REGULARITY AND OTHER ASPECTS OF THE NAVIER–STOKES EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 70 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2005

ESTIMATES OF LOWER ORDER DERIVATIVES OF VISCOUS FLUID FLOW PAST A ROTATING OBSTACLE

REINHARD FARWIG

Fachbereich Mathematik Darmstadt University of Technology D-64283 Darmstadt, Germany E-mail: farwig@mathematik.tu-darmstadt.de

Abstract. Consider the problem of time-periodic strong solutions of the Stokes system modelling viscous incompressible fluid flow past a rotating obstacle in the whole space \mathbb{R}^3 . Introducing a rotating coordinate system attached to the body yields a system of partial differential equations of second order involving an angular derivative *not* subordinate to the Laplacian. In a recent paper [2] the author proved L^q -estimates of second order derivatives uniformly in the angular and translational velocities, ω and k, of the obstacle, whereas the transport terms fails to have L^q -estimates independent of ω . In this paper we clarify this unexpected behavior and prove weighted L^q -estimates of first order terms independent of ω .

1. Introduction. Consider the Navier-Stokes equations modelling viscous flow past a rotating body $K \subset \mathbb{R}^3$ with axis of rotation $\omega = \tilde{\omega} e_3 = \tilde{\omega} (0, 0, 1)^T$, $\tilde{\omega} = |\omega| > 0$, and with velocity $u_{\infty} = k e_3$, k > 0, at infinity. Then the velocity v and the presure p satisfy the system

$$\begin{split} v_t - \nu \Delta v + v \cdot \nabla v + \nabla q &= f & \text{in } \Omega(t), \ t > 0, \\ & \text{div } v = 0 & \text{in } \Omega(t), \ t > 0, \\ & v(y,t) = \omega \wedge y & \text{on } \partial \Omega(t), \ t > 0, \\ & v(y,t) \to u_\infty \neq 0 & \text{as } |y| \to \infty, \end{split}$$

with an initial value $v(y,0) = v_0(y)$, with constant viscosity $\nu > 0$ and external force \hat{f} in the time-dependent exterior domain $\Omega(t) = O_{\omega}(t)\Omega$; here $O_{\omega}(t)$ denotes the orthogonal matrix

$$O_{\omega}(t) = \begin{pmatrix} \cos|\omega|t & -\sin|\omega|t & 0\\ \sin|\omega|t & \cos|\omega|t & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

²⁰⁰⁰ Mathematics Subject Classification: 35C15, 35Q35, 76D05, 76D99, 76U05.

Key words and phrases: Oseen flow, rotating obstacles, weighted estimates.

The paper is in final form and no version of it will be published elsewhere.

Introducing the new independent and dependent variables

$$x = O_{\omega}^{T}(t)y, \quad u(x,t) = O_{\omega}^{T}(t)(v(y,t) - u_{\infty}), \quad p(x,t) = q(y,t)$$

and linearizing, (u, p) will satisfy the modified Stokes system

$$u_t - \nu \Delta u + k \partial_3 u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u + \nabla p = f,$$

div $u = 0,$ (1)

in a time-independent exterior domain $\Omega \subset \mathbb{R}^3$ together with the initial-boundary condition $u(x,t) = \omega \wedge x - u_{\infty}$ for $x \in \partial \Omega$, $u(x,0) = u_0$, $u \to 0$ as $|x| \to \infty$. In the stationary whole space case to be analyzed in this paper we are led to the elliptic equation

$$-\nu\Delta u + k\partial_3 u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u + \nabla p = f, \quad \text{div} \, u = 0 \text{ in } \mathbb{R}^3$$
(2)

in which the term $(\omega \wedge x) \cdot \nabla u$ is *not* subordinate to $-\nu \Delta u$. Note that a stationary solution (u, p) of (2) is related to a time-periodic solution of (1).

In [2] the author proved a priori estimates of strong solutions (u, p) of (2) which are found in the homogeneous Sobolev spaces $\hat{W}^{2,q}(\mathbb{R}^3)^3 \times \hat{W}^{1,q}(\mathbb{R}^3)$ where

$$\hat{W}^{k,q}(\Omega) = \{ u \in L^1_{\text{loc}}(\overline{\Omega}) / \Pi_{k-1} : \partial^{\alpha} u \in L^q(\Omega) \text{ for all } \alpha \in \mathbb{N}^n_0, |\alpha| = k \}.$$

Here $\partial^{\alpha} = \partial_1^{\alpha_1} \cdot \ldots \cdot \partial_n^{\alpha_n}$ for a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$ and Π_{k-1} denotes the set of all polynomials on \mathbb{R}^n of degree $\leq k-1$. The space $\hat{W}^{k,q}(\Omega)$ consists of equivalence classes of L^1_{loc} -functions being unique only up to elements from Π_{k-1} and is equipped with the norm $\sum_{|\alpha|=k} \|\partial^{\alpha}u\|_q$, where $\|\cdot\|_q$ denotes the L^q -norm. However, sometimes being less careful, we will consider $v \in \hat{W}^{k,q}(\Omega)$ as a function (representative) rather than an equivalence class of functions, i.e., $v \in L^1_{\text{loc}}(\Omega)$ such that $\partial^{\alpha}v \in L^q(\Omega)$ for every multi-index α with $|\alpha| = k$. For further results on similar problems we refer to [4], [8], [9], [10], [11], [12] and [13].

THEOREM 1. (1) Let $1 < q < \infty$, $\nu > 0$, k > 0, $\omega = (0, 0, \tilde{\omega})^T \in \mathbb{R}^3 \setminus \{0\}$, and let $f \in L^q(\mathbb{R}^3)^3$. Then the linear problem (2) has a solution $(u, p) \in \hat{W}^{2,q}(\mathbb{R}^3)^3 \times \hat{W}^{1,q}(\mathbb{R}^3)$ satisfying the a priori estimate

$$\|\nu \nabla^2 u\|_q + \|\nabla p\|_q \le c \|f\|_q \tag{3}$$

with a constant c independent of ν , k and ω .

