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Abstract. Consider the problem of time-periodic strong solutions of the Stokes system modelling

viscous incompressible fluid flow past a rotating obstacle in the whole space R
3. Introducing a

rotating coordinate system attached to the body yields a system of partial differential equations

of second order involving an angular derivative not subordinate to the Laplacian. In a recent

paper [2] the author proved L
q-estimates of second order derivatives uniformly in the angular

and translational velocities, ω and k, of the obstacle, whereas the transport terms fails to have

L
q-estimates independent of ω. In this paper we clarify this unexpected behavior and prove

weighted L
q-estimates of first order terms independent of ω.

1. Introduction. Consider the Navier-Stokes equations modelling viscous flow past a

rotating body K ⊂⊂ R
3 with axis of rotation ω = ω̃e3 = ω̃(0, 0, 1)T , ω̃ = |ω| > 0, and

with velocity u∞ = ke3, k > 0, at infinity. Then the velocity v and the presure p satisfy

the system
vt − ν∆v + v · ∇v + ∇q = f̃ in Ω(t), t > 0,

div v = 0 in Ω(t), t > 0,

v(y, t) = ω ∧ y on ∂Ω(t), t > 0,

v(y, t) → u∞ 6= 0 as |y| → ∞,

with an initial value v(y, 0) = v0(y), with constant viscosity ν > 0 and external force f̃ in

the time-dependent exterior domain Ω(t) = Oω(t)Ω ; here Oω(t) denotes the orthogonal

matrix

Oω(t) =




cos |ω|t − sin |ω|t 0

sin |ω|t cos |ω|t 0

0 0 1


 .
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Introducing the new independent and dependent variables

x = OT
ω (t)y, u(x, t) = OT

ω (t)
(
v(y, t) − u∞

)
, p(x, t) = q(y, t),

and linearizing, (u, p) will satisfy the modified Stokes system

ut − ν∆u + k∂3u − (ω ∧ x) · ∇u + ω ∧ u + ∇p = f,

div u = 0,
(1)

in a time-independent exterior domain Ω ⊂ R
3 together with the initial-boundary condi-

tion u(x, t) = ω ∧ x − u∞ for x ∈ ∂Ω, u(x, 0) = u0, u → 0 as |x| → ∞. In the stationary

whole space case to be analyzed in this paper we are led to the elliptic equation

−ν∆u + k∂3u − (ω ∧ x) · ∇u + ω ∧ u + ∇p = f, div u = 0 in R
3 (2)

in which the term (ω∧x)·∇u is not subordinate to −ν∆u. Note that a stationary solution

(u, p) of (2) is related to a time-periodic solution of (1).

In [2] the author proved a priori estimates of strong solutions (u, p) of (2) which are

found in the homogeneous Sobolev spaces Ŵ 2,q(R3)3 × Ŵ 1,q(R3) where

Ŵ k,q(Ω) = {u ∈ L1
loc(Ω)/Πk−1 : ∂αu ∈ Lq(Ω) for all α ∈ N

n
0 , |α| = k}.

Here ∂α = ∂α1

1 · . . . · ∂αn
n for a multi-index α = (α1, . . . , αn) ∈ N

n
0 and Πk−1 denotes the

set of all polynomials on R
n of degree ≤ k−1. The space Ŵ k,q(Ω) consists of equivalence

classes of L1
loc-functions being unique only up to elements from Πk−1 and is equipped

with the norm
∑

|α|=k ‖∂αu‖q, where ‖ · ‖q denotes the Lq-norm. However, sometimes

being less careful, we will consider v ∈ Ŵ k,q(Ω) as a function (representative) rather

than an equivalence class of functions, i.e., v ∈ L1
loc(Ω) such that ∂αv ∈ Lq(Ω) for every

multi-index α with |α| = k. For further results on similar problems we refer to [4], [8],

[9], [10], [11], [12] and [13].

Theorem 1. (1) Let 1 < q < ∞, ν > 0, k > 0, ω = (0, 0, ω̃)T ∈ R
3\{0}, and let

f ∈ Lq(R3)3. Then the linear problem (2) has a solution (u, p) ∈ Ŵ 2,q(R3)3 × Ŵ 1,q(R3)

satisfying the a priori estimate

‖ν∇2u‖q + ‖∇p‖q ≤ c‖f‖q (3)

with a constant c independent of ν, k and ω.

