamma(1) = \varphi_1$ gives a mapping $\Phi_{\gamma} : D_{\varphi_0} \to D_{\varphi_1}$ of shift along the leaves of f_{α} . For a loop γ we have an automorphism of D_{φ} . Since f_{α} is a foliation there is no local holonomy: $\Phi_{\gamma} = \text{id}$ for contractible loops γ . Thus we can consider the map $\pi_1(\mathcal{C}) \to \text{Aut}(D_{\varphi}).$

DEFINITION 2. We call $\Phi_{\gamma} \in \operatorname{Aut}(D_{\varphi})$ the monodromy map along $\gamma \in \pi_1(\mathcal{C})$ and $\Phi_{\gamma} : D_{\varphi_0} \to D_{\varphi_1}$ the transport map.

For example there is no monodromy for the sphere $\mathcal{C} = S^2$ and each choice of local coordinates in a normal disk D_{φ_0} gives coordinates for the others D_{φ} .

Let now $\mathcal{C} = T^2(2\pi, \nu)$ and we have a foliating family f_α of half-infinite cylinders. Since every leaf \mathcal{B} is a cylinder, there is no monodromy along one generating cycle. Normalize it to be the cycle $\varphi \mapsto \varphi + 2\pi$. Denote by Φ_ν the monodromy along the other cycle $\varphi \mapsto \varphi + \nu$.

Unlike the complex case, the almost complex monodromy can be non-holomorphic mapping of the fibers: It is possible to construct examples of PH-foliations with any prescribed monodromy Φ_{ν} .

Moreover even if the monodromy is complex, the transport maps $\Phi_{\gamma} : (D_{\varphi_0}, J) \to (D_{\varphi_1}, J)$ can be non-complex. In fact there are functional obstructions for the transports to be complex:

THEOREM 10. Let C be a PH-curve in a 4-dimensional manifold (M, J) and let $f_{\alpha} : \mathcal{B} \to \mathcal{O}$ be a local PH-foliating family in some neighborhood \mathcal{O} of C. Then if all transport maps Φ_{γ} are holomorphic, then the Nijenhuis tensor characteristic distribution Π^2 is integrable and is tangent to the leaves of f_{α} .

Proof. Actually this is because the foliation provides a local bundle $\pi : \mathcal{O} \to D_{\varphi}$ and so Proposition 8 applies.

Again the integrability is not a sufficient condition: There are other moduli.

So we see that the existence of foliating PH-family with complex transports (as in the original holomorphic case) is generically obstructed, and the obstructions are of the same nature as for the existence of equivalence between a germ of a neighborhood of a PH-curve C and its normal bundle (though in the first case the Nijenhuis tensor characteristic distribution is tangent to the curve C, while in the second one it is transversal).

References

- [A1] V. I. Arnol'd, Supplementary chapters to the theory of ordinary differential equations, Nauka, Moscow, 1978 (Russian); English transl.: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1988.
- [A2] Arnol'd's Problems, FAZIS, Moscow, 2000 (Russian); English transl. to appear.
- [E] F. Engel, Zur Invariantentheorie der Systeme von Pfaff'schen Gleichungen, Berichte Ges. Leipzig, Math-Phys. Classe XLI (1889), 157–176.
- [G] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.
- [HH] F. Hirzebruch, H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156–172.

- [Ko] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
- [KO] B. Kruglikov, M. Overholt, Pseudoholomorphic mappings and Kobayashi hyperbolicity, Differential Geom. Appl. 11 (1999), 265–277.
- [K1] B. S. Kruglikov, Nijenhuis tensors and obstructions for pseudoholomorphic mapping constructions, Mat. Zametki 63 (1998), 541–561 (Russian); English transl.: Math. Notes 63 (1998), 476–493.
- [K2] B. S. Kruglikov, Some classificational problems in four-dimensional geometry: distributions, almost complex structures and Monge-Ampère equations, Mat. Sb. 189:11 (1998), 61-74 (Russian); English transl.: Sb. Math. 189 (1998), 1643-1656.
- [K3] B. S. Kruglikov, Nijenhuis tensors in pseudoholomorphic curves neighborhoods, University of Tromsø, preprint 00-40 (2000); e-print: http://arXiv.org/abs/math.DG/0105130
- [M1] D. McDuff, The local behavior of holomorphic curves in almost complex 4-manifolds, J. Differential Geom. 34 (1991), 143–164.
- [M2] D. McDuff, Blow ups and symplectic embeddings in dimension 4, Topology 30 (1991), 409–421.
- [MS] D. McDuff, D. Salamon, J-holomorphic Curves and Quantum Cohomology, Univ. Lecture Ser. 6, Amer. Math. Soc., Providence, 1994.
- [Mo] J. Moser, On the persistence of pseudo-holomorphic curves on an almost complex torus, Invent. Math. 119 (1995), 401–442.
- [NW] A. Nijenhuis, W. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. (2) 77 (1963), 424–489.
- [S] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964.
- M. Ya. Zhitomirskii, Normal forms of germs of two-dimensional distributions on R⁴, Funktsional. Anal. i Prilozhen. 24:2 (1990), 81–82 (Russian); English transl.: Funct. Anal. Appl. 24 (1990), 150–152.