(2) Moreover,

$$\|k\partial_3 u\|_q + \|(\omega \wedge x) \cdot \nabla u - \omega \wedge u\|_q \le c \left(1 + \frac{k^4}{\nu^2 |\omega|^2}\right) \|f\|_q \tag{4}$$

with a constant c > 0 independent of ν, k and ω .

(3) Let 1 < q < 4, $f \in L^q(\mathbb{R}^3)^3$ and let $(u, p) \in \hat{W}^{2,q}(\mathbb{R}^3)^3 \times \hat{W}^{1,q}(\mathbb{R}^3)$ be the solution of (2). Then there exists $\beta \in \mathbb{R}$ such that

$$\nabla'(u-\beta\omega\wedge x)\in L^r(\mathbb{R}^3)^6 \quad for \ all \quad r>1, \ \frac{1}{r}\in\frac{1}{q}-\left[\frac{1}{4},\frac{1}{3}\right],$$

and there exists a constant $C = C(\nu, k, \omega; r) > 0$ such that

$$\|\nabla'(u-\beta\omega\wedge x)\|_r \le C\big(\|f\|_q + \|\nu\nabla g + (\omega\wedge x)g - kge_3\|_q\big).$$
(5)

The proof of Theorem 1(1), see [2], is based on an explicit representation of u the estimate of which uses Fourier transforms, Hardy-Littlewood decomposition methods and maximal operators. Estimate (4) shows a surprising and crucial dependence on $\frac{1}{|\omega|}$ via the term $\frac{k^4}{\nu^2 |\omega|^2}$. On the one hand, it is not at all clear that the terms $k\partial_3 u$ and $(\omega \wedge x) \cdot \nabla u - \omega \wedge u$ can be estimated in $L^q(\mathbb{R}^3)$ separately from each other. On the other hand, the dependence on $\frac{1}{|\omega|}$ seems to be unnatural. Note that, as $|\omega| \to 0$, problem (2) converges formally to Oseen's equation

$$-\nu\Delta u + k\partial_3 u + \nabla p = f, \quad \operatorname{div} u = 0$$

the solutions of which satisfy the estimate $||k\partial_3 u||_q \leq c||f||_q$, see [1, 5]. To be more precise, a sequence of solutions (u_{ω}) converges weakly in $\hat{W}^{2,q}(\mathbb{R}^3)^3$ to the solution of Oseen's equation as $|\omega| \to 0$, cf. [2] Remark 1.3(1).

Concerning Theorem 1(3) note that the solutions of the homogeneous system (2) are given by $\beta \omega \wedge x + \alpha e_3$, $\alpha, \beta \in \mathbb{R}$. Hence, with u also $u - \beta \omega \wedge x$ is a solution of (2). The proof of Theorem 1(3) uses an improved Sobolev embedding theorem exploiting the fact that besides $\nabla^2 u$ also $k \partial_3 u$ lies in L^q , cf. [1]. However, the dependence on $1/|\omega|$ in (4) implies that the constant C in (5) also depends on $1/|\omega|$. Due to this dependence the above-mentioned weak convergence of (u_{ω}) in $\hat{W}^{2,q}(\mathbb{R}^3)^3$, i.e. of second order derivatives in L^q , seems not to extend to $k \partial_3 u_{\omega}$ in L^q .

The aim of this paper is to clarify these unusual features. In Theorem 2 below we present an improvement of (4) and simplify the proof given in [2]. Then, for small q, we prove a weighted L^q -estimate of $k\partial_3 u$ and of $(\omega \wedge x) \cdot \nabla u - \omega \wedge u$ independent of $|\omega|$, see Theorem 4. An example and a heuristic argument will show that the dependence in (4) on $\frac{k}{\sqrt{|\mu|u|}}$ is not a weakness of the proof.

THEOREM 2. Let $1 < q < \infty$, $\nu > 0$, $k \in \mathbb{R}$, $\omega = (0, 0, \tilde{\omega})^T \in \mathbb{R}^3 \setminus \{0\}$ and let $f \in L^q(\mathbb{R}^3)^3$. Then the solution $u \in \hat{W}^{2,q}(\mathbb{R}^3)^3$ satisfies the a priori estimate

$$\|k\partial_3 u\|_q + \|(\omega \wedge x) \cdot \nabla u - \omega \wedge u\|_q \le c \left(1 + \frac{k^2}{\nu|\omega|}\right)^{2\max(1/q, 1-1/q)+\varepsilon} \|f\|_q \qquad (6)$$

with a constant c > 0 independent of ν, k and ω ; here $\varepsilon > 0$ can be chosen arbitrarily small and $\varepsilon = 0$ if q = 2.

EXAMPLE 3. In Section 2 we will show that the term $\frac{k^2}{\nu|\omega|}$ is needed in the L^2 -case. However, it is not clear whether the exponent $2 \max(1/q, 1 - 1/q) + \varepsilon > 1$ is necessary if $q \neq 2$. We note that in [13] dealing with the nonlinear problem in exterior domains no dependence of a priori estimates on $\frac{1}{|\omega|}$ occurs; the reason is that the author uses strong and weak a priori L^2 -estimates of u by assuming that even $f \in L^{6/5}(\mathbb{R}^3) \subset \hat{W}^{-1,2}(\mathbb{R}^3)$. Using results of a forthcoming paper [3] dealing with the weak L^q -theory of (2) it is obvious that $\|\nu \nabla u\|_q$ is bounded uniformly w.r.t. ω and k by suitable norms of f.

