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Abstract. The Voronoi diagram of n distinct generating points divides the plane into cells,

each of which consists of points most close to one particular generator. After introducing ‘limit

Voronoi diagrams’ by analyzing diagrams of moving and coinciding points, we define compacti-

fications of the configuration space of n distinct, labeled points. On elements of these compact-

ifications we define Voronoi diagrams.

1. Introduction. The Voronoi diagram of a set S of n distinct points in R2 associates

to a point p ∈ S that part of the plane that is closer to p than to any other point

in S. Voronoi diagrams are one of the major structures investigated in Computational

geometry, see [1, 2]. Applications can be found in e.g. astronomy, cartography, computer

vision, theoretical physics, etc., see also [8]. We treat Voronoi diagrams however from

a more mathematical viewpoint: in this overview article we consider moving points and

demonstrate ways to define Voronoi diagrams for point sets that may contain coinciding

points. We present methods, example and theorems here; for full proofs and background

information, please consult the dissertation of the first author [7]. All results in this paper

and in [7] generalize in appropriate sense to higher dimensions and to weighted distance

functions.
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2. Voronoi diagrams

2.1. Definitions. Let S = {p1, . . . , pn} with pi ∈ R2 and pi 6= pj if i 6= j. The Voronoi

cell of pi is given by

V (pi) = {q ∈ R2 : ‖pi − q‖ ≤ ‖pj − q‖, i 6= j}.
The Voronoi diagram is the family of subsets of R2 consisting of the Voronoi cells and

all of their intersections.

The Voronoi half-plane vh(pi, pj) is given by

vh(pi, pj) = {q ∈ R2 : ‖pi − q‖ ≤ ‖pj − q‖}.
It is bounded by the bisector B(pi, pj) of pi and pj . The next lemma shows that the

Voronoi cell of pi is characterized by the Voronoi half-planes vh(pi, pj).

Lemma 1. V (pi) =
⋂
j 6=i vh(pi, pj).

2.2. Small diagrams. In Figure 1, all possible Voronoi diagrams with 2, 3, or 4 points

are shown. Here, we only distinguish Voronoi diagrams that are combinatorially distinct,

and, moreover, we ignore the labelling of the vertices.
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Figure 1. Voronoi diagrams on two, three and four points.
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In these cases we can distinguish between generic situations, e.g. where the Voronoi

diagrams do not change if we move the sites slightly, and the non-generic diagrams, where

this is not the case. Diagrams 2, 3.a, 4.a, and 4.c are generic, the others are non-generic.

2.3. Perestroika’s between generic situations. Assume the points defining the Voronoi

diagrams are allowed to move. We are interested in perestroika’s between two generic

situations. We distinguish two special events that we describe using Voronoi circles. In

these events only four points of S are involved, denoted by a, b, c, and d. The circle

passing through a, b and c is denoted by Cabc. A circle passing through three points of

the generating set S is an empty circle if it contains no points of S in its interior.

The first event is when two empty circles Cabd and Cbcd coincide. This is a circle event,

see Figure 2. Before the event, a, b, c, and d define two empty circles Cabd and Cbcd. If

c moves to the left in the leftmost figure, a, b, c and d become cocircular. If c continues

moving left, one arrives at the situation of the rightmost figure, where Cabc and Cacd are

the empty circles.
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Figure 2. A circle event.

The other way by which a generic Voronoi diagram can change is by means of a convex

hull event, see Figure 3. Consider the circle defined by the points a, b and c. In the figure

on the left, b is on the convex hull of S. The circle Cabc contains all other points of S in

its interior. Suppose b moves to the left. At some stage, b passes through the line segment

ab. At this moment, the circle Cabc swaps over, and becomes empty, as in the picture on

the right.
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Figure 3. A convex hull event.

The circle event and the convex hull event are the only perestroika’s (bifurcations) of

Voronoi diagrams, which occur in generic one-parameter families of moving points. More

complicated bifurcations are e.g. related to five points on a circle or four points on one

edge of the convex hull (these and others occur as bifurcations in generic two parameter

families).
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3. Polynomial sites and their Voronoi diagram

3.1. Points moving at distinct speeds and directions. We model points moving at

distinct speed by differentiable curves pi(t), defined for a finite common interval of the

real line, say [−r,+r]. That is, we consider

S(t) = {p1(t), . . . , pn(t)}.
We include the possibility that for t = 0 one or more points coincide, but still assume

that they are different if t 6= 0. We also assume that the differences pi(t) − pj(t) have a

non-vanishing (higher) derivative at t = 0. For convenience we assume that all pi(t) are

polynomial. We call such pi(t) polynomial sites.

