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Abstract. The aim of this paper is to investigate n-dimensional real submanifolds of complex
manifolds in the case when the maximal holomorphic tangent space is (n−1)-dimensional. In par-
ticular, we give some examples and we consider the Levi form on these submanifolds, especially
when the ambient space is a complex space form. Moreover, we show that on some remarkable
class of real hypersurfaces of complex space forms, the Levi form cannot vanish identically.

0. Introduction. Let M be a real submanifold of a complex manifold M and let
J be the complex structure of M . If the maximal J-invariant tangent subspace of M ,
called holomorphic tangent space, has constant dimension over M , then M is called a
Cauchy-Riemann submanifold, or briefly a CR submanifold, and the constant complex
dimension is called the CR dimension of M ([10]). This paper is devoted to the study
of such submanifolds. In section 1 we give an example in which this dimension is not
constant. Moreover, we prove that the above-given definition of CR submanifolds is not
always equivalent to a well-known definition of Bejancu ([1]), although they coincide in
the case when at each point the real dimension of the holomorphic tangent space is n−1.
In section 2 we prove that the complexification of the holomorphic tangent space is not
involutive and we use the notion of the Levi form, which measures the degree to which
this space fails to be involutive.
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It is well-known that a real hypersurface is one of the typical examples of CR submani-
folds and its CR dimension is n−1

2 , where n is the dimension of a hypersurface. In the case
of a real hypersurface, and in particular when M is a complex space form, many results
are known. We refer to [5], [6], [7], [9], [11] for more details and further references. The
main purpose of this paper is to investigate the case when M is a CR submanifold with
arbitrary codimension, whose CR dimension is n−1

2 . In section 3 we recall some general
preliminary facts concerning these submanifolds and we give some examples. Finally, in
section 4 we consider CR submanifolds of complex space forms and we prove our main
results.

The authors are grateful to the organizers of the meeting in Warsaw for their hospi-
tality and support.

1. The holomorphic tangent space. Let M be an n-dimensional real submanifold
of codimension p of a complex manifold (M,J), where J is the almost complex structure
of M . The subspace Hx(M) = JTx(M) ∩ Tx(M) is the maximal J-invariant subspace of
the tangent space Tx(M) at x and it is called the holomorphic tangent space to M at x. It
is an even-dimensional subspace of Tx(M), since J restricted to the holomorphic subspace
satisfies J2 = −identity. The totally real part of the tangent space of M is the quotient
space Rx(M) = Tx(M)/Hx(M). We note that JRx(M) ∩Rx(M) = {0}, since Hx(M) is
the maximal J-invariant subspace of Tx(M). Therefore, Tx(M) = Hx(M)⊕Rx(M).

Lemma 1.1. Let M be an n-dimensional real submanifold of a real n+ p-dimensional
complex manifold M . Then, n− p ≤ dimRHx(M) ≤ n.

Proof. Since Hx(M) is a subspace of Tx(M), it follows dimRHx(M) ≤ dimTx(M) =
n. To establish the other inequality, we note that Tx(M) ⊃ Tx(M)+JTx(M) and therefore

dimR Tx(M) ≥ dimTx(M) + dim JTx(M)− dimRHx(M).

Since dim JTx(M) = dimTx(M) = n, it follows that dimRHx(M) ≥ n− p.

The lemma states that dimRHx(M) is an even number between n− p and n. If M is
a real hypersurface, then p = 1 and the only possibility is dimRHx(M) = n− 1, i.e. the
dimension of Hx(M) is constant. However, there are more possibilities for p > 1.