THEOREM 4. (1) Let 1 < q < 2, $\nu > 0$, k > 0, $\omega = (0, 0, \tilde{\omega})^T \in \mathbb{R}^3 \setminus \{0\}$, and let $f \in L^q(\mathbb{R}^3)^3$. Then (2) has a solution $u \in \hat{W}^{2,q}(\mathbb{R}^3)^3$ satisfying the a priori estimates

$$\left\|\frac{\nabla u}{|x'|}\right\|_{q} \le \frac{c}{\nu} \|f\|_{q} \tag{7}$$

and

$$\left\|\frac{(\omega \wedge x) \cdot \nabla u - \omega \wedge u}{1 + |x'|}\right\|_q \le c \left(1 + \frac{k}{\nu}\right) \|f\|_q \tag{8}$$

with a constant c > 0 independent of k, ν, ω ; here, for $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ the term |x'| denotes the Euclidean length $\sqrt{x_1^2 + x_2^2}$ of $x' = (x_1, x_2)$.

(2) If 1 < q < 3, then

$$\left\|\frac{\nabla u}{|x|}\right\|_{q} \le \frac{1}{\nu} \|f\|_{q} \tag{9}$$

and

$$\left\|\frac{(\omega \wedge x) \cdot \nabla u - \omega \wedge u}{1 + |x|}\right\|_{q} \le c \left(1 + \frac{k}{\nu}\right) \|f\|_{q} \tag{10}$$

with a constant c > 0 independent of k, ν, ω .

(3) For all $1 < q < \infty$ the third component u_3 of the solution u satisfies the a priori estimate

$$\left\|\frac{k\partial_3 u_3}{1+|x'|}\right\|_q + \left\|\frac{(\omega \wedge x) \cdot \nabla u_3}{1+|x'|}\right\|_q \le c\left(1+\frac{k}{\nu}\right)\|f\|_q.$$
(11)

At the end of Section 2 we present a heuristic argument why L^q -estimates of $k\partial_3 u$ and of $(\omega \wedge x) \cdot \nabla u - \omega \wedge u$ independent of $\frac{k^2}{\nu |\omega|}$ are unlikely to hold and why weighted estimates with the weight $\frac{1}{1+|x'|}$ will help.

2. Preliminaries and proofs. From [2] we recall the calculation of the explicit representation of the solution u of (2). First, we eliminate the pressure term by applying div to $(2)_1$. Then ∇p is seen to be the unique weak solution of the equation $\Delta p = \operatorname{div} f$ satisfying the *a priori* estimate

$$\|\nabla p\|_q \le c \|f\|_q. \tag{12}$$

Hence u is the solenoidal solution of the equation

$$-\nu\Delta u + k\partial_3 u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u = f - \nabla p \tag{13}$$

where $f - \nabla p$ is solenoidal. For simplicity, we will write f instead of $f - \nabla p$ and divide by $\tilde{\omega} = |\omega| > 0$ to get

$$-\frac{\nu}{|\omega|}\Delta u + \frac{k}{|\omega|}\partial_3 u - (e_3 \wedge x) \cdot \nabla u + e_3 \wedge u = \frac{1}{|\omega|}f.$$
 (14)

Next use cylindrical coordinates $(r, \theta, x_3) \in \overline{\mathbb{R}_+} \times [0, 2\pi) \times \mathbb{R}$, $r = |x'| = \sqrt{x_1^2 + x_2^2}$, for $x = (x_1, x_2, x_3)^T$ and observe that

$$\partial_{\theta} u = (e_3 \wedge x) \cdot \nabla u = (-x_2, x_1) \cdot \nabla' u.$$

Moreover, we introduce the Fourier transform

$$\mathcal{F}u(\xi) = \hat{u}(\xi) = (2\pi)^{-3/2} \int_{\mathbb{R}^3} e^{-ix \cdot \xi} u(x) \, dx, \quad \xi \in \mathbb{R}^3$$

For the Fourier variable $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$ we also use cylindrical coordinates $(s, \varphi, \xi_3) \in \overline{\mathbb{R}_+} \times [0, 2\pi) \times \mathbb{R}, \ s = |\xi'| = \sqrt{\xi_1^2 + \xi_2^2}$, and note that

$$\widehat{\partial_\theta u} = \partial_\varphi \hat{u}$$

Thus \hat{u} satisfies the equation

$$\frac{1}{|\omega|} \left(\nu|\xi|^2 + ik\xi_3\right)\hat{u} - \partial_{\varphi}\hat{u} + e_3 \wedge \hat{u} = \frac{1}{|\omega|}\hat{f}.$$
(15)

This inhomogeneous, linear ordinary differential equation of first order with respect to φ has a unique 2π -periodic solution. An elementary calculation leads to the representation

$$\hat{u}(\xi) = \frac{1/|\omega|}{D(\xi)} \int_0^{2\pi} e^{-(\nu|\xi|^2 + ik\xi_3)t/|\omega|} O^T(t) \,\hat{f}(O(t)\xi) \,dt,\tag{16}$$

where

$$D(\xi) = 1 - e^{-2\pi(\nu|\xi|^2 + ik\xi_3)/|\omega|}.$$
(17)

Moreover, using the geometric series and the $\frac{2\pi}{|\omega|}$ -periodicity of $t \mapsto O_{\omega}^{T}(t)\hat{f}(O_{\omega}(t)\xi)$ w.r.t. t, we get the second representation

$$\hat{u}(\xi) = \int_0^\infty e^{-(\nu|\xi|^2 + ik\xi_3)t} O_\omega^T(t) \,\hat{f}(O_\omega(t)\xi) \,dt.$$
(18)

Note that in x-space (18) leads to the identity

$$u(x) = \int_0^\infty E_t * O_\omega^T(t) f(O_\omega(t) \cdot - kte_3)(x) dt$$
(19)

where E denotes the heat kernel $E_t(x) = \frac{1}{(4\pi\nu t)^{3/2}} e^{-|x|^2/4\nu t}$ in \mathbb{R}^3 .