We use the characterization of Voronoi cells by means of half-planes for defining

Voronoi diagrams for polynomial sites. Let u(t) and v(t) be two polynomial sites. We can

define a Voronoi half-plane for u(t) and v(t) when we know both the (oriented) direction

and one point of the bisector bounding the half-plane.

This one point is given by the bisection point b0(u, v) = (bx, by) of u(t) and v(t) at

t = 0 and is defined by

b0(u, v) = 1
2

(
u(0) + v(0)

)
.

The direction φuv at t = 0 is the angle in R/2πZ of the line segment v(t) − u(t) at

t = 0. In this definition of φuv we take the limit for small positive t of the direction of

the directed line that passes first through u(t) and then through v(t). We could of course

also have chosen the limit from the other side. Let n be any non-zero vector, pointing in

the direction φuv. The Voronoi half-plane vh(u, v) is the half-plane defined by

n · (x− bx, y − by) ≤ 0.

We next take V (pi) =
⋂
j 6=i vh(pi, pj) as definition of the Voronoi diagram of a set of

polynomial sites at t = 0 and call them limit diagrams.

3.2. Properties and small examples of limit diagrams. Limit diagrams share many

properties with ordinary Voronoi diagrams, for example the convexity of the cells, but

there are some interesting differences:

• Limit Voronoi cells can have area zero.

• Limit Voronoi cells can have diameter zero.

• Limit diagrams for t > 0 and for t < 0 can be different.

• Limit diagrams can have a “hidden” combinatorial structure.

This new behaviour is demonstrated in Figures 4 and 5, where we list all limit diagrams

with 2 or 3 coinciding points.

2 1 1 2

Figure 4. Limit Voronoi diagram for negative and positive t.
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For two points there is essentially one new diagram that we get by generalizing to

limit diagrams. It occurs whenever two polynomial sites coincide, and is fully determined

by the direction φuv of the two polynomial sites u and v involved.

Suppose that p1(t) = (0, 0) and p2(t) = (t, 0). Then t can approach zero from both

the negative and the positive side. The resulting diagrams are given in Figure 4.
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1

2

3
1

2
3

1 2

3

1

2

3

1
2

3 1
2

3

←→

Figure 5. Five limit Voronoi diagrams for three points.

A generic limit diagram of three coinciding points is given in Figure 5.a. In Figure

5.b one can think of three collinear sites that shrink to one point. Note that the cell of

site 2 has zero area. Figures 5.b and 5.e.1 show what is meant by ‘hidden’ combinatorics.

Both pictures just look like one straight line, although Figure 5.b consists in fact of two

coinciding lines, while 5.e.1 comes from a vertex with three arcs (see Figure 5.e.2) where

two arcs coincide.

3.3. A diameter zero cell and more hidden combinatorics. On the left in Figure 6, a

Voronoi diagram of type 4.c (compare Figure 1) is shown. If one scales this diagram to

zero distances then the limit diagram of the four sites is shown on the right in Figure 6.

A parametrization of the sites is given by q1(t) = (2t, 2t3), q2(t) = (−2t, 2t), q3(t) =

(−2t2,−3t), and q4(t) = (t2,−t4).

1
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1
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2

Figure 6. The Voronoi diagram of the points q1(t), q2(t), q3(t) and q4(t)

for small positive t and at t = 0.

Another example of nice hidden combinatorics is given in Figure 7. It displays schemat-
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p q r s

pqr

psr

Figure 7. Edge of zero length outside (0, 0).

ically a limit diagram that looks just like a line. In this limit diagram the Voronoi

edge e(p, r) gets zero length, while it is situated at the point (0, 2), although all sites

coincide in (0, 0). A parametrization of the sites involved is given by p(t) = (−2t, 0),

q(t) = (−t,− 1
4 t

2), r(t) = (0, 0), and s(t) = (2t, 2t2).

3.4. Plugging. If all sites in S(0) are different, then the limit Voronoi diagram co-

incides with the (ordinary) Voronoi diagram of S(0). If at t = 0 there is a collision at

distinct locations S(0) = {l1, . . . , lm} where the lj are pairwise distinct, then one can

compute the limit diagram in three steps:

1. Compute the (ordinary) Voronoi diagram of l1, . . . , lm.

2. Compute for each j (j = 1, . . . ,m) the limit Voronoi diagram of the set of sites

pi(t) with limit lk.

3. ‘Plug in’ the limit diagrams, obtained in Step 2, at the corresponding Voronoi cell

of lk. The plugging is illustrated in Figure 8.