Example 1.1. Let M = {z = (z1, . . . , zn) ∈ Cn; |z| = 1, Im zn = 0}, i.e. M is just the
equator of the unit sphere in Cn. Here dimM = 2n − 2, p = 2 and therefore 2n − 4 ≤
dimRHx(M) ≤ 2n − 2, for x ∈ M . At the point p1 = (z1 = 0, . . . , zn−2 = 0, zn−1 =
1, zn = 0} ∈M , tangent space Tp1(M) is spanned over R by {∂/∂x1, ∂/∂y1, . . .,∂/∂xn−2,
∂/∂yn−2,∂/∂yn−1,∂/∂xn}. The vectors J(∂/∂xn)=∂/∂yn and J(∂/∂yn−1)=−(∂/∂xn−1)
are orthogonal to Tp1(M) and therefore ∂/∂yn−1 and ∂/∂xn span Rp1(M). The vectors
{∂/∂x1, ∂/∂y1, . . .,∂/∂xn−2, ∂/∂yn−2} span the J-invariant subspace Hp1(M). Therefore,
in this case, dimRHp1(M) = 2n− 4.

Further, let us consider the point p2 = (z1 = 0, . . . , zn−1 = 0, zn = 1) ∈ M . Here,
Tp2(M) is spanned by {∂/∂x1, ∂/y1, . . . , ∂/∂xn−1, ∂/∂yn−1} which is J-invariant. There-
fore, Hp2(M) = Tp2(M) and dimRHp2(M) = 2n− 2.
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Since in the above example the dimension of Hx(M) varies with x, we recall the
following definition.

Definition 1.1 ([10]). If the subspace Hx(M) has constant dimension for x ∈ M ,
the submanifold M is called the Cauchy-Riemann submanifold or briefly CR submanifold
and the constant complex dimension of Hx(M) is called the CR dimension of M .

However, Bejancu gave another definition of a CR submanifold of an almost Hermitian
manifold (M, g, J):

Definition 1.2 ([1]). A submanifold M of (M,J) is called a CR submanifold if it is
endowed with a pair of mutually orthogonal and complementary distributions (∆,∆⊥)
such that for any x ∈M we have J∆x = ∆x and J∆⊥x ⊂ T⊥x (M).

It is easily seen that if M is a CR submanifold in the sense of Bejancu, M is also a
CR submanifold in the sense of Definition 1.1. In the case when M is a CR submanifold
of CR dimension n−1

2 , the definition by Bejancu coincides with the Definition 1.1 and
dim ∆⊥ = 1. On the other hand, as we show below, when the CR dimension is less than
n−1

2 , the converse is wrong.
Let Mn be a submanifold of (M, g, J) which is a CR submanifold of CR dimension

n−2
2 . Choosing an orthonormal basis e1, e2, . . . , en−2, en−1, en of Tx(M) in such a way

that e1, e2, . . . , en−2 ∈ JTx(M) ∩ Tx(M), we have

Jei ∈ JTx(M) ∩ Tx(M), (i = 1, 2, . . . , n− 2),

Jen−1 =
n−2∑

i=1

aiei + λen + normal part,

Jen =
n−2∑

i=1

biei − λen−1 + normal part,

and it follows that ai = 0 and bi = 0 for i = 1, . . . , n − 2 and that λ = g(Jen−1, en).
Choosing other orthonormal vectors, e′n−1 and e′n, we have

e′n−1 = en−1 cos θ + en sin θ,

e′n = −en−1 sin θ + en cos θ,

for some θ, and therefore

λ′ = g(Je′n−1, e
′
n) = λg(en cos θ − en−1 sin θ,−en−1 sin θ + en cos θ) = λ.

This shows that λ is independent of the choice of en−1 and en. In particular, let M =
{(z1, z2) ∈ C2|Im z1 = Re z2, Im z2 = 0}, that is, M = {(x1, y1, y1, 0) ∈ R4|x1, y1 ∈ R}.
Then M is totally real and dimH(M) = 0. If we choose e1 = ∂

∂x1
, e2 = ∂

∂y1
+ ∂

∂x2
, f1 =

∂
∂y1
− ∂
∂x2

, f2 = ∂
∂y2

, it follows that e1, e2 span T (M) and that f1, f2 span T⊥(M). From
J(∂/∂xi) = ∂/∂yi and J(∂/∂yi) = −∂/∂xi, it follows λ 6= 0. Thus the CR submanifold in
the sense of Definition 1.1 is not always a CR submanifold in the sense of Definition 1.2.