Proof of Theorem 2. We start with the case q = 2 in which we may use the Theorem of Plancherel to estimate $||k\partial_3 u||_2$. By (16), (17), the inequality of Cauchy-Schwarz and Fubini's Theorem,

$$\begin{split} \int |ik\xi_{3}\hat{u}|^{2} d\xi &= \int \frac{k^{2}\xi_{3}^{2}/|\omega|^{2}}{|D(\xi)|^{2}} \left| \int_{0}^{2\pi} e^{-(\nu|\xi|^{2}+ik\xi_{3})t/|\omega|} O^{T}(t)\hat{f}(O(t)\xi) dt \right|^{2} d\xi \\ &\leq \int \frac{k^{2}\xi_{3}^{2}/|\omega|^{2}}{|D(\xi)|^{2}} \left(\int_{0}^{2\pi} e^{-\nu|\xi|^{2}t/|\omega|} |\hat{f}(O(t)\xi)|^{2} dt \right) \left(\int_{0}^{2\pi} e^{-\nu|\xi|^{2}t/|\omega|} dt \right) d\xi \\ &= \int_{0}^{2\pi} \left(\int e^{-\nu|\xi|^{2}t/|\omega|} \frac{k^{2}\xi_{3}^{2}/|\omega|^{2}}{|D(\xi)|^{2}} \frac{1 - e^{-2\pi\nu|\xi|^{2}/|\omega|}}{\nu|\xi|^{2}/|\omega|} |\hat{f}(O(t)\xi)|^{2} d\xi \right) dt. \end{split}$$

In the inner integral the change of variable formula implies that the term $|\hat{f}(O(t)\xi)|^2$ may be replaced by $|\hat{f}(\xi)|^2$. Then a further application of Fubini's theorem yields

$$\int |ik\xi_3 \hat{u}|^2 d\xi = \int |\hat{f}(\xi)|^2 \frac{k^2 \xi_3^2 / |\omega|^2}{|D(\xi)|^2} \frac{1 - e^{-2\pi\nu|\xi|^2 / |\omega|}}{\nu|\xi|^2 / |\omega|} \int_0^{2\pi} e^{-\nu|\xi|^2 t / |\omega|} dt$$
$$= \int |\hat{f}(\xi)|^2 \frac{k^2 \xi_3^2 / |\omega|^2}{|D(\xi)|^2} \frac{(1 - e^{-2\pi\nu|\xi|^2 / |\omega|})^2}{\nu^2|\xi|^4 / |\omega|^2} d\xi.$$

Hence it suffices to consider the 'multiplier function'

$$m(\xi) = \frac{1 - e^{-(2\pi\nu|\xi|^2/|\omega|}}{\nu|\xi|^2/|\omega|} \frac{k\xi_3/|\omega|}{D(\xi)}$$
(20)

and to prove the estimate

$$|m(\xi)| \le c \left(1 + \frac{k^2}{\nu|\omega|}\right), \quad \xi \in \mathbb{R}^3.$$
(21)

If $\frac{\nu|\xi|^2}{|\omega|} > 1$, then $|D(\xi)|$ is bounded below by a positive constant and

$$|m(\xi)| \le c \frac{k\xi_3/|\omega|}{\nu|\xi|^2/|\omega|} \le c \frac{k}{\nu|\xi|} \le c \frac{k}{\sqrt{\nu|\omega|}}.$$

If $\frac{\nu|\xi|^2}{|\omega|} \leq 1$, the first factor in the definition of $m(\xi)$ is uniformly bounded. To estimate the remaining term

$$m_0(\xi) = \frac{k\xi_3/|\omega|}{D(\xi)}$$

we partition the ball $\frac{\nu|\xi|^2}{|\omega|} \leq 1$ into infinitely many slices $S_n = \{\xi \in \mathbb{R}^3 : \frac{\nu|\xi|^2}{|\omega|} \leq 1, |\frac{k\xi_3}{|\omega|} - n| \leq \frac{1}{4}\}, n \in \mathbb{Z}$, and the remaining part S' where $\operatorname{dist}(\frac{k\xi_3}{|\omega|}, \mathbb{Z}) \geq \frac{1}{4}$ and consequently $|D(\xi)| \geq 1$. Hence,

$$|m_0(\xi)| \le \frac{k|\xi_3|}{|\omega|} \le \frac{k}{\sqrt{\nu|\omega|}}$$
 on S' .

For $\xi \in S_n$, $n \in \mathbb{Z}$, Taylor's expansion of $1 - e^{-z}$ yields the lower bound

$$|D(\xi)| = \left|1 - e^{-2\pi(\nu|\xi|^2/|\omega| + i(k\xi_3/|\omega| - n))}\right| \ge c_0 \left|\frac{\nu|\xi|^2}{|\omega|} + i\left(\frac{k\xi_3}{|\omega|} - n\right)\right|$$

with a constant $c_0 > 0$ independent of all variables ν, ξ, k, ω, n . Hence for $\xi \in S_0$ we get the estimate $|m_0(\xi)| \leq \frac{1}{c_0}$. If $\xi \in S_n$, $n \neq 0$, then

$$|m_0(\xi)| \le \frac{k|\xi_3|/|\omega|}{\nu|\xi|^2/|\omega|} \le \frac{k}{\nu|\xi|} \le \frac{4}{3} \frac{k^2}{\nu|\omega|}$$

since $\frac{k|\xi|}{|\omega|} \ge \frac{k|\xi_3|}{|\omega|} \ge \frac{3}{4}$. Now (21) is proved and implies the estimate

$$\int |ik\xi_3\hat{u}|^2 d\xi \le c \left(1 + \frac{k^2}{\nu|\omega|}\right)^2 \int |\hat{f}|^2 d\xi$$

Then the Theorem of Plancherel completes the proof in the case q = 2.