+ =

Figure 8. Plugging diagrams.

At the end of this paragraph we conclude that we have found a new class of mathe-

matical objects, limit Voronoi diagrams, that contains all ordinary Voronoi diagrams but,

moreover, contains certain limit diagrams that cannot be realized as ordinary Voronoi
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pi

pj

αij

Figure 9. The angle αij of two points pi and pj .

diagrams. We have also seen that we need angles modulo 2π in order to define Voronoi

diagrams out of Voronoi half-planes. And certain cells disappear in the limit. In order to

make these cells visible, we need some relation between scale and shape.

4. Compactifying the configuration space

4.1. Angles and points compactification. The configuration space of n distinct labelled

points in R2 is the set CONFn ⊂ (R2)n given by

CONFn = {(p1, . . . , pn) : pi 6= pj if i 6= j}.
So, a configuration is just a set of distinct points in the plane. For any two distinct points

pi and pj , the directed angle αij ∈ R/2πZ is the argument of the point

(cosαij , sinαij) =
( dx
‖dx‖

,
dy
‖dy‖

)
,

where d = (dx, dy) := pj − pi, see Figure 9. The undirected angle αij is defined as

αij = αji = αij modπ. For a configuration c in CONFn we can determine the set an of

angles mod 2π of lines through any two points in c. That is, we define a map ψDAn , given

by

ψDAn : CONFn → (R/2πZ)(
n
2),

(p1, . . . , pn) 7→
(
αij
)

1≤i<j≤n .

The angles and points compactification CDAn is the closure of the graph of ψDAn in

(R2)n × (R/2πZ)(
n
2).

In an analogous way we define the map ψUAn from CONFn to the undirected angles

and the corresponding undirected compactification CUAn.

An example of an element or data set of CDA2 is given by
(
(0, 0), (0, 0), π6

)
. It is a

degenerate configuration of two coinciding points p1 and p2 such that α12 = π
6 . Another

example is
(
(0, 0), ( 1

2

√
3, 1

2 ), π6
)
. In this case p1 = (0, 0) and p2 =

(
1
2

√
3, 1

2

)
. From this it

follows already that α12 = π
6 , as this is a non-degenerate configuration.

4.2. An algebraic counterpart of the compactification. In the next section we are going

to show that the definition of Voronoi diagram extends to CDAn. We first want to answer

the question:

Are CUAn and CDAn smooth manifolds?

Moreover, we are interested in their algebraic counterparts. In this section we describe

an algebraic variety Tn that is very similar to CUAn. We know that CONFn is contained

in CUAn: by definition, CUAn equals the closure of the graph of the undirected angle
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map:

CONFn ⊂ CUAn ⊂
(
R2
)n × (R/πZ)(

n
2).

Therefore, CUAn contains a ‘CONFn part’ that is smooth. The remaining points of CUAn

lie above the diagonal ∆ ⊂ (R2)n consisting of configurations with at least two coinciding

points pi and pj . We make an algebraic description for R/πZ = P1 by taking coordinates

(aij : 1) and (1 : bij), where

aij = tanαij ; bij =
1

tanαij
.

For simplicity, we consider only the case where bij 6= 0 on each P1, so we work on the

(aij : 1)-chart. We have transformed ψUAn in a rational map ψslope given by

ψslope

(
(x0, y0), . . . , (xn−1, yn−1)

)
=
{( yj − yi

xj − xi

)}
0≤i<j≤n−1

,

where
(
(x0, y0), . . . , (xn−1, yn−1)

)
∈ CONFn. Without loss of generality we assume in

this section that x0 = y0 = 0. That is, we consider configurations up to translation.

The dimension of CONFn(R2) up to translations equals 2n − 2. The slope a0i, for i ∈
{1, . . . , n − 1}, is denoted shortly by ai. The triangle Tij is the triangle with vertices

(x0, y0), (xi, yi), and (xj , yj). The following lemma shows that there exists a relation

between the x-coordinates of the vertices of Tij and the slopes of the lines bounding Tij .

Let

tij = aixi − ajxj − aijxi + aijxj .

Observe that tij = 0 on the (aij : 1)-chart of CONFn. Moreover, on this chart we

have CUAn ⊂ {tij = 0} for 1 ≤ i < j ≤ n− 1. A question is if equality holds. That is, if

the closed algebraic set {tij = 0}1≤i<j≤n−1 is contained in CUAn. The answer is no. We

prove this later on by means of the six-slopes formula:

a01

a02

a03

a12

a13

a23

Figure 10. For four distinct points the six-slopes formula holds.

