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Abstract. The James–Schreier spaces, defined by amalgamating James’ quasi-reflexive Banach
spaces and Schreier space, can be equipped with a Banach-algebra structure. We answer some
questions relating to their cohomology and ideal structure, and investigate the relations between
them. In particular we show that the James–Schreier algebras are weakly amenable but not
amenable, and relate these algebras to their multiplier algebras and biduals.

1. Introduction. In this paper we introduce the James–Schreier algebras, Vp for p > 1,
which are, by design, Banach sequence algebras with a bounded approximate identity (Vp
is introduced as a Banach space in [2]). We follow the approach of Andrew and Green [1]
and Dales [5, 4.1.45] in their investigations of the algebra structure of the James space J2,
and White’s thesis [13] (alternatively [14]) to that of Jp for p > 1. These previous studies
of the James algebras have appeared in a purely Banach-algebra context—[1] aspires
to a ‘basis-free’ approach (though relates some results to basis concepts in remarks).
In contrast, we present the underlying Schauder basis theory and shift operators on the
Banach space as a virtue. Not only does this approach offer efficiency, but perhaps insight:
it enables us to frame the non-amenability of the Banach algebra Vp in terms of various
shift operators on Vp.

The James and James–Schreier algebras share many common features, despite the
fact that Jp is lp-saturated, whereas Vp is c0-saturated (see [2, 5.2]). As Vp is not quasi-
reflexive, the role of Jp in different situations is now performed by one of the two algebras
Vp and its non-separable counterpartWp [2, 4.2]. In particular we show that Vp, like Jp, is
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weakly amenable but not amenable; and we show that the bidual of Vp, and the multiplier
algebras of Vp and Wp are all ∗-isomorphic to Wp with an adjoined identity.

We also offer a brief glimpse of the Schreier algebras, both as toy counterparts to
the James–Schreier algebras, and because they embed as complemented ideals in the
corresponding James–Schreier algebras, thus giving one possible means of demonstrating
that Vp is not amenable.

We make liberal use of definitions and results from the companion Banach-space paper
[2] in which the James–Schreier spaces are introduced, though now only concentrate
on the scalar field K = C for the Banach-algebra case. In particular, for m ∈ N and
ζ ⊆ N, we make use of: the unit vectors (en)n∈N in c00; the mth coordinate functional,
fm : CN → C : (αn)n∈N 7→ αm; the natural projection associated with ζ, Pζ ; the mth

natural projection, Pm : CN → c00 : (αn)n∈N 7→ (α1, . . . , αm, 0, 0, . . .); the element χζ of
CN defined by 〈χζ , fk〉 = 1 if k ∈ ζ, and 0 otherwise; and in this paper, we write χm
for χ(0,m]. We note that χζ = PζχN and χm = PmχN. The dual of a Banach space E is
denoted by E′, the second dual by E′′.

2. Banach-algebra theory. By a basis for a Banach space, we always understand a
Schauder basis.

Proposition 2.1 ([11, 4.2.20]). Any Banach space with a normalised 1-unconditional
basis is a commutative non-unital Banach algebra under the pointwise product.

The lemma and norm that follow, may be found in greater generality in the proofs of
[5, 2.1.9] or [12, 1.1.9].

Lemma 2.2. Let A be an algebra with identity e and a complete norm ‖·‖ such that the
product A × A → A is separately continuous. Then |||a||| := sup {‖ab‖ : b ∈ A, ‖b‖ 6 1}
defines an equivalent norm on A such that |||e||| = 1 and |||ab||| 6 |||a||||||b||| (a, b ∈ A).

Equip CN with the pointwise defined ∗-algebra operations. A Banach algebra B is a
Banach sequence algebra (on N) if B is a subalgebra of CN, and B contains c00. For a
Banach sequence algebra B, and ζ ⊆ N, we define IB(ζ) := span {en : n ∈ ζ}; this is a
closed ideal in B.