2. The Levi form. In the following, we assume that M is a real submanifold of
a complex manifold (M,J), with the immersion f of M into M (we denote also by f

the differential of the immersion), and whose holomorphic tangent space at x is Hx(M).



92 M. DJORIĆ AND M. OKUMURA

Further, let HC
x (M) be the complexification of Hx(M) and

H(0,1)
x (M) = {fX +

√
−1JfX|X ∈ Hx(M)},

H(1,0)
x (M) = {fX −

√
−1JfX|X ∈ Hx(M)}.

Then we have HC
x (M) = H

(0,1)
x (M) ⊕H(1,0)

x (M). We define the following subbundle of
the complexification of the tangent bundle TC(M):

HC(M) =
⋃

x∈M
HC
x (M), H(0,1)(M) =

⋃

x∈M
H(0,1)
x (M), H(1,0)(M) =

⋃

x∈M
H(1,0)
x (M).

Then we have

Proposition 2.1. Both distributions H(0,1)(M) and H(1,0)(M) are involutive.

Proof. We only show that H(0,1)(M) is involutive, because the other case can be
proved in entirely the same way. Let V,W ∈ H(0,1)(M). Then, for some X,Y ∈ H(M),

[V,W ] = [fX +
√
−1JfX, fY +

√
−1JfY ]

= [fX, fY ]− [JfX, JfY ] +
√
−1([JfX, fY ] + [fX, JfY ]).

Since M is a complex manifold, the Nijenhuis tensor

N(fX, fY ) = J [fX, fY ]− J [JfX, JfY ]− [fX, JfY ]− [JfX, fY ]

vanishes identically. Hence we have

(2.1)
[fX, fY ]− [JfX, JfY ] = J(−[fX, JfY ]− [JfX, fY ]),

[fX, JfY ] + [JfX, fY ] = J([fX, fY ]− [JfX, JfY ])

from which it follows

[V,W ] = [fX, fY ]− [JfX, JfY ] +
√
−1J([fX, fY ]− [JfX, JfY ]).

Since X,Y ∈ H(M), then JfX, JfY ∈ T (M). Hence we may write that JfX = fFX

and JfY = fFY , where F is a skew-symmetric endomorphism acting on T (M). Thus
we have [fX, fY ] − [JfX, JfY ] ∈ T (M). Also from the above discussions, [fX, fY ] −
[JfX, JfY ] ∈ JT (M), which implies that H(0,1)(M) is involutive.

Further, using relation (2.1), we get

f [X,Y ]− f [FX,FY ] = J([JfY, fX]− [JfX, fY ]).

Since the left-hand side members of the last equation are tangent to M , the normal part
of the right-hand side members must be zero and we obtain

Lemma 2.1. The normal part of J [JfX, fY ] is equal to the normal part of J [JfY, fX].

As we have shown, both H(0,1)(M) and H(1,0)(M) are involutive. However, this does
not imply that HC(M) = H(0,1)(M) ⊕ H(1,0)(M) is involutive. Now we consider the
involutivity of HC(M).

Let V ∈ H(0,1)(M), W ∈ H(1,0)(M). Then, V = fX +
√
−1JfX and W = fY −√

−1JfY , for some X, Y ∈ H(M), and consequently

[V,W ] = [fX, fY ] + [JfX, JfY ] +
√
−1([fX, JfY ]− [JfX, fY ]).
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Since X,Y ∈ H(M), it follows Jf = fFX, JfY = fFY and [JfX, JfY ], [fX, JfY ],
[JfX, fY ] ∈ T (M). Hence [V,W ] ∈ TC(M). However, in general, [V,W ] 6∈ JTC(M).

The Levi form is defined in such a way that it measures the degree to which HC(M)
fails to be involutive. For more details, see [4], [7].

Definition 2.1. The Levi form L is the projection of J [JfX, fY ] to T (M)⊥ for X,
Y ∈ H(M).