(2) Moreover,

‖k∂3u‖q + ‖(ω ∧ x) · ∇u − ω ∧ u‖q ≤ c

(
1 +

k4

ν2|ω|2
)
‖f‖q (4)

with a constant c > 0 independent of ν, k and ω.

(3) Let 1 < q < 4, f ∈ Lq(R3)3 and let (u, p) ∈ Ŵ 2,q(R3)3 × Ŵ 1,q(R3) be the solution

of (2). Then there exists β ∈ R such that

∇′(u − βω ∧ x) ∈ Lr(R3)6 for all r > 1,
1

r
∈ 1

q
−

[
1

4
,
1

3

]
,

and there exists a constant C = C(ν, k, ω; r) > 0 such that

‖∇′(u − βω ∧ x)‖r ≤ C
(
‖f‖q + ‖ν∇g + (ω ∧ x)g − kge3‖q

)
. (5)
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The proof of Theorem 1(1), see [2], is based on an explicit representation of u the

estimate of which uses Fourier transforms, Hardy-Littlewood decomposition methods

and maximal operators. Estimate (4) shows a surprising and crucial dependence on 1
|ω|

via the term k4

ν2|ω|2 . On the one hand, it is not at all clear that the terms k∂3u and

(ω∧x) ·∇u−ω ∧u can be estimated in Lq(R3) separately from each other. On the other

hand, the dependence on 1
|ω| seems to be unnatural. Note that, as |ω| → 0, problem (2)

converges formally to Oseen’s equation

−ν∆u + k∂3u + ∇p = f, div u = 0,

the solutions of which satisfy the estimate ‖k∂3u‖q ≤ c‖f‖q, see [1, 5]. To be more precise,

a sequence of solutions (uω) converges weakly in Ŵ 2,q(R3)3 to the solution of Oseen’s

equation as |ω| → 0, cf. [2] Remark 1.3(1).

Concerning Theorem 1(3) note that the solutions of the homogeneous system (2) are

given by βω ∧ x + αe3, α, β ∈ R. Hence, with u also u − βω ∧ x is a solution of (2). The

proof of Theorem 1(3) uses an improved Sobolev embedding theorem exploiting the fact

that besides ∇2u also k∂3u lies in Lq, cf. [1]. However, the dependence on 1/|ω| in (4)

implies that the constant C in (5) also depends on 1/|ω|. Due to this dependence the

above-mentioned weak convergence of (uω) in Ŵ 2,q(R3)3, i.e. of second order derivatives

in Lq, seems not to extend to k∂3uω in Lq.

The aim of this paper is to clarify these unusual features. In Theorem 2 below we

present an improvement of (4) and simplify the proof given in [2]. Then, for small q, we

prove a weighted Lq-estimate of k∂3u and of (ω ∧ x) · ∇u− ω ∧ u independent of |ω|, see

Theorem 4. An example and a heuristic argument will show that the dependence in (4)

on k√
ν|ω|

is not a weakness of the proof.

Theorem 2. Let 1 < q < ∞, ν > 0, k ∈ R, ω = (0, 0, ω̃)T ∈ R
3\{0} and let f ∈ Lq(R3)3.

Then the solution u ∈ Ŵ 2,q(R3)3 satisfies the a priori estimate

‖k∂3u‖q + ‖(ω ∧ x) · ∇u − ω ∧ u‖q ≤ c

(
1 +

k2

ν|ω|

)2max(1/q,1−1/q)+ε

‖f‖q (6)

with a constant c > 0 independent of ν, k and ω; here ε > 0 can be chosen arbitrarily

small and ε = 0 if q = 2.

Example 3. In Section 2 we will show that the term k2

ν|ω| is needed in the L2-case.

However, it is not clear whether the exponent 2 max(1/q, 1 − 1/q) + ε > 1 is necessary

if q 6= 2. We note that in [13] dealing with the nonlinear problem in exterior domains no

dependence of a priori estimates on 1
|ω| occurs; the reason is that the author uses strong

and weak a priori L2-estimates of u by assuming that even f ∈ L6/5(R3) ⊂ Ŵ−1,2(R3).