Lemma 2 (six-slopes formula). Let p0, p1, p2 and p3 be distinct points in the plane.

Then ∆ = ∆0123 = 0, where ∆ is given by

∆ = (a1 − a12)(a2 − a23)(a3 − a13)− (a1 − a13)(a2 − a12)(a3 − a23).

Proof. In the generic situation it is clear that one of the slopes can be computed in

terms of the others. Do so. The formula is also true in the limit.

Note that interchanging indices 1↔ 2, etc., changes the appearance of the expression

for ∆0123, but does not change the expression itself. By ∆ijkl we denote ∆0123 with 0, 1,

2 and 3 replaced by i, j, k and l.
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Corollary 3. ∆ijkl = 0 on CUAn.

Instead of just looking at the zeros of tij = 0, we add the condition that all ∆ijkl

equal zero as well. This leads to the following definition.

The triangle variety Tn is the set of common zeroes of the polynomials tij for 1 ≤ i <
j ≤ (n− 1) and ∆ijkl for 0 ≤ i < j < k < l ≤ (n− 1). Any variable, of the form aij or xi,

takes value in R.

The zero set of the polynomials f1. . . . , fn is indicated by V (f1, . . . , fn). So T4 =

V (t12, t13, t23,∆123).

4.3. Singularities of the triangle variety for small n. In this section we determine

singularities of the triangle variety Tn for n = 3 and n = 4. We start with n = 3.

0 1 2

Figure 11. Three coinciding points with coinciding directions.

Lemma 4. An element c = (x0, x1, x2, a1, a2, a12) ∈ T3 is singular iff all points and

all slopes coincide. That is :

x0 = x1 = x2, and a1 = a2 = a12.

The type of this singularity is A∞.

Proof. Note that t12 = (a1 − a12)x1 + (a12 − a2)x2 = 0. From this it follows that the

singular set is given by ai = aj = aij , and that the singularity is of type A∞, cf. [9]

(smooth one-dimensional singular locus with transversal type Morse (A1)).

Geometrically, the singularities of T3 correspond to degenerated configurations where

all three points coincide and the directions between the three points coincide, see

Figure 11.

Next we consider n = 4.

Proposition 5. CUA4 6= V (t12, t13, t23).

Proof. The variety V (t12, t13, t23) contains 0 = x1 = x2 = x3 as a component, without

the condition that ∆0123 = 0.

This explains why we have added the ∆ijkl’s in the definition of the triangle variety Tn.

Lemma 6. A configuration c ∈ T4 is singular iff, up to relabelling, both x0 = x1 = x2

and a1 = a2 = a12.

0 1 2
3

Figure 12. Typical singular configuration: three coinciding, collinear points with a fourth point.
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The singularities of T4 are closely related to the singularities of T3. If only three points

coincide, including their slopes, we have a singularity of type A∞, just as for T3. But if all

points coincide a more complicated singularity occurs as several A∞ singularities ‘meet’:

one can move any of the four points away in such a way that the three remaining points

are as in the configuration of Lemma 4.

It is still an open question whether CUA4 = T4. Maybe we need to add some relations

or inequalities to T4 to obtain equality?

5. A stability theorem. For data sets γn in the angles and hook compactifica-

tion CDAn, limit Voronoi diagrams are defined, just as for polynomial sites: for every

two points pi = pj the Voronoi half-plane vh(pi, pj) is the half-space through pi = pj
determined by αij . Using our characterization of Voronoi cells by half-planes, we write

V (pi) =
⋂
j 6=i vh(pi, pj) for the Voronoi cell of pi. This gives us a Voronoi diagram V (γn)

for every γn ∈ CDAn.

If we want to compare two Voronoi diagrams, a suitable notion of distance is the

Hausdorff distance: two sets A and B are within Hausdorff distance r iff r is the smallest

number such that any point of A is within distance r from some point of B and vice

versa. If we compare two Voronoi diagrams in the Hausdorff distance, we mean that we

compare the common boundary of the Voronoi cells or the one-skeleton of the diagrams.

We know by now that we can represent a Voronoi diagram of a set of non-necessarily

distinct points in the plane by data sets consisting of the coordinates of the points and

the pairwise angles αij between the points. It even turns out that this representation by

coordinates and angles is stable with respect to the Hausdorff metric if we put a mild

restriction on the point configurations allowed.