Lemma 2.2. A necessary and sufficient condition for [V,W ] ∈ HC(M) is J [fX, JfY ]−
J [JfX, fY ] ∈ T (M).

Proof. First, we note that J [fX, JfY ] − J [JfX, fY ] ∈ T (M) is equivalent to
[fX, JfY ] − [JfX, fY ] ∈ JT (M). Then by the definition of HC(M), the necessity is
trivial. To prove the sufficiency, we take X ′ ∈ H(M). Then X ′ ∈ J(T (M)) implies that
there exists X ∈ T (M) such that fX ′ = JfX and we have

[fX ′, fY ]+[JfX ′, JfY ] = [JfX, fY ]+[J2fX, JfY ] = [JfX, fY ]−[fX, JfY ] ∈ JT (M),

which completes the proof.

Thus, we know that HC(M) is involutive if and only if the Levi form vanishes iden-
tically.

Theorem 2.1 ([4]). Let M be a complex manifold with torsion-free affine connection
∇ whose parallel translation leaves the almost complex structure J invariant and let M
be a real submanifold of M . Then we have

L(X,Y ) = h(X,Y ) + h(FX,FY ),

for X,Y ∈ H(M), where h denotes the second fundamental form with respect to ∇.

Proof. We compute

J [JfX, fY ] = J
(
∇JfXfY −∇fY (JfX)

)
= J(∇fFXfY − J∇fY fX)

= ∇fFXJfY +∇fY fX = ∇fFXfFY +∇fY fX
= f∇FX(FY ) + h(FX,FY ) + f∇YX + h(Y,X),

which proves the theorem.

3. CR submanifold of maximal CR dimension. Let M be an n-dimensional
real submanifold of codimension p of a Hermitian manifold M with structure tensor field
J and Hermitian metric g, where n > 1. Also, we denote by f the immersion of M
into M . Then the tangent bundle T (M) is identified with a subbundle of T (M) and a
Riemannian metric g of M is induced from the Riemannian metric ḡ of M in such a way
that g(X,Y ) = g(fX, fY ) where X,Y ∈ T (M) and we denote also by f the differential
of the immersion. However, sometimes we omit to mention f for brevity of notation. The
normal bundle T⊥(M) is the subbundle of T (M) consisting of all X ∈ T (M) which are
orthogonal to T (M) with respect to the Riemannian metric ḡ.

Now, let M be a CR submanifold of maximal CR dimension, that is, at each point
x of M , let the real dimension of JTx(M) ∩ Tx(M) be n − 1. Then M is necessarily
odd-dimensional and there exists a unit vector ξx normal to Tx(M) such that JTx(M) ⊂
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Tx(M)⊕ span{ξx} for any x ∈M . Hence, for any X ∈ T (M), we may write

(3.1) JfX = fFX + u(X)ξ,

where F defines a skew-symmetric linear transformation of the tangent bundle T (M) of
M , while u defines a 1-form on a neighborhood of x ∈M . Let η be an element of T⊥(M)
which is orthogonal to ξ, then g(Jη, fX) = −g(η, JfX) = 0. On the other hand, the
Hermitian property of g and J implies that

0 = g(fX, η) = g(JfX, Jη) = g(fFX, Jη) + u(X)g(ξ, Jη) = u(X)g(ξ, Jη).

If at a point x ∈ M , we have ux(X) = 0 for any X ∈ T (M), then from (3.1) it follows
that Tx(M) is J-invariant and, consequently, even-dimensional, which is a contradiction.
Therefore we have g(ξ, Jη) = 0. This means that Jη ⊥ T (M)⊕ span{ξ}. In other words,
the subbundle T⊥1 (M) = {η ∈ T⊥(M)|g(η, ξ) = 0} is J-invariant, from which we have

(3.2) Jξ = −fU,
because g(Jξ, η) = −g(ξ, Jη) = 0.