For the case $q \neq 2$ we write (16) in the form

$$\hat{u}(\xi) = \frac{1}{|\omega|} \int_0^{2\pi} \frac{1}{D(\xi)} e^{-\nu|\xi|^2 t/|\omega|} O^T(t) \big(\mathcal{F}f(O(t) \cdot -kte_3/|\omega|) \big)(\xi) dt$$

using that $e^{-itk\xi_3} \in \mathcal{S}'(\mathbb{R}^3)$ is the Fourier transform of the shift operator $f \mapsto f(\cdot - kte_3)$ on $\mathcal{S}'(\mathbb{R}^3)$. Hence in x-space,

$$k\partial_3 u(x) = \int_0^{2\pi} T_t F(t, \cdot)(x) \, dt$$

where

$$F(t, \cdot) = O^T(t)f(O(t) \cdot - kte_3/|\omega|)$$

and the operator family T_t , $0 < t < 2\pi$, is defined by its multiplier

$$m_t(\xi) = \frac{ik\xi_3/|\omega|}{D(\xi)} e^{-\nu|\xi|^2 t/|\omega|},$$
(22)

i.e., $T_t = \mathcal{F}^{-1}(m_t(\xi) \cdot)$. Note that $\|F(t, \cdot)\|_q \le \|f\|_q$ for all $t \in (0, 2\pi)$.

Below we will prove the multiplier estimate

$$\max_{\alpha} \sup_{\xi \neq 0} |\xi^{\alpha} D_{\xi}^{\alpha} m_t(\xi)| \le c \left(1 + \frac{k}{\sqrt{\nu|\omega|t}} + \frac{k^2}{\nu|\omega|} \right) \cdot \left(1 + \frac{k^2}{\nu|\omega|} \right)$$
(23)

with a constant c > 0 independent of ν, ω, k and t; here $\alpha \in \mathbb{N}_0^3$ runs through the set of all multi-indices $\alpha \in \{0, 1\}^3$. Then Marcinkiewicz' multiplier theorem [14] implies that in the operator norm $\|\cdot\|_q$ on L^q

$$||T_t||_q \le c \left(1 + \frac{k}{\sqrt{\nu|\omega|t}} + \frac{k^2}{\nu|\omega|}\right) \cdot \left(1 + \frac{k^2}{\nu|\omega|}\right).$$

Hence

$$\|k\partial_{3}u\|_{q} \le c \int_{0}^{2\pi} \|T_{t}\|_{q} \|F(t,\cdot)\|_{q} dt \le c \left(1 + \frac{k^{4}}{\nu^{2}|\omega|^{2}}\right) \|f\|_{q}$$
(24)

with a constant c > 0 independent of ν, ω and k.

Now the L^2 -result and (24) are combined by using complex multiplier theory to prove (6). Given 1 < q < 2 we formally interpolate between the L^2 -result and the L^1 -result (24) using $\theta = \frac{2}{q} - 1$ such that $\frac{1}{q} = \frac{1-\theta}{2} + \frac{\theta}{1}$. Then

$$\|\partial_3 u\|_q \le c \left(1 + \frac{k^2}{\nu|\omega|}\right)^{2-2/q} \left(1 + \frac{k^4}{\nu^2|\omega|^2}\right)^{2/q-1} \|f\|_q$$

yielding $\|\partial_3 u\|_q \leq c(1 + \frac{k^2}{\nu|\omega|})^{2/q} \|f\|_q$. Since no estimate (24) holds for L^1 , we have to interpolate between L^2 and L^p for p > 1 arbitrarily close to 1. Therefore, the additional exponent $\varepsilon > 0$ in (6) occurs. If $2 < q < \infty$, we formally interpolate between L^2 and L^∞ to get (6) with the exponent 2(1 - 1/q). Since again there is no L^∞ -result available, we choose p arbitrarily large instead of $p = \infty$ and have to add the exponent $\varepsilon > 0$ in (6).

Finally we prove (23), start with m_t itself and distinguish between the cases $\frac{\nu|\xi|^2}{|\omega|} > 1$ and $\frac{\nu|\xi|^2}{|\omega|} \leq 1$. In the first case $|D(\xi)|$ is bounded below by a positive constant yielding

$$|m_t(\xi)| \le c \frac{k|\xi_3|}{|\omega|} e^{-\nu|\xi|^2 t/|\omega|} \le c \frac{k}{\sqrt{\nu|\omega|t}}$$

If $\frac{\nu|\xi|^2}{|\omega|} \leq 1$, we may neglect the term $e^{-\nu|\xi|^2 t/|\omega|}$ and conclude from the detailed estimates of $m_0(\xi)$ in the L^2 -case above that

$$|m_t(\xi)| \le |m_0(\xi)| \le c \left(1 + \frac{k^2}{\nu|\omega|}\right).$$

Hence $|m_t(\xi)| \le c(1 + \frac{k}{\sqrt{\nu|\omega|t}} + \frac{k^2}{\nu|\omega|})$ proving (23) for m_t . Next consider

$$\xi_3 \partial_3 m_t(\xi) = m_t(\xi) - \frac{2\nu \xi_3^2 t}{|\omega|} m_t(\xi) - \xi_3 \frac{\partial_3 D(\xi)}{D(\xi)} m_t(\xi)$$
(25)

where

$$\xi_3 \frac{\partial_3 D(\xi)}{D(\xi)} = 2\pi \frac{(2\nu\xi_3^2 + ik\xi_3)/|\omega|}{D(\xi)} e^{-2\pi(\nu|\xi|^2 + ik\xi_3)/|\omega|}.$$
(26)