Using results of a forthcoming paper [3] dealing with the weak Lq-theory of (2) it is

obvious that ‖ν∇u‖q is bounded uniformly w.r.t. ω and k by suitable norms of f .

Theorem 4. (1) Let 1 < q < 2, ν > 0, k > 0, ω = (0, 0, ω̃)T ∈ R
3\{0}, and let

f ∈ Lq(R3)3. Then (2) has a solution u ∈ Ŵ 2,q(R3)3 satisfying the a priori estimates
∥∥∥∥
∇u

|x′|

∥∥∥∥
q

≤ c

ν
‖f‖q (7)
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and ∥∥∥∥
(ω ∧ x) · ∇u − ω ∧ u

1 + |x′|

∥∥∥∥
q

≤ c

(
1 +

k

ν

)
‖f‖q (8)

with a constant c > 0 independent of k, ν, ω; here, for x = (x1, x2, x3) ∈ R
3 the term |x′|

denotes the Euclidean length
√

x2
1 + x2

2 of x′ = (x1, x2).

(2) If 1 < q < 3, then
∥∥∥∥
∇u

|x|

∥∥∥∥
q

≤ 1

ν
‖f‖q (9)

and ∥∥∥∥
(ω ∧ x) · ∇u − ω ∧ u

1 + |x|

∥∥∥∥
q

≤ c

(
1 +

k

ν

)
‖f‖q (10)

with a constant c > 0 independent of k, ν, ω.

(3) For all 1 < q < ∞ the third component u3 of the solution u satisfies the a priori

estimate ∥∥∥∥
k∂3u3

1 + |x′|

∥∥∥∥
q

+

∥∥∥∥
(ω ∧ x) · ∇u3

1 + |x′|

∥∥∥∥
q

≤ c

(
1 +

k

ν

)
‖f‖q. (11)

At the end of Section 2 we present a heuristic argument why Lq-estimates of k∂3u

and of (ω ∧ x) · ∇u − ω ∧ u independent of k2

ν|ω| are unlikely to hold and why weighted

estimates with the weight 1
1+|x′| will help.

2. Preliminaries and proofs. From [2] we recall the calculation of the explicit rep-

resentation of the solution u of (2). First, we eliminate the pressure term by applying

div to (2)1. Then ∇p is seen to be the unique weak solution of the equation ∆p = div f

satisfying the a priori estimate

‖∇p‖q ≤ c‖f‖q. (12)

Hence u is the solenoidal solution of the equation

−ν∆u + k∂3u − (ω ∧ x) · ∇u + ω ∧ u = f −∇p (13)

where f −∇p is solenoidal. For simplicity, we will write f instead of f −∇p and divide

by ω̃ = |ω| > 0 to get

− ν

|ω| ∆u +
k

|ω| ∂3u − (e3 ∧ x) · ∇u + e3 ∧ u =
1

|ω| f. (14)

Next use cylindrical coordinates (r, θ, x3) ∈ R+ × [0, 2π) × R, r = |x′| =
√

x2
1 + x2

2, for

x = (x1, x2, x3)
T and observe that

∂θu = (e3 ∧ x) · ∇u = (−x2, x1) · ∇′u.

Moreover, we introduce the Fourier transform

Fu(ξ) = û(ξ) = (2π)−3/2

∫

R3

e−ix·ξu(x) dx, ξ ∈ R
3.
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For the Fourier variable ξ = (ξ1, ξ2, ξ3) ∈ R
3 we also use cylindrical coordinates (s, ϕ, ξ3) ∈

R+ × [0, 2π) × R, s = |ξ′| =
√

ξ2
1 + ξ2

2 , and note that

∂̂θu = ∂ϕû.