Lemma 2.3. The closure of c00 in a Banach sequence algebra B on which ∗ is a continuous
involution, is a ∗-ideal of B.

Proof. It is clear that c00 is a ∗-ideal in CN and hence also in B. The closure of c00 in B
will hence also be a ∗-ideal of B.

The following proposition may be found in [5, 4.1.35(i)], however, we give a short
direct proof:

Proposition 2.4. Let B be a Banach sequence algebra in which c00 is dense. Then the
character space of B is {fi|B : i ∈ N}, that is, B is natural.

Proof. Let ϕ be a character on B. Then ϕ(χζ) ∈ {0, 1} for all finite ζ ⊂ N, by multi-
plicativity of ϕ. As ϕ is non-zero, ϕ(em) = 1 for some m ∈ N, and by linearity, since
χ{m,n} = em + en, we must have ϕ(en) = 0 for all n 6= m. Hence ϕ = fm|B .
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Proposition 2.5. Suppose that B is a Banach sequence algebra with a basis. Then:

(i) Any closed ideal in B is of the form IB(ζ) for some ζ ⊆ N, and (χζ∩(0,n])n∈N is an
approximate identity for IB(ζ);

(ii) B has a bounded approximate identity if and only if (χn)n∈N is uniformly norm-
bounded.

Proof. (i) This is a restatement of [5, 4.1.35(ii)] or [13, 1.8.3].
(ii) It is clear that if ‖χk‖ is uniformly bounded for k ∈ N, then the approximate identity
(χn)n∈N is a bounded approximate identity.

Conversely, let (ωλ) be a bounded approximate identity with C := supλ ‖ωλ‖ < ∞,
and suppose for a contradiction that supk ‖χk‖ =∞. Every Banach space with a basis has
a finite basis constant [11, 4.1.17], so we have M := supn ‖Pn‖ <∞. By our assumption
there exists k ∈ N such that ‖χk‖ > MC + 1. As (ωλ) is an approximate identity, there
exists λ such that ‖χk − ωλχk‖ 6 1

2 . So for such a k and λ we have

1
2
> ‖χk − ωλχk‖ > ‖χk‖ − ‖ωλχk‖ = ‖χk‖ − ‖Pkωλ‖

> ‖χk‖ −M ‖ωλ‖ > (MC + 1)−MC = 1

which results in the required contradiction. �

Definition 2.6. Let A be an algebra, and E an A-bimodule. A linear map δ : A→ E is
a derivation if it satisfies δ(ab) = a · δ(b) + δ(a) · b (a, b ∈ A). A derivation δ : A→ E is
inner if there exists an element x ∈ E such that δ(a) = a · x− x · a (a ∈ A).

A Banach algebra B is amenable if every bounded derivation from B into a dual
Banach B-bimodule is inner. A Banach algebra B is weakly amenable if every bounded
derivation from B into the dual module B′ is inner.

Proposition 2.7 ([5, 2.8.72]). Suppose that B is a commutative Banach algebra such
that the span of its idempotents is dense in B. Then B is weakly amenable.

In particular, a Banach sequence algebra in which c00 is dense, is weakly amenable.
For a Banach algebra B with dual module B′, the Arens products are defined as

follows: for a ∈ B, f ∈ B′, and F,G ∈ B′′, we set 〈a, F · f〉 := 〈F, f · a〉 and 〈a, f · F 〉 :=
〈F, a · f〉 where a · f and f · a are the usual dual actions; then 〈F � G, f〉 := 〈F,G · f〉
and 〈F 3G, f〉 := 〈G, f ·F 〉. It is well known that the bidual equipped with either Arens
product,

(
B′′,�

)
or
(
B′′,3

)
, is a Banach algebra—see [5, 2.6.15] or [4, 9.13(v)]. We say

that B is Arens regular if the Arens products coincide.
For B a Banach ∗-algebra we may define the linear involution / on B′ by setting

〈x, f/〉 := 〈x∗, f〉 for all x ∈ B and f ∈ B′. If B is an Arens regular Banach ∗-algebra
then we equip B′′ with the involution F 7→ F ∗ defined by: 〈F ∗, f〉 := 〈F, f/〉 for all
F ∈ B′′ as in [5, 3.1.18].

