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Abstract. The theory of quasimultipliers in Banach algebras is developed in order to provide
a mechanism for defining the boundary values of analytic semigroups on a sector in the complex
plane. Then, some methods are presented for deriving lower estimates for operators defined in
terms of quasinilpotent semigroups using techniques from the theory of complex analysis.

1. Introduction. We are interested here in the behaviour near the origin of semigroups
which are analytic in a sector Sα = {z ∈ C \ {0} : | arg(z)| < α}, and we wish to define
in some natural sense their “boundary values” on the boundary ∂Sα of Sα. There is
an extensive literature concerning strongly continuous semigroups (T (t))t>0 of bounded
operators on a Banach space, and all the results of the present paper can be formulated in
this framework. We made the choice here to adopt the point of view of Banach algebras,
and consider analytic semigroups in Banach algebras, i.e., analytic maps t 7→ T (t) from
Sα into a Banach algebra A. We will always assume that the subalgebra generated by
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the semigroup is dense in A, and A is not unital if the generator of the semigroup is
unbounded.

Thus, in Section 2, we consider the algebra QM(A) of quasimultipliers and the algebra
QMr(A) of regular quasimultipliers on A defined by the second author in [9]. This general
theory is applied to analytic semigroups in Section 3. In the general case the semigroup
T (t) extends to a group of quasimultipliers on A, and the semigroup (T (t)t∈Sα can be
considered as a strongly continuous semigroup of bounded multipliers on a dense ideal of
A which is a Fréchet A-module. When the semigroup admits exponential growth on the
lines {δ+teiα}t≥0 and {δ+te−iα}t≥0 for some δ > 0, we have (T (t))t∈Sα ⊂ QMr(A), and
(T (t))t∈Sα can be considered as a strongly continuous semigroup of multipliers on a dense
ideal I of A which is a Banach A-module. So for this class of semigroups there exists
a norm decreasing monomorphism θ from A into a Banach algebra B with dense range
such that sup0≤|t|≤1,t∈Sα ‖θ(T (t))‖ < +∞, and the semigroup (θ(T (t))t∈Sα admits an
extension to the multiplier algebraM(B) of B which is strongly continuous on B.Moreover
the generator of (θ(T (t))t∈Sα is unbounded if the generator of the given semigroup is
unbounded.

In Section 4 we use these ideas to obtain lower estimates for the distance between
elements of the given semigroup. Thus, using the classical Ahlfors–Heins theorem [5, pp.
115–116], we apply these results to show that if (T (t))t∈C+ is a quasinilpotent semi-
group on the open half plane, and if there exists δ > 0, µ > 0 and λ > 0 such that
supn∈Z λ

|n|‖T (δ + inµ)‖ < +∞, then we have, for every y ≥ 0 and every h > 0,

max
ν=±1

lim inf
ε→0+

‖T (iνy + ε)− T (iν(y + h) + ε)‖ ≥ 2.

Some very general results for the non-quasinilpotent case may be found in [3].
We conclude this section with a review of the general theory of Fréchet spaces and their

operators. Let V be a (complex) linear space equipped with a nondecreasing sequence
(‖.‖n)n≥1 of seminorms, with

⋂
n≥1 ker ‖.‖n = {0}. The topology associated with this

sequence of seminorms is the topology defined by the distance

(x, y) 7→ d(x, y) :=
+∞∑
n=1

inf(1, ‖x− y‖n)
2n

.

A sequence (xm)m≥1 converges to x ∈ V if and only if limm→+∞ d(x, xm) = 0, or,
equivalently, if and only if limn→+∞ ‖x−xm‖n = 0 for every n ≥ 1. Similarly a sequence
(xm)m≥1 of elements of V is a Cauchy sequence if and only if it is a Cauchy sequence
with respect to the distance d, or, equivalently, if it is a Cauchy sequence with respect
to the seminorm ‖.‖n for every n ≥ 1. The space (F, ‖.‖n)n≥1 is called a Fréchet space
when every Cauchy sequence of elements of F is convergent.