Thus û satisfies the equation

1

|ω|
(
ν|ξ|2 + ikξ3

)
û − ∂ϕû + e3 ∧ û =

1

|ω| f̂ . (15)

This inhomogeneous, linear ordinary differential equation of first order with respect to ϕ

has a unique 2π-periodic solution. An elementary calculation leads to the representation

û(ξ) =
1/|ω|
D(ξ)

∫ 2π

0

e−(ν|ξ|2+ikξ3)t/|ω|OT (t) f̂
(
O(t)ξ

)
dt, (16)

where

D(ξ) = 1 − e−2π(ν|ξ|2+ikξ3)/|ω|. (17)

Moreover, using the geometric series and the 2π
|ω|–periodicity of t 7→ OT

ω (t)f̂
(
Oω(t)ξ

)
w.r.t.

t, we get the second representation

û(ξ) =

∫ ∞

0

e−(ν|ξ|2+ikξ3)tOT
ω (t) f̂

(
Oω(t)ξ

)
dt. (18)

Note that in x-space (18) leads to the identity

u(x) =

∫ ∞

0

Et ∗ OT
ω (t) f

(
Oω(t)· − kte3

)
(x) dt (19)

where E denotes the heat kernel Et(x) = 1
(4πνt)3/2

e−|x|2/4νt in R
3.

Proof of Theorem 2. We start with the case q = 2 in which we may use the Theorem

of Plancherel to estimate ‖k∂3u‖2. By (16), (17), the inequality of Cauchy-Schwarz and

Fubini’s Theorem,
∫

|ikξ3û|2 dξ =

∫
k2ξ2

3/|ω|2
|D(ξ)|2

∣∣∣∣
∫ 2π

0

e−(ν|ξ|2+ikξ3)t/|ω|OT (t)f̂(O(t)ξ) dt

∣∣∣∣
2

dξ

≤
∫

k2ξ2
3/|ω|2

|D(ξ)|2
( ∫ 2π

0

e−ν|ξ|2t/|ω||f̂(O(t)ξ)|2 dt

)( ∫ 2π

0

e−ν|ξ|2t/|ω| dt

)
dξ

=

∫ 2π

0

( ∫
e−ν|ξ|2t/|ω| k2ξ2

3/|ω|2
|D(ξ)|2

1 − e−2πν|ξ|2/|ω|

ν|ξ|2/|ω| |f̂(O(t)ξ)|2 dξ

)
dt.

In the inner integral the change of variable formula implies that the term |f̂(O(t)ξ)|2 may

be replaced by |f̂(ξ)|2. Then a further application of Fubini’s theorem yields

∫
|ikξ3û|2 dξ =

∫
|f̂(ξ)|2 k2ξ2

3/|ω|2
|D(ξ)|2

1 − e−2πν|ξ|2/|ω|

ν|ξ|2/|ω|

∫ 2π

0

e−ν|ξ|2t/|ω| dt

=

∫
|f̂(ξ)|2 k2ξ2

3/|ω|2
|D(ξ)|2

(1 − e−2πν|ξ|2/|ω|)2

ν2|ξ|4/|ω|2 dξ.
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Hence it suffices to consider the ’multiplier function’

m(ξ) =
1 − e−(2πν|ξ|2/|ω|

ν|ξ|2/|ω|
kξ3/|ω|
D(ξ)

(20)

and to prove the estimate

|m(ξ)| ≤ c
(
1 +

k2

ν|ω|
)
, ξ ∈ R

3. (21)

If ν|ξ|2

|ω| > 1, then |D(ξ)| is bounded below by a positive constant and

|m(ξ)| ≤ c
kξ3/|ω|
ν|ξ|2/|ω| ≤ c

k

ν|ξ| ≤ c
k√
ν|ω|

.

If ν|ξ|2

|ω| ≤ 1, the first factor in the definition of m(ξ) is uniformly bounded. To estimate

the remaining term

m0(ξ) =
kξ3/|ω|
D(ξ)

we partition the ball ν|ξ|2

|ω| ≤ 1 into infinitely many slices Sn = {ξ ∈ R
3 : ν|ξ|2

|ω| ≤
1,

∣∣kξ3

|ω| − n
∣∣ ≤ 1

4}, n ∈ Z, and the remaining part S′ where dist
(

kξ3

|ω| , Z
)
≥ 1

4 and

consequently |D(ξ)| ≥ 1. Hence,

|m0(ξ)| ≤
k|ξ3|
|ω| ≤ k√

ν|ω|
on S′.