For a Banach space E with a basis (bn)n∈N, define ‖x‖bip(E) := supm∈N ‖
∑m
n=1 αnbn‖E

for x = (αn)n∈N ∈ CN, and bip(E) :=
{
x ∈ CN : ‖x‖bip(E) < ∞

}
as in [2, 2.4]; then

bip(E) is a Banach space with respect to the norm ‖·‖bip(E). In the case where B is a
Banach sequence algebra in which (en)n∈N is a basis, bip(B) will be a subalgebra of CN,
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and when ∗ is an isometric involution on B, ∗ will be an isometric involution on bip(B)
as well.

Lemma 2.8. Let B be a Banach sequence algebra and suppose that (en)n∈N is a shrinking
basis for B. The isomorphism Υ : B′′ → bip(B) given by Υ(F ) := (〈F, fn〉)n∈N (F ∈ B′′),
previously defined in [2, 2.4], is an algebra homomorphism when B′′ is equipped with
either Arens product, and B is Arens regular. If, additionally, B is a Banach ∗-algebra
with respect to the canonical involution on CN, then Υ is a ∗-homomorphism.

Proof. We have Υ (F �G) = Υ (F ) ·Υ (G) as

〈F �G, fn〉 = 〈F,G · fn〉 = 〈F, 〈G, fn〉fn〉 = 〈F, fn〉〈G, fn〉 (n ∈ N)

and similarly Υ (F 3G) = Υ (F ) ·Υ (G).
In the Banach ∗-algebra case, let x =

∑
i αiei ∈ B, and n ∈ N; then we have 〈x, f/n〉 =

〈x∗, fn〉 = 〈
∑
i αiei, fn〉 = αn = 〈x, fn〉. So f/n = fn for all n ∈ N. Thus we conclude that

Υ(F ∗) = (〈F ∗, fn〉)n∈N = (〈F, f/n〉)n∈N = (〈F, fn〉)n∈N = Υ(F )∗. �

3. The Schreier spaces as Banach algebras. For the remainder of this paper, we
let p ∈ [1,∞), ζ ⊂ N, and x := (αn)n∈N ∈ CN. We recall the following definitions from
[2, Section 3]: a set ζ is admissible if card(ζ) 6 min ζ; the seminorm µp(·, ζ) is given
by µp(x, ζ) := (

∑
n∈ζ |αn|

p)1/p; the norm ‖·‖Zp
is given by ‖x‖Zp

:= sup{µp(x, ζ) :
ζ admissible}; and the two Banach spaces associated with this norm are the unre-
stricted Schreier space, Zp :=

{
x ∈ CN : ‖x‖Zp

< ∞
}

and the Schreier space, Sp :=
span {en : n ∈ N} ⊂ Zp.

As the Schreier space Sp has a normalised unconditional basis, it is a Banach algebra
by Proposition 2.1, and is weakly amenable by Proposition 2.7. A simple calculation gives
‖χn‖Zp

→∞, hence by Proposition 2.5(ii) we have the following:

Corollary 3.1. The Schreier algebra Sp has no bounded approximate identity.

The lack of a bounded approximate identity prevents Sp from being amenable [5,
2.9.57].

Corollary 3.2. The unrestricted Schreier space Zp is a Banach sequence algebra with
isometric involution, and Sp is an ∗-ideal of Zp.

Proof. As Sp is a Banach algebra with isometric involution ∗ and basis (en)n∈N, bip(Sp)
is a Banach algebra and ∗ is an isometric involution on bip(Sp). Lemma 2.3 implies that
Sp is a ∗-ideal in bip(Sp). The result now follows from the fact that bip(Sp) = Zp [2,
3.13].