Now suppose that (V, (‖.‖n)n≥1 is a Fréchet space. A set D ⊂ V is said to be bounded
if supx∈D ‖x‖n < +∞ for every n ≥ 1 (or, equivalently, if and only if for every neighbour-
hood U of the origin in V there exists λU > 0 such that λUD ⊂ U). A linear operator
R : V → V is said to be bounded if R(D) is bounded for every bounded subset D of V,
and it follows from a standard elementary result that a linear operator T : V → V is
continuous with respect to the topology of V if and only if T is bounded.
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Denote by B(V ) the algebra of bounded linear operators R : V → V. A subset
∆ of B(V ) is said to be bounded if

⋃
R∈∆R(D) is bounded for every bounded subset

D of V. A sequence (Rm)m≥1 of elements of B(V ) is said to be Mackey-convergent to
R ∈ B(V ) if and only if there exists a sequence (λm)m≥1 of positive real numbers such
that limm→+∞ λm = +∞ and such that the set {λm(R−Rm)}m≥1 is bounded. When X
is a Banach space, a subset ∆ of B(X ) is bounded if and only if supR∈∆ ‖R‖ < +∞, where
‖R‖ = sup‖x‖≤1 ‖Rx‖ is the usual norm on B(X ), and a sequence (Rm)m≥1 of elements of
B(X ) converges toR ∈ B(X ) in the sense of Mackey if and only if limm→+∞ ‖R−Rm‖ = 0.

Let Ω be an open subset of C, and let V be a Fréchet space. A map φ : Ω→ V is said
to be analytic if for every a ∈ Ω there exists r > 0 and a sequence (αn)n≥0 of elements
of V such that φ(z) =

∑+∞
n=0(z − a)nαn for z ∈ D(a, r) := {z ∈ C : |z − a| < r}, and

a map ψ : Ω → B(V ) is said to be analytic if for every a ∈ Ω there exists ρ > 0 and a
sequence (Rn)n≥0 of elements of B(V ) such that ψ(z) =

∑+∞
n=0(z−a)nRn for z ∈ D(a, ρ),

the series being convergent in the sense of Mackey. A routine verification shows that if
ψ : Ω→ B(V ) is analytic, then the map z → ψ(z)x is analytic for every x ∈ V.

Now let V1 and V2 be two Fréchet spaces, and let W be a linear subspace of B(V1). A
linear map θ : W → B(V2) is said to be bounded if θ(∆) is a bounded subset of B(V2) for
every subset ∆ of W which is bounded in B(V1). Notice that if ψ : Ω → W is analytic,
and if a linear map θ : W → B(V2) is bounded, then θ ◦ ψ : Ω→ B(V2) is analytic.

2. Normalization of analytic semigroups, and quasimultipliers. If A is a com-
mutative Banach algebra, let A⊥ = {x ∈ A : xy = 0 ∀y ∈ A}. We begin with an easy
observation. We will say that a semigroup (T (t))t>0 in a Banach algebra is normalized
if A⊥T = {0}, where AT denotes the closed subalgebra generated by the semigroup. The
following proposition allows us to “normalize” semigroups.

Proposition 2.1. Let (T (t))t>0 be a semigroup in a Banach algebra, and let AT be the
closed algebra generated by the semigroup. Then

[
AT /A⊥T

]⊥ = {0}, and AT /A⊥T is not
unital if AT is not unital.

Proof. Let π : AT → AT /A⊥T be the canonical surjection, let u ∈
[
AT /A⊥T

]⊥ and let
x ∈ AT such that π(x) = u. Let t > 0. We have π(T (t/2))u = 0, so T (t/2)x ∈ A⊥T and
T (t)x = 0. Since AT is the closed algebra generated by the semigroup (T (t))t>0 we have
x ∈ A⊥T , and u = π(x) = 0. Now assume that AT /A⊥T is unital, denote by P its unit
element, and let J ∈ π−1(P ). We have x − Jx ∈ A⊥T for every x ∈ AT . In particular
T (t)− T (t)J = T (t/2)(T (t/2)− T (t/2)J) = 0 for every t > 0, and so AT admits J as its
unit element (which implies that A⊥T = 0). So the quotient algebra AT /A⊥T is not unital
if AT is not unital.