Writing the exponential function $e^{-\nu|\xi|^2 t/|\omega|}$ as $e^{-\nu|\xi|^2 t/2|\omega|} \cdot e^{-\nu|\xi|^2 t/2|\omega|}$, we see that the second term on the right-hand side of (25) may be estimated as m_t itself. In the third term note—due to properties of $D(\xi)$ proved above—that $\frac{2\nu\xi_3^2/|\omega|}{D(\xi)}e^{-2\pi(\nu|\xi|^2+ik\xi_3)/|\omega|}$ is uniformly bounded. Moreover, the estimate of $\frac{k\xi_3/|\omega|}{D(\xi)}e^{-2\pi(\nu|\xi|^2+ik\xi_3)/|\omega|}$ is similar to the estimate of the multiplier function $m(\xi)$ in (20), (21) yielding

$$\frac{k|\xi_3|/|\omega|}{D(\xi)} e^{2\pi(-\nu|\xi|^2 + ik\xi_3)/|\omega|} \le c \bigg(1 + \frac{k^2}{\nu|\omega|}\bigg).$$

Combining the previous estimates we get (23) for $\xi_3 \partial_3 m_t$. Concerning $\xi_1 \partial_1 m_t(\xi)$ note that (26) must be replaced by

$$\xi_1 \frac{\partial_1 D(\xi)}{D(\xi)} = 2\pi \frac{2\nu \xi_1^2 / |\omega|}{D(\xi)} e^{-2\pi (\nu |\xi|^2 + ik\xi_3) / |\omega|}$$

Obviously, looking at the properties of $D(\xi)$ proved above, the modulus of this term is uniformly bounded requiring no further power of $k^2/\nu|\omega|$. Since the same assertion holds for the derivatives $\xi_2 \partial_2$ and $\xi_1 \partial_1 \xi_2 \partial_2$ of m_t , (23) is completely proved.

EXAMPLE 3. For fixed k > 0, $\nu > 0$ we will construct a sequence of solenoidal forces $(f) = (f_{\omega}) \subset L^2(\mathbb{R}^3)^3$, $|\omega| \to 0$, such that the corresponding sequence of solutions $(u) = (u_{\omega})$ will satisfy

$$\|k\partial_3 u\|_q \ge c \frac{k^2}{\nu|\omega|} \|f\|_q \tag{27}$$

with c > 0 independent of k, ν, ω . Given $k > 0, \nu > 0$ choose $|\omega|$ small enough such that

$$\frac{\nu|\omega|}{k^2} < \frac{1}{16}$$

Then define $f = (f', 0) \in L^2(\mathbb{R}^3)^3$ such that in Fourier space

$$\hat{f}'(\xi) = i \begin{cases} {\xi'}^{\perp}, 0 < \varphi < \pi \\ -{\xi'}^{\perp}, \pi < \varphi < 2\pi \end{cases}, \quad \text{when} \quad \left| \frac{k|\xi'|}{|\omega|} - 1 \right| < \frac{1}{2}, \ \left| \frac{k|\xi_3|}{|\omega|} - 1 \right| < \frac{1}{2},$$

but $\hat{f}'(\xi) = 0$ elsewhere; here, as usual, φ is the angular part of ξ . Since $\overline{\hat{f}(\xi)} = \hat{f}(-\xi)$, the vector field f is real-valued and obviously solenoidal. By (16)

$$\hat{u}(\xi) = \frac{e^{\nu|\xi|^2 + ik\xi_3)\varphi/|\omega|}}{D(\xi)|\omega|} O(\varphi) \int_{\varphi}^{\varphi+2\pi} e^{-(\nu|\xi|^2 + ik\xi_3)t/|\omega|} O^T(t) \,\hat{f}(O(t)e_1) \,dt.$$

Since $O^T(t)\hat{f}(O(t)e_1) = +e_2$ and $= -e_2$ when $0 < \varphi < \pi$ and $\pi < \varphi < 2\pi$, resp., a simple integration leads to the formula

$$ik\xi_{3}\hat{u}(\xi) = \hat{f}(\xi)\frac{ik\xi_{3}/|\omega|}{(\nu|\xi|^{2} + ik\xi_{3})/|\omega|}\left(1 - \frac{2e^{-(\pi-\varphi)(\nu|\xi|^{2} + ik\xi_{3})/|\omega|}}{1 + e^{-\pi(\nu|\xi|^{2} + ik\xi_{3})/|\omega|}}\right),$$

when $0 < \varphi < \pi$; for $\pi < \varphi < 2\pi$ the exponential term $e^{-(\pi-\varphi)(\nu|\xi|^2+ik\xi_3)/|\omega|}$ must be replaced by $e^{-(2\pi-\varphi)(\nu|\xi|^2+ik\xi_3)/|\omega|}$. The assumptions on k, ν, ω imply for $\xi \in \operatorname{supp} \hat{f}$ that $|\frac{k\xi_3}{|\omega|}| \sim 1$, $\frac{\nu|\xi|^2}{|\omega|} \sim \frac{\nu|\omega|}{k^2}$; consequently, we have $|\nu|\xi|^2 + ik\xi_3|/|\omega| \sim |\frac{k\xi_3}{|\omega|}| \sim 1$ and $|e^{-(\pi-\varphi)(\nu|\xi|^2+ik\xi_3)/|\omega|}| \sim 1$. Finally, the crucial term is

$$|1 + e^{-\pi(\nu|\xi|^2 + ik\xi_3)/|\omega|}| \sim \frac{\nu|\xi|^2}{|\omega|} \sim \frac{\nu|\omega|}{k^2} \quad \text{for } \xi \in \text{supp}\hat{f}.$$

Hence

$$|ik\xi_3\hat{u}(\xi)| \sim \frac{k^2}{\nu|\omega|}|\hat{f}(\xi)|$$
 for $\xi \in \operatorname{supp}\hat{f}$.