For ξ ∈ Sn, n ∈ Z, Taylor’s expansion of 1 − e−z yields the lower bound

|D(ξ)| =
∣∣1 − e−2π(ν|ξ|2/|ω|+i(kξ3/|ω|−n))

∣∣ ≥ c0

∣∣∣∣
ν|ξ|2
|ω| + i

(
kξ3

|ω| − n

)∣∣∣∣

with a constant c0 > 0 independent of all variables ν, ξ, k, ω, n. Hence for ξ ∈ S0 we get

the estimate |m0(ξ)| ≤ 1
c0

. If ξ ∈ Sn, n 6= 0, then

|m0(ξ)| ≤
k|ξ3|/|ω|
ν|ξ|2/|ω| ≤

k

ν|ξ| ≤
4

3

k2

ν|ω| ,

since k|ξ|
|ω| ≥ k|ξ3|

|ω| ≥ 3
4 . Now (21) is proved and implies the estimate

∫
|ikξ3û|2 dξ ≤ c

(
1 +

k2

ν|ω|

)2 ∫
|f̂ |2 dξ.

Then the Theorem of Plancherel completes the proof in the case q = 2.

For the case q 6= 2 we write (16) in the form

û(ξ) =
1

|ω|

∫ 2π

0

1

D(ξ)
e−ν|ξ|2t/|ω|OT (t)

(
Ff(O(t)· − kte3/|ω|)

)
(ξ)dt

using that e−itkξ3 ∈ S ′(R3) is the Fourier transform of the shift operator f 7→ f(· − kte3)

on S ′(R3). Hence in x-space,

k∂3u(x) =

∫ 2π

0

Tt F (t, ·)(x) dt



VISCOUS FLUID FLOW 79

where

F (t, ·) = OT (t)f(O(t)· − kte3/|ω|)

and the operator family Tt, 0 < t < 2π, is defined by its multiplier

mt(ξ) =
ikξ3/|ω|

D(ξ)
e−ν|ξ|2t/|ω|, (22)

i.e., Tt = F−1(mt(ξ) · ). Note that ‖F (t, ·)‖q ≤ ‖f‖q for all t ∈ (0, 2π).

Below we will prove the multiplier estimate

max
α

sup
ξ 6=0

|ξαDα
ξ mt(ξ)| ≤ c

(
1 +

k√
ν|ω|t

+
k2

ν|ω|

)
·
(

1 +
k2

ν|ω|

)
(23)

with a constant c > 0 independent of ν, ω, k and t; here α ∈ N
3
0 runs through the set of

all multi-indices α ∈ {0, 1}3. Then Marcinkiewicz’ multiplier theorem [14] implies that in

the operator norm ‖ · ‖q on Lq

‖Tt‖q ≤ c

(
1 +

k√
ν|ω|t

+
k2

ν|ω|

)
·
(

1 +
k2

ν|ω|

)
.

Hence

‖k∂3u‖q ≤ c

∫ 2π

0

‖Tt‖q‖F (t, ·)‖q dt ≤ c

(
1 +

k4

ν2|ω|2
)
‖f‖q (24)

with a constant c > 0 independent of ν, ω and k.

Now the L2-result and (24) are combined by using complex multiplier theory to prove

(6). Given 1 < q < 2 we formally interpolate between the L2-result and the L1-result

(24) using θ = 2
q − 1 such that 1

q = 1−θ
2 + θ

1 . Then

‖∂3u‖q ≤ c

(
1 +

k2

ν|ω|

)2−2/q(
1 +

k4

ν2|ω|2
)2/q−1

‖f‖q

yielding ‖∂3u‖q ≤ c(1 + k2

ν|ω| )
2/q‖f‖q. Since no estimate (24) holds for L1, we have to

interpolate between L2 and Lp for p > 1 arbitrarily close to 1. Therefore, the additional

exponent ε > 0 in (6) occurs. If 2 < q < ∞, we formally interpolate between L2 and L∞

to get (6) with the exponent 2(1 − 1/q). Since again there is no L∞-result available, we

choose p arbitrarily large instead of p = ∞ and have to add the exponent ε > 0 in (6).