By Lemma 2.8, as the Schreier space Sp has a monotone shrinking basis [2, 3.5], its
bidual S′′p is Arens regular and is ∗-isomorphic to the Banach ∗-algebra Zp.

4. The James–Schreier spaces as Banach ∗-algebras. We recall the following defi-
nitions from [2, Sections 2 and 4]: a set ζ is permissible if 2 6 card ζ 6 1+min ζ; the semi-
norm νp(·, ζ) is given by νp(x, ζ) :=

(∑k
j=1

∣∣αnj − αnj+1

∣∣p)1/p for ζ = {n1 < · · · < nk+1};
the norm ‖·‖Wp

is given by ‖x‖Wp
:= sup {νp(x, ζ) : ζ permissible}; this is a complete
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norm on both the unrestricted James–Schreier space, Wp :=
{
x ∈ c0 : ‖x‖Wp

<∞
}
, and

the James–Schreier space, Vp := span {en : n ∈ N} ⊂Wp.
We let Xp := bip(Vp) with norm ‖·‖Xp

:= ‖·‖bip(Vp), and recall that Xp = Wp+CχN ∼=
V ′′p [2, 4.15], due to the shrinking basis of Vp (proved in [2, 4.12] in the case p > 1, and
[3] for p = 1). We write ‖·‖Vp

when we consider ‖·‖Wp
restricted to Vp.

Lemma 4.1. The Banach space Xp is a sub-∗-algebra of CN with jointly continuous prod-
uct and isometric involution.

Proof. Making use of a standard inequality given in [2, equation (4.1)], it follows that

|αβ − γδ|p = |αβ − αδ + αδ − γδ|p 6 2p−1
(
|αβ − αδ|p + |αδ − γδ|p

)
= 2p−1

(
|α|p|β − δ|p + |α− γ|p|δ|p

)
for any α, β, γ, δ ∈ C.

Thus for x, y ∈ Wp we have νp (xy, ζ)p 6 2p−1
(
‖x‖p∞ νp (y, ζ)p + ‖y‖p∞ νp (x, ζ)p

)
.

Taking the supremum over all permissible sets ζ, we obtain

‖xy‖pWp
6 2p−1

(
‖x‖p∞ ‖y‖

p
Wp

+ ‖y‖p∞ ‖x‖
p
Wp

)
6 2p ‖x‖pWp

‖y‖pWp
,

as ‖·‖Wp
dominates the supremum norm. So

‖xy‖Wp
6 2 ‖x‖Wp

‖y‖Wp
. (†)

Hence for x, y ∈ Xp, we have

‖xy‖Xp
= sup

n
‖Pn(xy)‖Wp

= sup
n
‖Pn(x)Pn(y)‖Wp

6 2 sup
n

(
‖Pnx‖Wp

‖Pny‖Wp

)
by equation (†)

6 2
(

sup
n
‖Pnx‖Wp

)(
sup
n
‖Pny‖Wp

)
= 2 ‖x‖Xp

‖y‖Xp
.

This shows that the product xy belongs to Xp and is jointly continuous.
The involution ∗ is isometric on Xp, because |α− β| =

∣∣ᾱ− β̄∣∣ for all α, β ∈ C,
so νp (Pnx, ζ) = νp (Pnx∗, ζ) for all permissible subsets ζ of N, and so ‖Pnx∗‖Wp

=
‖Pnx‖Wp

< ∞ for each n ∈ N, and hence finally we have ‖x∗‖Xp
= ‖x‖Xp

< ∞,
therefore x∗ ∈ Xp.

As in Lemma 2.2, let |||x|||Xp
:= sup

{
‖xy‖Xp

: y ∈ Xp, ‖y‖Xp
6 1
}
for x ∈ Xp.