Further, in T⊥(M) we choose a local orthonormal basis ξ, ξ1, . . . , ξq, ξ1∗ , . . . , ξq∗ , where
ξa∗ = Jξa, a = 1, . . . , q and q = p−1

2 .
Applying J to (3.1), (3.2) and comparing the tangential parts and the normal parts

to M , we have

F 2X = −X + u(X)U,(3.3)

u(FX) = 0, FU = 0,(3.4)

g(U,X) = u(X),(3.5)

where g denotes the induced Riemannian metric from g to M .
We denote by ∇ and ∇ the Riemannian connections of M and M respectively and by

D the normal connection induced from ∇ in the normal bundle T⊥(M). Then we have

(3.6) ∇fXfY = f∇XY + h(X,Y ),

The Weingarten equations are the following:

∇fXξ = −fAX+DXξ = −fAX+
q∑

a=1

{sa(X)ξa+sa∗(X)ξa∗},(3.7)

∇fXξa = −fAaX+DXξa = −fAaX−sa(X)ξ+
q∑

b=1

{sab(X)ξb+sab∗(X)ξb∗},(3.8)

∇fXξa∗ = −fAa∗X+DXξa∗ = −fAa∗X−sa∗(X)ξ+
q∑

b=1

{sa∗b(X)ξb+sa∗b∗(X)ξb∗},(3.9)

where A, Aa, Aa∗ are the shape operators for the normals ξ, ξa, ξa∗ respectively and s’s
are the coefficients of the normal connection D.

When the ambient complex manifold is a Kaehler manifold, then ∇J = 0. Since
ξa∗ = Jξa, this, together with (3.8) and (3.9), implies that

(3.10) Aa∗X = FAaX − sa(X)U,

(3.11) sa∗(X) = u(AaX) = g(AaX,U) = g(AaU,X),
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(3.12) sa∗b∗ = sab, sa∗b = sab∗ .

Also, from (3.6), (3.7), (3.8) and (3.9), it follows that

(3.13) h(X,Y ) = g(AX, Y )ξ +
q∑

a=1

{g(AaX,Y )ξa + g(Aa∗X,Y )ξa∗}.

Here we give some examples of CR submanifolds of maximal CR dimension.

Example 3.1. In the case when M is a real hypersurface of an almost Hermitian
manifold M , the maximal J-invariant subspace is necessarily (n − 1)-dimensional and
when the ambient subspace M is a complex manifold, it is the maximal holomorphic
subspace. Therefore, real hypersurfaces of complex manifolds are CR submanifolds of
maximal CR dimension.

Example 3.2. Let M ′ be a complex submanifold of M with immersion f1 and M a
real hypersurface of M ′ with immersion f0 and f = f1f0. We denote by ξ′ the unit normal
vector field to M in M ′. Since f1 is holomorphic, it follows that f1J

′ = Jf1, where J ′ is
the induced almost complex structure of M ′ from J . Now we have, for X ∈ T (M),

JfX = Jf1f0X = f1J
′f0X = f1(f0F

′X + u(X)ξ′) = fF ′X + u(X)f1ξ
′.

On the other hand, we may write

JfX = fFX +
p∑

a=1

ua(X)ξa,

where ξa, a = 1, . . . , p are local orthonormal vector fields normal to M in M . We choose
ξ in such a way that ξ = f1ξ

′, then JfX = fFX + u(X)ξ. Thus, any real hypersurface
M of a complex submanifold M ′ of M is a CR submanifold with maximal CR dimension.

Example 3.3. Let M ′ be a real hypersurface of M and let f1 be the immersion. Then,
for any X ′ ∈ T (M ′), we put

Jf1X
′ = f1F

′X + u′(X ′)ξ.

In this case F ′, u′ and the induced Riemannian metric g′ from the Hermitian metric of
M define an almost contact metric structure of M ′.

Let M be an F ′-invariant submanifold of M ′, that is, M satisfies F ′T (M) ⊂ T (M).
Denote by f0 the immersion and put f = f1f0. We choose a local orthonormal basis of
T⊥(M) in T (M) in such a way that ξ1 = ξ and ξ2, . . . , ξp are orthonormal in T (M ′).
Then, for X ∈ T (M),

JfX = fFX +
p∑

a=1

ua(X)ξa.