Since all similarity estimates \sim can be made precise by using positive constants independent of k, ν, ω , (27) is proved.

Proof of Theorem 4. (i) Given a solution $u \in \hat{W}^{2,q}(\mathbb{R}^3)^3$, i.e. a function u with $\nabla^2 u \in L^q(\mathbb{R}^3)$, Theorems 1 and 2 yield $\beta \in \mathbb{R}$ such that $\nabla'(u - \beta(\omega \wedge x)) \in L^r(\mathbb{R}^3)^6$, $\frac{1}{r} = \frac{1}{q} - \frac{1}{4}$, and $\partial_3(u - \beta(\omega \wedge x)) \in L^q(\mathbb{R}^3)^3$. Since also $u - \beta\omega \wedge x$ solves (2), assume without loss of generality that $\beta = 0$ implying for a.a. $x_3 \in \mathbb{R}$ that

$$\int_{\mathbb{R}^2} |\nabla' u(x', x_3)|^r \, dx' < \infty, \quad \int_{\mathbb{R}^2} |\partial_3 u(x', x_3)|^q \, dx' < \infty.$$

Then classical arguments show the existence of a sequence of radii $(R_j) \subset \mathbb{R}_+$ such that

$$\int_{0}^{2\pi} |\nabla' u(R_j, \theta, x_3)|^r \, d\theta = o\left(R_j^{-2}\right), \quad \int_{0}^{2\pi} |\partial_3 u(R_j, \theta, x_3)|^q \, d\theta = o\left(R_j^{-2}\right) \tag{28}$$

as $j \to \infty$.

On the other hand, since 1 < q < 2 and $\nabla^2 u \in L^q(\mathbb{R}^3)$, Theorem II5.1 in [6] yields for a.a. $x_3 \in \mathbb{R}$ a matrix $A(x_3) \in \mathbb{R}^{3,3}$ such that

$$\left(\int_{\mathbb{R}^2} \frac{|\nabla u(x', x_3) - A(x_3)|^q}{|x'|^q} \, dx'\right)^{1/q} \le \frac{q}{2-q} \left(\int_{\mathbb{R}^2} |\nabla' \nabla u(x', x_3)|^q \, dx'\right)^{1/q}.$$
(29)

Note that Theorem II5.1 in [6] is stated only for exterior domains; however, since the constant q/(2-q) does not depend on the 'inner radius' of the exterior domain, the estimate holds for the whole space \mathbb{R}^2 as well. Moreover, by Lemma 5.2 in [6],

$$\int_{0}^{2\pi} |\nabla u(R,\theta,x_3) - A(x_3)|^q \, d\theta = o(R^{q-2}) \tag{30}$$

as $R \to \infty$. Now (28), (30) show that $A(x_3) = 0$; hence (29) and (3) yield (7). Then (8) is an easy consequence of (7) and of (2).

(ii) If 1 < q < 3, Theorem II5.1 in [6] yields the estimate

$$\left(\int_{\mathbb{R}^3} \frac{|\nabla u(x) - A|^q}{|x|^q} \, dx\right)^{1/q} \le \frac{q}{3-q} \left(\int_{\mathbb{R}^3} |\nabla^2 u(x)|^q \, dx\right)^{1/q}$$

with a constant matrix $A \in \mathbb{R}^{3,3}$. Moreover, by Lemma 5.2 in [6],

$$\int_{|y|=1} |\nabla u(Ry)|^q do(y) = o\left(R^{q-3}\right)$$

as $R \to \infty$, where $\int_{|y|=1} \dots do(y)$ denotes the surface integral on the unit sphere of \mathbb{R}^3 . Since $\nabla' u \in L^r(\mathbb{R}^3)^6$ and $\partial_3 u \in L^q(\mathbb{R}^3)^3$, arguments as above imply that A vanishes. Now (9) and (10) are easy consequences.

(iii) By (2) u_3 solves the problem $-\nu\Delta u_3 + k\partial_3 u_3 - (\omega \wedge x) \cdot \nabla u_3 = f_3$. Since $(\omega \wedge x) \cdot \nabla u_3 = |\omega| \partial_{\theta} u_3$, an integration w.r.t. $\theta \in (0, 2\pi)$ yields for the θ -independent function $U_3(x) := \frac{1}{2\pi} \int_0^{2\pi} u_3(|x'|, \theta', x_3) d\theta'$ the equation

$$-\nu\Delta U_3 + k\partial_3 U_3 = \frac{1}{2\pi} \int_0^{2\pi} f_3 \, d\theta'.$$
 (31)

Applying Fourier transforms and using Marcinkiewicz' multiplier theorem we get that U_3 satisfies the estimate

$$||k\partial_3 U_3||_q \le c||f||_q$$

with a constant c > 0 independent of f, k, ν , cf. the analysis of the related Oseen problem [1], [5], [6]. By Wirtinger's inequality there exists a constant c > 0 such that for a.a. r = |x'| > 0 and $x_3 \in \mathbb{R}$

$$\|\partial_3 u_3(r,\cdot,x_3)\|_{L^q(0,2\pi)} \le c \big(\|\partial_\theta \partial_3 u_3(r,\cdot,x_3)\|_{L^q(0,2\pi)} + \|\partial_3 U_3(r,\cdot,x_3)\|_{L^q(0,2\pi)}\big).$$

Now divide by 1 + r and integrate w.r.t. r dr, r > 0, and dx_3 , $x_3 \in \mathbb{R}$, to get that

$$\left\|\frac{\partial_3 u_3}{1+|x'|}\right\|_q \le c \left(\left\|\frac{\partial_\theta \partial_3 u_3}{1+|x'|}\right\|_q + \left\|\frac{\partial_3 U_3}{1+|x'|}\right\|_q\right)$$

Since the second term on the right-hand side is bounded by $\|\partial_3 \nabla' u_3\|_q \leq (c/\nu) \|f\|_q$ and since the third term is bounded by $\|\partial_3 U_3\|_q \leq (c/k) \|f\|_q$, we get (11).