Corollary 4.2. The Banach space Xp is a commutative unital Banach sequence algebra
under the ||| · |||Xp

-norm with isometric involution.

Proof. It has been shown in Lemma 4.1 that Xp is an algebra with norm ‖·‖Xp
and

jointly continuous product, and it is clear that χN is an identity. So by an application of
Lemma 2.2 we see that ||| · |||Xp

is a submultiplicative norm on Xp equivalent to ‖·‖Xp
, and

|||χN|||Xp
= 1. The involution ∗ is isometric as ‖x∗‖Xp

= ‖x‖Xp
, and so |||x∗|||Xp

= |||x|||Xp
.

Corollary 4.3. Wp is a closed ∗-ideal in Xp, and Xp is naturally identified with the
unitisation of Wp.

Proof. Let x ∈ Wp and y ∈ Xp, then xy ∈ c0 and ‖xy‖Wp
< ∞ by equation (†) above,

so xy ∈Wp. It is clear that Wp is closed under the involution.
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By Lemma 2.3, and by the definition of Vp as the closure of c00, we have:

Corollary 4.4. Vp is a closed ∗-ideal in Xp.

By Proposition 2.4, we have:

Corollary 4.5. The character space of Vp is {fi : i ∈ N}, that is, Vp is natural.

By [2, Remark 4.16] the map λ : Xp → C : (αn)n∈N 7→ limn→∞ αn, is a linear
functional; λ is also multiplicative and hence is a character of Xp, and so λ is continuous
and ‖λ‖ = 1. This observation gives an alternative explanation for the boundedness of λ.

Let SB denote the state space of a unital Banach ∗-algebra B.

Corollary 4.6. The Banach ∗-algebras Vp, Wp, and Xp are ∗-semisimple.

Proof. We have

∗ -radVp = ∗ -rad(Vp + CχN) =
⋂{

kerλ : λ ∈ SVp+CχN

}
⊆
⋂
n∈N

ker fn|Vp+Cχn
= {0}

and
∗ -radWp = ∗-rad Xp =

⋂{
kerλ : λ ∈ SXp

}
⊆
⋂
n∈N

ker fn|Xp
= {0} . �

Proposition 4.7. The sequence (χn) is a bounded approximate identity of norm-1 pro-
jections in the Banach ∗-algebra Vp, and is contained in c00.

Proof. We may calculate from the definition that ‖χn‖Wp
= 1 for all n ∈ N.

We note that by a remark following [5, 4.1.34], Proposition 4.7 implies that the Banach
sequence algebra Vp is a strong Ditkin algebra, and spectral synthesis holds.

By an application of Proposition 2.5(i), we have:

Corollary 4.8. The closed ideals of Vp are all of the form IVp
(ζ), for some ζ ⊆ N and

each has an approximate identity.

The statement of the following proposition may be found for the James spaces in [5,
4.1.45 (viii)] or [13, 4.2.3]. With a small alteration to take account of permissibility, these
proofs may be adapted for the James–Schreier algebras. However, here we give a slightly
different presentation that makes use of a calculation in the proof of [2, 4.18(ii)].

For a strictly increasing mapping σ : N→ N, we recall from [2, 4.18 and 4.20] the def-
initions on

(
c00, ‖·‖Vp

)
of: the left shift, Λσ :

∑∞
n=1 αnen 7→

∑∞
n=1 ασ(n)en, which is con-

tractive; the right shift, Rσ :
∑∞
n=1 αnen 7→

∑∞
n=1 αneσ(n), which is bounded if and only if

σ(N) is cofinite in N; and the block right shift, Θσ :
∑∞
n=1 αnen 7→

∑∞
n=1 αnχ(σ(n−1),σ(n)]

(with the convention that σ(0) = 0), which is bounded if and only if there is a constant
K ∈ N such that σ(n) 6 Kn for each n ∈ N. In the bounded case, these shifts extend
uniquely to bounded operators on Vp.