Also, we have

JfX = Jf1f0X = f1F
′f0X + u′(f0X)ξ = f1f0FX + u′(f0X)ξ = fFX + u′(f0X)ξ,

because M is F ′-invariant submanifold. Comparing the above two equations, we have
u1(X) = u′(f0X), ua(X) = 0, a = 2, . . . , p. Hence any F ′-invariant submanifold of a real
hypersurface of M is a CR submanifold of maximal CR dimension.
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In the following, we assume that the normal vector field ξ is parallel with respect to
the normal connection D which is induced from ∇. Then,

DXξ =
q∑

a=1

{sa(X)ξa + sa∗(X)ξa∗} = 0,

from which it follows

(3.14) sa = sa∗ = 0, a = 1, 2, . . . , q,

and, from (3.10) and (3.11),

Aa∗ = FAa, a = 1, 2, . . . , q,(3.15)

AaU = 0, a = 1, 2, . . . , q.(3.16)

4. Real submanifolds of a complex space form. Let M be a Kaehler manifold.
Then the Riemannian connection ∇ leaves the almost complex structure J invariant, that
is, ∇J = 0. We differentiate (3.1) and (3.2) covariantly and compare the tangential parts
and the normal parts. Then we obtain

(∇XF )Y = u(Y )AX − g(AY,X)U,(4.1)

(∇Y u)(X) = g(FAY,X),(4.2)

∇XU = FAX.(4.3)

We assume that the ambient manifold M is a complex space form, that is, a Kaehler
manifold of constant holomorphic sectional curvature 4k. Then the curvature tensor R
of M has the form of

R(X,Y )Z = k{g(Y , Z)X − g(X,Z)Y + g(JY , Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ}
for X, Y , Z ∈ T (M). Consequently, using (3.14) and (3.15), the Gauss equation and the
Codazzi equation for the normal ξ become respectively

R(X,Y )Z = k{g(Y, Z)X − g(X,Z)Y + g(FY, Z)FX − g(FX,Z)FY(4.4)

− 2g(FX, Y )FZ}+ g(AY,Z)AX − g(AX,Z)AY

+
q∑

a=1

{g(AaY, Z)AaX − g(AaX,Z)AaY

+ g(FAaY, Z)FAaX − g(FAaX,Z)FAaY },
(4.5) (∇YA)X − (∇XA)Y = k{u(Y )FX − u(X)FY + 2g(FX, Y )U},
for X, Y , Z ∈ T (M), where R denotes the curvature tensor of M .

In the following, we establish several formulas in the case when U is the eigenvector
of the shape operator A. Let U be an eigenvector of A corresponding to the eigenvalue
α. Taking the covariant derivative of AU = αU and using (4.3), we obtain

(∇XA)U +AFAX = (Xα)U + αFAX

and hence

g((∇XA)Y, U) + g(AFAX, Y ) = (Xα)g(U, Y ) + αg(FAX, Y ).
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Thus

g((∇XA)Y −∇Y A)X,U)+2g(AFAX, Y ) = (Xα)g(U, Y )−(Y α)g(U,X)+2αg(FAX, Y ).

This and the Codazzi equation (4.5) yield

(4.6) 2k(FY,X) + 2g(AFAX, Y ) = (Xα)u(Y )− (Y α)u(X) + αg((FA+AF )X,Y ).

Putting Y = U in (4.6) and making use of AY = αU , we get

Xα = u(X)Uα.

This, together with (4.6), implies that

(4.7) −2kFX + 2AFAX = α(FA+AF )X.

Lemma 4.1. Let U be an eigenvector of A corresponding to the eigenvalue α and let
X be the eigenvector of A corresponding to the second eigenvalue λ. Then we have

(2λ− α)AFX = (2k + αλ)FX.