REMARK. The ideas of the proof of Theorem 4 (iii) do not apply to u_1 and u_2 , since the term $\omega \wedge u$ does not vanish when applying the integration $\int_0^{2\pi} \dots d\theta'$. Also the identity $(\omega \wedge x) \cdot \nabla u - \omega \wedge u = |\omega| O(\theta) \partial_{\theta} (O^T(\theta) u)$ will not help, since no *a priori* estimates of $\partial_3 \partial_{\theta} (O^T(\theta) u)$ are available except for the case when 1 < q < 2.

Heuristic argument. Let us motivate why estimates of $(\omega \wedge x) \cdot \nabla u - \omega \wedge u$ and of $k\partial_3 u$ cannot be expected to be independent of $k^2/\nu|\omega|$. For simplicity ignore the terms $\omega \wedge u$ and p, recall that $(\omega \wedge x) \cdot \nabla u = |\omega| \partial_{\theta} u$ and let us perform a simple scaling analysis. Define the non-dimensional quantities $\tilde{u} = |\omega| u/A$, where $A \in \mathbb{R}$ is a characteristic acceleration of the flow, and $\tilde{x} = x \sqrt{|\omega|/\nu}$. Then, dividing (2) by A and omitting $\tilde{}$, (2) simplifies to the non-dimensional equation

$$-\Delta u + \frac{k}{\sqrt{\nu|\omega|}} \,\partial_3 u - \partial_\theta u = f \quad \text{in } \mathbb{R}^3.$$

Note that $\frac{k}{\sqrt{\nu|\omega|}}$ is a new non-dimensional characteristic number of the flow. For fixed r = |x'| let us interpret $\frac{k}{\sqrt{\nu|\omega|}}\partial_3 u - \partial_\theta u$ as a directional derivative defined by the unit

vector

$$d_{\omega}(x') = \frac{1}{\sqrt{r^2 + k^2/\nu\omega}} \left(\frac{k}{\sqrt{\nu|\omega|}} e_3 - (-x_2, x_1, 0)^T\right) \in \mathbb{R}^3$$

which is tangential to the cylinder $C_r = \{x \in \mathbb{R}^3 : |x'| = r\}$. Hence, defining the curve

$$\gamma_{\omega}(s) = \left(-r\cos s, -r\sin s, \frac{k}{\sqrt{\nu|\omega|}}s\right)^{T}$$

on C_r with tangential vector $\sqrt{r^2 + k^2/\nu\omega} d_{\omega}$, we get that

$$\frac{d}{ds}u(\gamma_{\omega}(s)) = \left(\sqrt{r^2 + k^2/\nu\omega} \ d_{\omega} \cdot \nabla u\right)(\gamma_{\omega}(s)).$$

Obviously d_{ω} converges to the third unit vector e_3 , whereas the curve $\gamma_{\omega}(s)$ has no reasonable limit on the cylinder C_r . In this sense, the information on the directional derivative $d_{\omega} \cdot \nabla u$ on C_r is lost in the limit $\omega = 0$. This discrepancy vanishes for r = 0, but gets larger as $r \to \infty$. Therefore, the weight $\frac{1}{1+|x'|}$ has to occur in Theorem 1.4.

References

- R. Farwig, The stationary Navier-Stokes equations in a 3D-exterior domain. in: Recent Topics on Mathematical Theory of Viscous Incompressible Fluid, Lecture Notes in Num. Appl. Anal. 16 (1998), 53–115.
- [2] R. Farwig, An L^q-analysis of viscous fluid flow past a rotating obstacle, Darmstadt University of Technology, Department of Mathematics, Preprint no. 2325 (2004), to appear in Tohoku Math. J.
- [3] R. Farwig, Weak solutions of Navier-Stokes flow past a rotating obstacle, in preparation.
- [4] R. Farwig, T. Hishida and D. Müller, L^q-theory of a singular "winding" integral operator arising from fluid dynamics, Pacific J. Math. 215 (2004), 297–312.
- [5] R. Farwig and H. Sohr, Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains, in: Theory of Navier-Stokes equations, J. Heywood et al. (eds.), Series Advances Math. Appl. Sciences 47, World Scientific, 1998, 11–31.
- [6] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems, Springer Tracts in Natural Philosophy 38, 2nd edition, 1998.
- [7] G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, in: S. Friedlander and D. Serre (eds.), Handbook of Mathematical Fluid Mechanics, Elsevier Science, 2002, 653–791.
- [8] G. P. Galdi, Steady flow of a Navier-Stokes fluid around a rotating obstacle, J. Elasticity 71 (2003), 1–32.
- T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Rational Mech. Anal. 150 (1999), 307–348.
- [10] T. Hishida, The Stokes operator with rotation effect in exterior domains, Analysis 19 (1999), 51–67.
- [11] S. Nečasova, Some remarks on the steady fall of a body in Stokes and Oseen flow, Acad. Sciences Czech Republic, Math. Institute, Preprint 143 (2001).
- [12] Š. Nečasova, Asymptotic properties of the steady fall of a body in viscous fluids, Acad. Sciences Czech Republic, Math. Institute, Preprint 149 (2002).

- [13] A. L. Silvestre, On the existence of steady flows of a Navier-Stokes liquid around a moving body, Math. Meth. Appl. Sci. 27 (2004), 1399–1409.
- [14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.