We will say that a semigroup (T (t))t>0 of bounded operators in a Banach algebra is
norm continuous if limh→0 ‖T (t+h)−T (t)‖ = 0 for every t > 0. If the closed subalgebra
AT generated by such a semigroup has a unit element I, then the ideal

⋃
t>0 T (t)AT ,

which is dense in AT , must equal AT and limt→0+ ‖I−T (t)‖ = 0. Hence there exists u ∈
AT such that T (t) = etu. In other terms the generator of a norm-continuous semigroup
(T (t))t>0 is bounded if the algebra AT is unital.
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Recall that if (T (t))t>0 is a strongly continuous semigroup of bounded operators on a
Banach space X , the infinitesimal generator ∆ : D∆ → X of the semigroup is the linear
operator defined for u ∈ D∆ by the formula

∆(u) = lim
t→0+

T (t)u− u
t

,

where we denote by D∆ the set of all x ∈ X for which the quotient T (t)x−x
t has a limit

as t→ 0+. If the map t→ T (t) is differentiable with respect to the norm of B(X ), then
T (t)X ⊂ D∆ and we have, for every t > 0,

T ′(t) = ∆T (t) ∈ B(X ).

Recall also a standard procedure due to Feller [10]. Given a strongly continuous semi-
group (T (t))t>0 of bounded operators on a Banach space X and an ε > 0 there is a
Banach space Y and a bounded map θ : R → B(Y), where

R := {S ∈ B(X ) : ST (t) = T (t)S ∀t > 0},

which possesses the following properties:

1. ‖θ(S)‖ ≤ ‖S‖ ∀ S ∈ R,
2. ‖θ(T (t))‖ ≤ e(ρ(T (1))+ε)t ∀t > 0,
3. the generator of (θ(T (t)))t>0 is unbounded if the generator of (T (t))t>0 is un-

bounded.

In this construction Y is the space of all y ∈ X for which T (t)x has a limit in (X , ‖.‖)
as t→ 0+, which is a Banach space with respect to the norm

y 7→ ‖y‖ := sup
t>0
‖e−νtT (t)y‖,

where ν = ρ(T (1)) + ε; also S(Y) ⊂ Y for every S ∈ R, and θ is the restriction map
S → S|Y . This idea was used by the second author in [9] to construct, for any non-unital
commutative Banach algebra having a norm continuous semigroup (T (t))t>0 generating a
dense ideal, a norm-decreasing homomorphism with dense range in another commutative
Banach algebra for which the multiplier algebra has a very rich set of characters. We
now apply these methods to Banach algebras generated by semigroups analytic on the
half-line or on open sectors.

Definition 2.2. Let A be a commutative Banach algebra having dense principal ideals
such that A⊥ = {0}. Set Ω(A) := {x ∈ A : [xA]− = A}. A quasimultiplier on A is a
fraction a/b, where a ∈ A and b ∈ Ω(A), and the set of quasimultipliers on A is denoted
by QM(A). If u = a/b is a quasimultiplier on A, we define the domain Du of u by

Du := {x ∈ A : ux ∈ A}.

A set U ⊂ QM(A) is said to be pseudobounded if there exists x ∈ Ω(A) ∩
[⋂

u∈U Du
]

such that supu∈U ‖xu‖ < +∞.

We identify as usual a/b with a′/b′ when ab′ − ba′ = 0. Since Ω(A) is stable under
multiplication, QM(A) is an algebra with respect to the usual operations on fractions,
and a finite union of pseudobounded sets is pseudobounded. Also the map (λ, x) 7→ λx

is a bounded map from C × QM(A) into QM(A), and the maps (x, y) 7→ x + y and
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(x, y) 7→ xy are bounded maps from QM(A)×QM(A) into QM(A), which means that
QM(A) is a “bornological algebra”. We denote by I the unit element of QM(A). We now
introduce an important subalgebra of QM(A).