Proof. Let X be an eigenvector of A which corresponds to λ. Then, from (4.7), it
follows that

−2kFX + 2λAFX = αλFX + αAFX,

from which Lemma 4.1 follows. (See also [2], pp. 153.)

Let us consider the Levi form in this situation. From Theorem 2.1, we have

(4.8) L(X,Y ) =
p∑

a=1

{g(AaX,Y ) + g(AaFX,FY )}ξa,

for X, Y ∈ H(M). Now we note that for any X ∈ H(M) = T (M)∩ JT (M), there exists
V ∈ T (M) such that X = JY = FV and for any V ∈ T (M), FV ∈ H(M). From this
fact, we may write (4.8) as follows:

L(X,Y ) =
p∑

a=1

{g(AaFV, FW ) + g(AaF 2V, F 2W )}ξa(4.9)

=
p∑

a=1

{g(AaFV, FW ) + g(AaV,W )− u(V )g(AaU,W )

− u(W )g(AaU, V ) + u(V )u(W )g(AaU,U)}ξa,
where we have used (3.1).

If ξ = ξ1 is parallel with respect to the normal connection, using relation (3.16), we
can write AaU = 0, for a = 2, . . . , p. Thus in this case, it follows that

(4.10) L(X,Y ) = g(AV − FAFV − u(V )AU − u(AV )U + u(V )u(AU)U,W )ξ

+
p∑

a=2

g(AaV − FAaFV,W )ξa,

for any V , W ∈ T (M).
We assume that U is an eigenvector of A corresponding to the eigenvalue α and that

the Levi form vanishes at a point x ∈M . Then from relation (4.10), we obtain

(4.11) AV − FAFV − αu(V )U = 0, AaV − FAaFV = 0,
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for a = 2, . . . , p. Let Vx be an eigenvector of A at x with the eigenvalue λ, such that Vx is
orthogonal to U at x. Then Lemma 4.1 and relation (4.11) imply that k + λ2 = 0. Thus
we have

Theorem 4.1 ([3]). Let M be an n-dimensional (n ≥ 3) CR submanifold of CR
dimension n−1

2 of a complex space form. If the distinguished normal vector field ξ to M

is parallel with respect to the normal connection and if U = −Jξ is an eigenvector of the
shape operator A with respect to ξ, then the Levi form vanishes only when the holomorphic
sectional curvature of the ambient manifold is non-positive.

Theorem 4.2 ([3]). Let M be an n-dimensional (n ≥ 3) CR submanifold of CR
dimension n−1

2 of a complex projective space. If M satisfies the conditions of Theorem 4.1,
then the Levi form cannot vanish identically. In particular, if M is a real hypersurface,
then M is pseudoconvex.

Since homogeneous real hypersurfaces of a complex projective space have U as an
eigenvector of the shape operator A ([5]), the Levi form of a homogeneous real hyper-
surface of a complex projective space can never vanish. Consequently, as a special case,
the Levi form of the generalized equators MC

p,q ([9]) and that of the geodesic spheres can
never vanish.

Finally, when in M the Levi form vanishes identically, M is called a Levi flat sub-
manifold. In his recent work Siu ([11]) proved that there does not exist a smooth Levi
flat hypersurface of complex projective space of dimension ≥ 3. However, if we do not
assume that M is complete, the following example of a real hypersurface, which is given
by Kimura ([6]), is Levi flat.

Example 4.1. Let M̃ be the hypersurface of S2n+1 in Cn+1 given by

M̃ =
{

(re
√−1t cos θ, re

√−1t sin θ, (1− r2)
1
2 z2, . . . , (1− r2)

1
2 zn) ∈ Cn+1,

n∑

j=2

|zj |2 = 1, 0 < r < 1, 0 ≤ t < 2π and 0 ≤ θ < 2π
}
.

We recall that a unit sphere S2n+1 in Cn+1 is a principal bundle with structure group S1

and projection map π. Then M = π(M̃) is a real hypersurface of a complex projective
space. Following [6] we calculate the second fundamental form and obtain that M̃ is Levi
flat.
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