Finally we prove (23), start with mt itself and distinguish between the cases ν|ξ|2

|ω| > 1

and ν|ξ|2

|ω| ≤ 1. In the first case |D(ξ)| is bounded below by a positive constant yielding

|mt(ξ)| ≤ c
k|ξ3|
|ω| e−ν|ξ|2t/|ω| ≤ c

k√
ν|ω|t

.

If ν|ξ|2

|ω| ≤ 1, we may neglect the term e−ν|ξ|2t/|ω| and conclude from the detailed estimates

of m0(ξ) in the L2-case above that

|mt(ξ)| ≤ |m0(ξ)| ≤ c

(
1 +

k2

ν|ω|

)
.
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Hence |mt(ξ)| ≤ c(1 + k√
ν|ω|t

+ k2

ν|ω|) proving (23) for mt. Next consider

ξ3∂3mt(ξ) = mt(ξ) −
2νξ2

3t

|ω| mt(ξ) − ξ3
∂3D(ξ)

D(ξ)
mt(ξ) (25)

where

ξ3
∂3D(ξ)

D(ξ)
= 2π

(2νξ2
3 + ikξ3)/|ω|

D(ξ)
e−2π(ν|ξ|2+ikξ3)/|ω|. (26)

Writing the exponential function e−ν|ξ|2t/|ω| as e−ν|ξ|2t/2|ω| · e−ν|ξ|2t/2|ω|, we see that the

second term on the right-hand side of (25) may be estimated as mt itself. In the third

term note—due to properties of D(ξ) proved above—that
2νξ2

3
/|ω|

D(ξ) e−2π(ν|ξ|2+ikξ3)/|ω| is

uniformly bounded. Moreover, the estimate of kξ3/|ω|
D(ξ) e−2π(ν|ξ|2+ikξ3)/|ω| is similar to the

estimate of the multiplier function m(ξ) in (20), (21) yielding

k|ξ3|/|ω|
D(ξ)

e2π(−ν|ξ|2+ikξ3)/|ω| ≤ c

(
1 +

k2

ν|ω|

)
.

Combining the previous estimates we get (23) for ξ3∂3mt. Concerning ξ1∂1mt(ξ) note

that (26) must be replaced by

ξ1
∂1D(ξ)

D(ξ)
= 2π

2νξ2
1/|ω|

D(ξ)
e−2π(ν|ξ|2+ikξ3)/|ω|.

Obviously, looking at the properties of D(ξ) proved above, the modulus of this term is

uniformly bounded requiring no further power of k2/ν|ω|. Since the same assertion holds

for the derivatives ξ2∂2 and ξ1∂1ξ2∂2 of mt, (23) is completely proved.

Example 3. For fixed k > 0, ν > 0 we will construct a sequence of solenoidal forces

(f) = (fω) ⊂ L2(R3)3, |ω| → 0, such that the corresponding sequence of solutions (u) =

(uω) will satisfy

‖k∂3u‖q ≥ c
k2

ν|ω| ‖f‖q (27)

with c > 0 independent of k, ν, ω. Given k > 0, ν > 0 choose |ω| small enough such that

ν|ω|
k2

<
1

16
.

Then define f = (f ′, 0) ∈ L2(R3)3 such that in Fourier space

f̂ ′(ξ) = i

{
ξ′

⊥
, 0 < ϕ < π

−ξ′
⊥

, π < ϕ < 2π
, when

∣∣∣∣
k|ξ′|
|ω| − 1

∣∣∣∣ <
1

2
,

∣∣∣∣
k|ξ3|
|ω| − 1

∣∣∣∣ <
1

2
,

but f̂ ′(ξ) = 0 elsewhere; here, as usual, ϕ is the angular part of ξ. Since f̂(ξ) = f̂(−ξ),

the vector field f is real-valued and obviously solenoidal. By (16)

û(ξ) =
eν|ξ|2+ikξ3)ϕ/|ω|

D(ξ)|ω| O(ϕ)