More precisely, we only allow point configurations on the unit disk U := {x ∈ R2 :

‖x‖ ≤ 1}. These point configurations are monitored by four additional so-called camera

points c1 = (−N, 0), c2 = (0, N), c3 = (N, 0) and c4 = (0,−N). If N � 1 is chosen

big enough and if only the points within the unit disk are allowed to move, then we get

enough control to prove the following theorem on the restricted configuration space

CDAUn := {c1, . . . , c4; p1, . . . , pn; α12, . . . , α(n+3)(n+4)},
with pi ∈ U and αij ∈ R/2πZ.

Theorem 7. Let γn ∈ CDAUn . Then the Voronoi diagram V (ηn) of any data set

ηn ∈ CDAUn that is Euclidean-close to γn, is Hausdorff-close to the Voronoi diagram

V (γn):

∀ε > 0 ∃δ > 0
[
d(γn, ηn) ≤ δ ⇒ h(V (γn), V (ηn)) ≤ ε

]

Proof. See [7].

6. Clickable diagrams in a clickable compactification. In this paragraph we

describe shortly a different compactification that has two big advantages compared to the

angles and points compactification CDAn. First, it is smooth as a manifold, and second, it

has a natural recursive structure. We exploit this structure to introduce clickable Voronoi

diagrams for clickable configurations.
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αikij

p′j

pj

piβijik

pk

Figure 13. Constructing pk out of pi and pj .

6.1. A smooth angles and hooks compactification. Such a clickable configuration is

described by a set of data encoding the locations of the points and, if two or more points

coincide a screen is specified for the set of labels of coinciding points. This compacti-

fication is a real version of the famous Fulton-MacPherson compactification [4], that is

described in terms of distinct points in a nonsingular algebraic variety.

We consider point configurations up to scalings, s, and translations, t. That is, our

point configurations live in the reduced configuration space

confn = CONFn/{s, t}.
Kontsevich and Soibelman, [5, 6], define the manifold with corners FM2(n) as the

closure of the image of confn in the compact manifold (S1)(
n
2)× [0,∞]6(

n
3) under the map

[
(p1, . . . , pn)

]
7→
(
(αij)1≤i<j≤n, β

ik
ij

)
,

where i, j and k pairwise distinct. βikij denotes the ratio |pi−pk||pi−pj | .

Instead of just a ratio, we specify for every triple of points a hook hikij = (βikij , α
ik
ij )

that tells how to construct the point pk, given the points pi and pj , see Figure 13. Here,

both the hooks (βikij , α
ik
ij ) and (−βikij , αikij + π) ‘construct’ the same point pk. This gives

us an equivalence relation
(
βikij , α

ik
ij

)
∼K

(
−βikij , αikij + π

)
.

Note that we emphatically allow negative “ratio’s”. Let

AHn = (R/πZ)(
n
2) ×

(
([−∞,∞]× R/2πZ)/ ∼K

)6(n3)

and define the angles and hooks compactification XAHn as the closure of the image of

the map

ψAHn
: confn → AHn,[

(p1, . . . , pn)
]
7→
(
(αij)i<j , (hikij )

)

where i, j and k pairwise distinct.

Theorem 8. XAHn is a smooth submanifold of AHn.

Proof. See [7].

6.2. Filling screens. Now suppose we are given some x in XAHn or in FM2(n). We

can determine a family of screens—the x-screens—by analyzing zero ratios, that is, ratios

of the form pi−pk
pi−pj = 0: this particular zero ratio for example, tells that pi and pk can be

thought of as coinciding points from pj ’s viewpoint. Next pick a set of hooks and angles
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Figure 14. Clickable Voronoi diagrams in clickable configurations.

that is sufficient to fix all relative positions in all screens. Finally fill the screens using

this set of hooks and angles. As a result, any two points are separated in some screen.

6.3. Adding Voronoi diagrams. We add clickable Voronoi diagrams in the filled

x-screens for x ∈ FM2(n) in two steps that are illustrated in Figure 14.

1. In any filled x-screen all points are separated. So we can add the ordinary Voronoi

diagrams of the points displayed, see Figure 14, on the left.

2. Add the Voronoi diagram of some x-screen S to the cell corresponding to S in the

x-screen T just above S. This recursive step should start at the lowest screens, compare

Figure 14, on the right.

6.4. Polynomial sites versus FM2(n). We have already shown how to define pairwise

angles for a set of polynomial sites. In a similar way, we can define ratios for triples

of polynomial sites. This shows how to map a set of polynomial sites to a data set in

FM2(n).

On the other hand, from x ∈ FM2(n) we can construct a set of n polynomial sites by

reading off coordinates of points in appropriate screens, by using a natural predecessor

relation on the labels 1, . . . , n and by adding t’s if the depth of the x-screens increases.

Combining these two steps defines a normal form for the polynomial sites.
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