Definition 2.3. Let A be a commutative Banach algebra having dense principal ideals
such that A⊥ = {0}. A quasimultiplier r on A is said to be regular if there exists λ > 0
such that the set {λnrn}n≥1 is pseudobounded in QM(A), and the set of regular quasi-
multipliers on A is denoted by QMr(A). A set V ⊂ QMr(A) is said to be multiplicatively
pseudobounded (or m-pseudobounded) if there exists a pseudobounded set U in A which
is stable under products and ε > 0 such that εV ⊂ U.

Routine verifications show that QMr(A) is indeed an algebra, that the map (λ, x) 7→
λx is a bounded map from C×QMr(A) into QMr(A), and that the maps (x, y) 7→ x+ y

and (x, y) 7→ xy are bounded maps from QMr(A)×QMr(A) into QMr(A), which means
that QMr(A) is also a “bornological algebra”. Now set

M(A) := {R ∈ B(A) : Rax = aRx ∀a, x ∈ A},

and fix u ∈ Ω(A). The map θ : R→ Ru/u is clearly an injective bounded homomorphism
from M(A) into QMr(A). In the sequel we will identify M(A) with θ(M(A)), and we set
‖R‖M(A) = supa∈A\{0}

‖Ra‖
‖a‖ . Part of the following result, based on Feller’s method, was

proved in [9, p. 119].

Lemma 2.4. Let A be a commutative Banach algebra having dense principal ideals such
that A⊥ = {0}, and let V be a pseudobounded set in QM(A). Set

J = {x ∈ A | xV ⊂ A, and ‖x‖J := sup
v∈V ∪{I}

‖xv‖ < +∞}.

Then J is a dense ideal of A which is also a Banach A-module with respect to the norm
‖.‖J , and Ω(A) ∩ J 6= ∅. Moreover, ux ∈ J for every u ∈M(A), and we have

1. ‖x‖J ≥ ‖x‖ ∀x ∈ A.
2. ‖ax‖J ≤ ‖a‖‖x‖J ∀a ∈ A, ∀x ∈ J.
3. ‖ux‖J ≤ ‖u‖M(A)‖x‖J ∀u ∈M(A), ∀x ∈ J.

Also, if we denote by J0 the closure of span{ax}a∈A,x∈J in (J, ‖.‖J), then J0 is dense in
A, Ω(A) ∩ J 6= ∅, x2 ∈ J0, and x2J0 is dense in (J0, ‖.‖J) for every x ∈ Ω(A) ∩ J.

Further, if V is stable under products, then vJ ⊂ J, vJ0 ⊂ J0 for v ∈ V, and we have

‖vx‖J ≤ ‖x‖J ∀v ∈ V, ∀x ∈ J.

Proof. This lemma is proved in [9] for pseudobounded sets stable under products, but we
give a proof for the sake of completeness. It is clear that J is an ideal of A, and that 1. and
2. hold. Now let u ∈M(A), let x ∈ J, and let v ∈ V ∪ {I}. We have (ux)v = u(xv) ∈ A,
and ‖(ux)v‖ = ‖u(xv)‖ ≤ ‖u‖M(A)‖xv‖, which shows that ux ∈ J and ‖ux‖J ≤ ‖u‖‖x‖J .

Let (xn)n≥0 be a Cauchy sequence in (J, ‖.‖J). Then (xn)n≥0 is a Cauchy sequence
in A, and so there exists x ∈ A such that limn→+∞ ‖x − xn‖ = 0. Let ε > 0, and let
N ≥ 1 such that ‖xp − xq‖J < ε

2 for p ≥ N, q ≥ N . Fix p ≥ N, and let v ∈ V ∪ {1}. We
have ‖(x − xp)v‖ = limq→+∞ ‖(xp − xq)v‖ ≤ lim supq→+∞ ‖xp − xq‖J ≤ ε

2 < ε, and so
limp→∞ ‖x− xp‖J = 0, so that (J, ‖.‖J) is a Banach space.
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It follows from the definition of pseudobounded sets that Ω(A) ∩ J 6= ∅. Let x ∈
Ω(A) ∩ J. Then x2 ∈ J0 ∩ Ω(A), so that J0 is dense in A. Now let a ∈ A, and let y ∈ J.
There exists a sequence (un)n≥1 of elements of A such that limn→+∞ ‖a − x2un‖ = 0.
Since ‖ay − x2uny‖J ≤ ‖a − x2un‖‖y‖J , we have limn→+∞ ‖ay − x2uny‖J = 0, which
shows that x2J0 is dense in (J0, ‖.‖J).