∫ ϕ+2π

ϕ

e−(ν|ξ|2+ikξ3)t/|ω|OT (t) f̂
(
O(t)e1

)
dt.
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Since OT (t)f̂(O(t)e1) = +e2 and = −e2 when 0 < ϕ < π and π < ϕ < 2π, resp., a simple

integration leads to the formula

ikξ3û(ξ) = f̂(ξ)
ikξ3/|ω|

(ν|ξ|2 + ikξ3)/|ω|

(
1 − 2e−(π−ϕ)(ν|ξ|2+ikξ3)/|ω|

1 + e−π(ν|ξ|2+ikξ3)/|ω|

)
,

when 0 < ϕ < π; for π < ϕ < 2π the exponential term e−(π−ϕ)(ν|ξ|2+ikξ3)/|ω| must

be replaced by e−(2π−ϕ)(ν|ξ|2+ikξ3)/|ω|. The assumptions on k, ν, ω imply for ξ ∈ supp f̂

that |kξ3

|ω| | ∼ 1, ν|ξ|2

|ω| ∼ ν|ω|
k2 ; consequently, we have |ν|ξ|2 + ikξ3|/|ω| ∼ |kξ3

|ω| | ∼ 1 and

|e−(π−ϕ)(ν|ξ|2+ikξ3)/|ω|| ∼ 1. Finally, the crucial term is

|1 + e−π(ν|ξ|2+ikξ3)/|ω|| ∼ ν|ξ|2
|ω| ∼ ν|ω|

k2
for ξ ∈ suppf̂ .

Hence

|ikξ3û(ξ)| ∼ k2

ν|ω| |f̂(ξ)| for ξ ∈ suppf̂ .

Since all similarity estimates ∼ can be made precise by using positive constants inde-

pendent of k, ν, ω, (27) is proved.

Proof of Theorem 4. (i) Given a solution u ∈ Ŵ 2,q(R3)3, i.e. a function u with ∇2u ∈
Lq(R3), Theorems 1 and 2 yield β ∈ R such that ∇′(u−β(ω∧x)) ∈ Lr(R3)6, 1

r = 1
q − 1

4 ,

and ∂3(u− β(ω ∧ x)) ∈ Lq(R3)3. Since also u− βω ∧ x solves (2), assume without loss of

generality that β = 0 implying for a.a. x3 ∈ R that
∫

R2

|∇′u(x′, x3)|r dx′ < ∞,

∫

R2

|∂3u(x′, x3)|q dx′ < ∞.

Then classical arguments show the existence of a sequence of radii (Rj) ⊂ R+ such that
∫ 2π

0

|∇′u(Rj , θ, x3)|r dθ = o
(
R−2

j

)
,

∫ 2π

0

|∂3u(Rj , θ, x3)|q dθ = o
(
R−2

j

)
(28)

as j → ∞.

On the other hand, since 1 < q < 2 and ∇2u ∈ Lq(R3), Theorem II5.1 in [6] yields

for a.a. x3 ∈ R a matrix A(x3) ∈ R
3,3 such that

(∫

R2

|∇u(x′, x3) − A(x3)|q
|x′|q dx′

)1/q

≤ q

2 − q

( ∫

R2

|∇′∇u(x′, x3)|q dx′

)1/q

. (29)

Note that Theorem II5.1 in [6] is stated only for exterior domains; however, since the

constant q/(2 − q) does not depend on the ’inner radius’ of the exterior domain, the

estimate holds for the whole space R
2 as well. Moreover, by Lemma 5.2 in [6],

∫ 2π

0

|∇u(R, θ, x3) − A(x3)|q dθ = o
(
Rq−2

)
(30)

as R → ∞. Now (28), (30) show that A(x3) = 0; hence (29) and (3) yield (7). Then (8)

is an easy consequence of (7) and of (2).

(ii) If 1 < q < 3, Theorem II5.1 in [6] yields the estimate
( ∫

R3

|∇u(x) − A|q
|x|q dx

)1/q

≤ q

3 − q

( ∫

R3

|∇2u(x)|q dx

)1/q
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with a constant matrix A ∈ R
3,3. Moreover, by Lemma 5.2 in [6],

∫

|y|=1

|∇u(Ry)|qdo(y) = o
(
Rq−3

)

as R → ∞, where
∫
|y|=1

. . . do(y) denotes the surface integral on the unit sphere of R
3.

Since ∇′u ∈ Lr(R3)6 and ∂3u ∈ Lq(R3)3, arguments as above imply that A vanishes.