Proposition 4.9. Let σ : N → N be a strictly increasing mapping. Then IVp
(σ(N)) has

a bounded approximate identity if and only if σ(N) is cofinite in N.

Proof. We argue as in Proposition 2.5(ii). If N \ σ(N) is finite then the approximate
identity χσ((0,n]) = Rσχn is bounded, as the right shift Rσ is itself bounded.
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Conversely, aiming towards a contradiction, assume that N \ σ(N) is infinite and that
the ideal IVp

(σ(N)) has a bounded approximate identity (ωn) (necessarily sequential as Vp
is separable), with ‖ωn‖Vp

6 C for some C ∈ N. We recall that, by a previous calculation
in the proof that Rσ is unbounded [2, 4.18(ii)], we have ‖Rσχk‖Vp

→ ∞ as k → ∞,
and hence there exists k such that ‖Rσχk‖Vp

> C + 1. As ωn is a bounded approximate
identity, there exists n ∈ N such that ‖Rσχk − ωnRσχk‖Vp

6 1
2 . Hence

1
2
> ‖Rσχk − ωnRσχk‖Vp

> ‖Rσχk‖Vp
− ‖ωnRσχk‖Vp

= ‖Rσχk‖Vp
−
∥∥Pσ(k)ωn

∥∥
Vp

> ‖Rσχk‖Vp
− ‖ωn‖Vp

> (C + 1)− C = 1,

which is a clear contradiction.

Proposition 4.10. Let σ : N → N be a strictly increasing mapping such that, for some
constant K ∈ N, we have σ(n) 6 Kn for each n ∈ N. Then the closed ideal IVp

(N \ σ(N))
is complemented in Vp.

Proof. For such a mapping σ, the left shift Λσ is a contractive operator and the block
right shift Θσ is a bounded operator on Vp such that ΛσΘσ = IVp

. By [2, 3.18], ΘσΛσ
and hence IVp −ΘσΛσ are idempotent. Thus IVp(N \ σ(N)) = ker(Λσ) = im(IVp −ΘσΛσ)
is a complemented subspace of Vp.

Corollary 4.11. The Banach algebra Vp is weakly amenable but not amenable.

Proof. Proposition 2.7 implies that Vp is weakly amenable. By [5, 2.9.59], for an amenable
Banach algebra B, a closed ideal I is (weakly) complemented in B (if and) only if I has
a bounded approximate identity. Hence by Propositions 4.9 and 4.10, we conclude that
Vp is not amenable, by noting that, in particular IVp

(2N) is a complemented ideal with
no bounded approximate identity.

The proofs above may be paraphrased to say that the James–Schreier algebras are
not amenable because there exist strictly increasing mappings σ : N → N such that Θσ

is bounded but (RN\σ(N)χn)n∈N is not uniformly norm-bounded.
We also note that Vp (and Jp) are sequentially approximately contractible. That Vp

has a bounded sequential approximate identity in c00 implies that it is sequentially ap-
proximately amenable [6, 3.5], and approximate amenability is equivalent to approximate
contractibility by a result of Ghahramani, Loy and Zhang [8].

Proposition 4.12. The Banach ∗-algebras Wp and Vp contain complemented closed ∗-
ideals isomorphic to the Banach ∗-algebras Zp and Sp respectively.

Proof. For x = (αn)n∈N the mapping Φx := (0, α1, 0, α2, 0, α3, . . .) ∈ CN defined in [2,
4.5] preserves pointwise multiplication and the involution. Given that the restrictions of
Φ define isomorphisms from Zp to a subspace of Wp, and from Sp to a subspace of Vp
respectively, then these are evidently ∗-isomorphisms. The image of Zp under Φ is the
complemented ideal Φ(Zp) = IWp

(2N), and similarly, Φ(Sp) = IVp
(2N).

This gives an alternative proof that Vp is not amenable, as Sp ∼= IVp(2N) is a comple-
mented ideal of Vp, and Sp is not amenable.