Now assume that V is stable under products, and let v ∈ V. If x ∈ J, then vxV =
xvV ⊂ xV ⊂ A, so that vx ∈ J, and we have

‖vx‖J = sup
w∈V
‖vxw‖ = sup

w∈V
‖xvw‖ ≤ sup

w∈V
‖xw‖ = ‖x‖J .

If a ∈ A, y ∈ J, v ∈ V, then vay = avy ∈ J0. Since span{ay}a∈A,y∈V is dense in
(J0, ‖.‖J), we have vJ0 ⊂ J0 for every v ∈ V.

Notice that the ideal J above is also a Banach algebra with respect to the norm ‖.‖J .
An easy example given in [9, p. 137] shows that we may have Ω(J) = ∅ if an ideal J of
a commutative Banach algebra A is complete with respect to a norm ‖.‖J satisfying 1.
and 2. even if J ∩ Ω(A) 6= ∅, so that J0 may be strictly contained in J.

The algebra QMr(A) is a “pseudo-Banach algebra" in the sense of Allan, Dales and
McClure [1], which means that it is the inductive limit of a family of Banach algebras.
To see this denote by V the set of all pseudobounded subsets of QM(A) which are stable
under products and contain the unit element I of QM(A). For V1, . . . , Vk in V denote
by V1 . . . Vk the set of all products of the form x = x1x2 . . . xk, where xj ∈ VJ for
1 ≤ j ≤ k. Then V1 . . . Vk is a pseudobounded set containing

⋃
1≤j≤k Vj which is stable

under products, and we see that the family V forms an inductive set with respect to
inclusion. Denote by J0(V ) the ideal J0 of A associated with V ∈ V as in Lemma 2.4, and
set ‖u‖op,V = supx∈J0(V )\{0}

‖ux‖J
‖x‖J for u ∈ M(J0), where the multiplier algebra M(J0)

is identified with the set {u ∈ QMr(A) : uJ0 ⊂ J0}. We obtain the following description
of QMr(A) as a pseudo-Banach algebra (which seems somewhat more natural than the
description proposed in [9]).

Proposition 2.5. Let A be a commutative Banach algebra having dense principal ideals
such that A⊥ = {0}. Then we have, with respect to inclusion

QMr(A) = lim
−→
V
M(J0(V )).

More precisely, QMr(A) =
⋃
V ∈VM(J0(V )), and a subset U of QMr(A) is m-pseudo-

bounded if and only if there exists V in V such that U ⊂M(J0(V )) and supu∈U ‖u‖op,V

< +∞.

In fact the algebras M(J0(V )) can also be identified with the multiplier algebras
M(AV ), where we denote by AV the closure of J0 in M(J0) with respect to the norm
‖.‖op,J0 . The algebra

⋃
V ∈V AV is the Mackey closure of A in QMr(A), i.e., the set

of all b ∈ QMr(A) for which there exists a sequence (an)n≥1 of elements of A and a
sequence λn of positive real numbers, with limn→+∞ λn = +∞, such that the sequence
(λn(a − an))n≥1 is m-pseudobounded. The character space ̂QMr(A) of QMr(A), which
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is compact, satisfies
̂QMr(A) = lim

←−
V

( ̂M(J0(V )), φV,W ),

where φV,W (χ) = φ|M(J0(V )) for V,W ∈ V, V ⊂W,φ ∈ ̂M(J0(W )).

One of the main results of [9] is that ̂QMr(A) is very rich if A contains a norm-
continuous semigroup (T (t))t>0 such that

⋃
t>0 T (t)A is dense in A: in this situation

there exists a surjective continuous mapping

ψ : Ĥ∞(D)→ ̂QMr(A),

where H∞(D) is the algebra of bounded holomorphic functions on the open unit disc D.
We conclude this section with an elementary but useful observation, to be used later

on, which is not contained in [9].