Now (9) and (10) are easy consequences.

(iii) By (2) u3 solves the problem −ν∆u3 + k∂3u3 − (ω ∧ x) · ∇u3 = f3. Since

(ω ∧ x) · ∇u3 = |ω|∂θu3, an integration w.r.t. θ ∈ (0, 2π) yields for the θ-independent

function U3(x) := 1
2π

∫ 2π

0
u3(|x′|, θ′, x3) dθ′ the equation

−ν∆U3 + k∂3U3 =
1

2π

∫ 2π

0

f3 dθ′. (31)

Applying Fourier transforms and using Marcinkiewicz’ multiplier theorem we get that U3

satisfies the estimate

‖k∂3U3‖q ≤ c‖f‖q

with a constant c > 0 independent of f, k, ν, cf. the analysis of the related Oseen problem

[1], [5], [6]. By Wirtinger’s inequality there exists a constant c > 0 such that for a.a.

r = |x′| > 0 and x3 ∈ R

‖∂3u3(r, ·, x3)‖Lq(0,2π) ≤ c
(
‖∂θ∂3u3(r, ·, x3)‖Lq(0,2π) + ‖∂3U3(r, ·, x3)‖Lq(0,2π)

)
.

Now divide by 1 + r and integrate w.r.t. r dr, r > 0, and dx3, x3 ∈ R, to get that
∥∥∥∥

∂3u3

1 + |x′|

∥∥∥∥
q

≤ c

(∥∥∥∥
∂θ∂3u3

1 + |x′|

∥∥∥∥
q

+

∥∥∥∥
∂3U3

1 + |x′|

∥∥∥∥
q

)
.

Since the second term on the right-hand side is bounded by ‖∂3∇′u3‖q ≤ (c/ν)‖f‖q and

since the third term is bounded by ‖∂3U3‖q ≤ (c/k)‖f‖q, we get (11).

Remark. The ideas of the proof of Theorem 4 (iii) do not apply to u1 and u2, since the

term ω ∧ u does not vanish when applying the integration
∫ 2π

0
. . . dθ′. Also the identity

(ω ∧ x) · ∇u − ω ∧ u = |ω|O(θ)∂θ(O
T (θ)u) will not help, since no a priori estimates of

∂3∂θ(O
T (θ)u) are available except for the case when 1 < q < 2.

Heuristic argument. Let us motivate why estimates of (ω ∧ x) · ∇u − ω ∧ u and of k∂3u

cannot be expected to be independent of k2/ν|ω|. For simplicity ignore the terms ω ∧ u

and p, recall that (ω∧x)·∇u = |ω|∂θu and let us perform a simple scaling analysis. Define

the non-dimensional quantities ũ = |ω|u/A, where A ∈ R is a characteristic acceleration

of the flow, and x̃ = x
√
|ω|/ν. Then, dividing (2) by A and omitting ˜, (2) simplifies to

the non-dimensional equation

−∆u +
k√
ν|ω|

∂3u − ∂θu = f in R
3.

Note that k√
ν|ω|

is a new non-dimensional characteristic number of the flow. For fixed

r = |x′| let us interpret k√
ν|ω|

∂3u − ∂θu as a directional derivative defined by the unit
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vector

dω(x′) =
1√

r2 + k2/νω

(
k√
ν|ω|

e3 − (−x2, x1, 0)T

)
∈ R

3

which is tangential to the cylinder Cr = {x ∈ R
3 : |x′| = r}. Hence, defining the curve

γω(s) =

(
− r cos s,−r sin s,

k√
ν|ω|

s

)T

on Cr with tangential vector
√

r2 + k2/νω dω, we get that

d

ds
u(γω(s)) =

(√
r2 + k2/νω dω · ∇u

)
(γω(s)).

Obviously dω converges to the third unit vector e3, whereas the curve γω(s) has no

reasonable limit on the cylinder Cr. In this sense, the information on the directional

derivative dω · ∇u on Cr is lost in the limit ω = 0. This discrepancy vanishes for r = 0,

but gets larger as r → ∞. Therefore, the weight 1
1+|x′| has to occur in Theorem 1.4.
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