By Lemma 2.8, as Vp is a Banach ∗-algebra with a shrinking basis, we have:
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Corollary 4.13. The two Arens products on V ′′p (identified with Xp via Γ) coincide
with the product in Xp. Hence Vp is Arens regular, and V ′′p with the Arens product is
∗-isomorphic to Xp.

The multiplier algebra of a commutative faithful Banach algebra B, is given by
M(B) := {T : B → B : aT (b) = T (a)b (a, b ∈ B)}. When B has an isometric involu-
tion ∗, we equip M(B) with an involution T 7→ T / given by T /x := (T (x∗))∗ for all
x ∈ B, as in [5, 1.10.1]. A Banach sequence algebra contains c00 and hence is always
faithful.

Proposition 4.14. The multiplier algebra M(Vp) is ∗-isomorphic to Xp.

Proof. For x ∈ Xp and a ∈ Vp, let Lx(a) := xa; we have xa ∈ Vp as Vp is an ideal of Xp,
and so Lx ∈ M(Vp) by commutativity of Vp. We claim that L : Xp → M(Vp) : x 7→ Lx
is a ∗-isomorphism.

It follows straightforwardly from the definition that L/x(a) = x∗a = Lx∗(a) for all
a ∈ Vp. Continuity of L is automatic by the Banach algebra inequality: for x ∈ Xp we
have ‖L x‖ 6 |||x|||Xp

. To see that L is injective, suppose Lx = 0. Then Lxa = xa = 0
for all a ∈ Vp. In particular, xen = 0 for all n ∈ N, which implies that x = 0.

We finally show surjectivity: suppose T ∈ M(Vp). We have T (ej)ek = T (ej)ekek =
ejT (ek)ek = 0 for all j 6= k. Hence for all k ∈ N, we deduce that T (ek) = αkek for some
αk ∈ C. Let x := (αn)n∈N. We claim that x ∈ Xp and that T = Lx. By linearity of T , we
have χnx = T (χn), and so

‖Pnx‖Vp
= ‖χnx‖Vp

= ‖T (χn)‖Vp
6 ‖T‖ ‖χn‖Vp

= ‖T‖ ,

hence ‖x‖Xp
= supn ‖Pnx‖Vp

< ∞ so x ∈ Xp. It is sufficient to check T = Lx by
evaluation on the basis (en)n∈N of Vp: we have T (ei) = αiei = Lx(ei).

Corollary 4.15. The multiplier algebra M(Wp) is ∗-isomorphic to Xp.

Proof. The proof of Proposition 4.14 may be repeated withWp in the place of Vp to show
that M(Wp) is ∗-isomorphic to Xp—though whereas before in the proof of surjectivity
it sufficed to check that T and Lx agree on each basis vector ei of Vp, now as Wp has
no basis we must show that T (a) = Lx(a) for all a ∈ Wp. We have eiT (a) = T (ei)a =
αieia = xeia = eiLx(a) for all i ∈ N, hence T (a) and Lx(a) agree on every coordinate,
so they are equal.

As Xp is a commutative Banach algebra with identity,M(Xp) ∼= Xp [9]. Furthermore,
as each multiplier T ∈ M(Xp) is given by T = LT (χN), the isomorphism is clearly a
∗-isomorphism as in the proof of Proposition 4.14.

Corollary 4.16. The following five Banach ∗-algebras: Xp; the bidual V ′′p with the Arens
product; and the multiplier algebras M(Vp),M(Wp), and M(Xp); are ∗-isomorphic.

Extending a result in [10], White classified the closed ideals of the James algebra Jp
in [13]. However, in [7] it was shown that there is an uncountable family F of subsets of
N such that the Banach spaces IS1(ζ) and IS1(ξ) do not embed in each other whenever
ζ, ξ ∈ F are distinct. This suggests that a corresponding classification of the closed ideals
for V1 would be difficult.
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