Proposition 2.6. Let A be a commutative Banach algebra such that Ω(A) 6= ∅ and such
that A⊥ = {0}, and let (ep)p≥1 be a sequence of elements of A with limp→+∞ ‖x−xep‖ = 0
for some x ∈ Ω(A). Set

H = {u ∈ QM(A) : uep ∈ A ∀p ≥ 1, and ‖u‖H := sup
p≥1
‖uep‖ < +∞},

and denote by H0 the closure of span{au}a∈A,u∈H in (H, ‖.‖H).
Then H ⊂ M(A), and H0 ⊂ A. Also limp→+∞ ‖uepa − ua‖ = 0 for every a ∈ A if

u ∈ H, and limp→+∞ ‖uep − u‖ = 0 if u ∈ H0.

Proof. Let u ∈ H, and let a ∈ A and b ∈ Ω(A) such that u = a/b. The sequence (uep)p≥1

is bounded, and

lim
p→+∞

‖uepxby − axy‖ = lim
p→+∞

‖ay(xep − x)‖ = 0

for every y ∈ A. Since the sequence (uep)p≥1 is bounded, and since xbA is dense in
A, this shows that the sequence (uepv)p≥1 has a limit φ(v) in A for every v ∈ A, and
φ(yv) = yφ(v) for every y ∈ A. We have bxφ(v) = φ(xbv) = axv, so that bφ(v) = av.

Hence uv = φ(v) ∈ A for every v ∈ A, and H ⊂M(A).
If a ∈ A, y ∈ H, then limp→+∞ ‖ayep − ay‖ = 0. Hence limp→+∞ ‖vep − v‖ = 0 for

every v ∈ span{ay}a∈A,y∈H .
Now let u be an element of the closure of span{ay}a∈A,y∈H in (H, ‖.‖H). We have,

for v ∈ span{ay}a∈A,y∈H in (H, ‖.‖H),

‖uep − ueq‖ ≤ 2‖u− v‖H + ‖vep − veq‖.

It follows from this inequality that the sequence (uep)p≥1 is a Cauchy sequence in A.
Since limp→+∞ ‖auep−au‖=0 for every a ∈ A, we see that in fact limp→+∞ ‖uep−u‖=0,
and so u ∈ A.

3. Boundary values of sectorial semigroups. We now consider a normalized ana-
lytic semigroup (T (t))t>0 in a Banach algebra A, and we assume that the algebra gen-
erated by the semigroup is dense in A and that the generator ∆ of the semigroup is
unbounded, which is equivalent to the fact that A is not unital. It follows from the ana-
lyticity of the semigroup that T (t) ∈ Ω(A) for t > 0, and so ∆ = T ′(t)/T (t) ∈ QM(A).
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The formula

T (0) = I, and T (−t) = 1/T (t) for t > 0

defines an extension of the semigroup to a group T (t)t∈R of quasimultipliers. Set L =⋂
t>0 T (t)A, and set ‖u‖n = max0≤m≤n‖u/T (n)‖ for u ∈ L, n ≥ 0. Then (L, ‖.‖n)n≥0 is

a Fréchet space and an ideal of A, and we have, for a ∈ A, u ∈ L, n ≥ 0,

‖au‖n ≤ ‖a‖‖u‖n.

A routine verification shows that (T (t))t∈R is a group of bounded operators on this
Fréchet space. The interest of this observation is limited, since the quasimultipliers T (−t)
cannot be regular for t > 0, for otherwise there would be a Banach algebra B ⊂ QM(A)
similar to A in the sense of [9] in which the generator of the semigroup would be bounded,
which would force B, and hence A, to be unital. A similar argument shows that the
quasimultiplier ∆ is not regular, and so the map t 7→ T (t), mapping R → B(L), is not
analytic at t for any t ≤ 0.

Remark 3.1. Ω(AT ) ∩
⋂
t>0 T (t)AT , is dense in Ω(A). In particular there exists x ∈

Ω(AT ) such that the map z → T (z)x admits an analytic extension to C.

Proof. We know that Ω(A) is a dense Gδ-set, i.e., a countable intersection of dense open
subsets of AT . So the relative topology on Ω(AT ) can be defined by a distance d on
Ω(AT ) with respect to which Ω(AT ) is a complete metric space. Since T (t) ∈ Ω(AT ), for
every t ∈ Sα, we see that T (1)Ω is dense in Ω(AT ), and it follows from the Mittag-Leffler
theorem on inverse limits [8] that

⋂
t>0 T (t)AT =

⋂
n≥1 T (1)nΩ(AT ) is dense in Ω(AT ).

Let x ∈ Ω(A)∩
⋂
t>0 T (t)AT , and set F (z) = T (z)x for z ∈ C. Let a ∈ C. Since there

exists m ≥ 1 such that a+m ∈ Sα, we have F (n)(a) = ∆nT (a)x for n ≥ 0, and

lim
n→+∞

∥∥∥∥T (z)x−
n∑
p=0

(z − a)p

p!
T (a)∆p(x)

∥∥∥∥ = 0

for every z ∈ C. In other words the map z → T (z) is an analytic map in the sense of
Mackey from C into QM(AT ) with respect to the family of pseudobounded sets.

We shall see later that lim supn→∞ ‖T (−nδ)x‖ 1
n = +∞ for every n ≥ 0 and every

x ∈ Ω(A)∩
⋂
t>0 T (t)AT , and that lim supn→+∞ ‖∆nx‖ 1

n = +∞ for every x ∈ Dom(∆n)∩
Ω(AT ). Notice that this is not true if we consider AT \ {0} instead of Ω(AT ): set T (t)(u)
= ut for u ∈ [0, 1], t ∈ Sπ

2
. Then (T (t))t∈Sπ

2
is an analytic semigroup in C0([0, 1]) :=

{f ∈ C([0, 1]) : f(0) = 0}.
Now fix δ ∈ [0, 1), and set Iδ := {f ∈ C0([0, 1]) : f(u) = 0 ∀u ∈ [0, δ]}. Denote

by ∆ the infinitesimal generator of the semigroup, so that ∆(f)(u) = log(u)f(u) for
f ∈ C0([0, 1]). We have, for every δ > 0 and every f ∈ Iδ,

lim sup
n→∞

‖T (−nδ)x‖ 1
n < +∞ and lim sup

n→+∞
‖∆nx‖ 1

n < +∞,

which just means that the generator of the restriction of the semigroup to Iδ is bounded.
We consider now a semigroup (T (t))t∈Sα of bounded operators on a Banach space

X , which is analytic on the open sector. We will denote by AT the closed subalgebra
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generated by the semigroup. We will assume that
⋃
t>0 T (t)X is dense in X (if this is not

the case replace X by Y =
[⋃

t>0 T (t)X
]−).

In this context we may mention the Kato–Neuberger theorem [13] (see also [4]), to the
effect that if for a semigroup (T (t))t>0 in a unital algebra with unit I there are ε, δ > 0
such that ‖T (t)− I‖ ≤ 2− ε for 0 < t < δ, then the semigroup is analytic in some sector.

For a ∈ C and r > 0 we set

D(a, r) = {z ∈ C : |z − a| < r} and D+(a, r) = {z ∈ D(a, r) : Re z > Re a}.
Remark 3.2. Analytic semigroups bounded near the origin can be extended to the closed
sector. Assume that there exists r > 0 such that

sup
t∈D(0,r)∩Sα

‖T (t)‖ < +∞.

Then lim t→w
t∈Sα

T (t)x exists for every x ∈ X and every w ∈ ∂Sα. Moreover if we set

T (w) = lim
t→w
t∈Sα

T (t)x,

then (T (t))t∈Sα is a semigroup of bounded operators which is continuous with respect to
the strong operator topology. For we have lim t→w

t∈Sα
T (t)T (t0)x = T (t0)x for every t0 > 0

and every x ∈ X . Now the result follows immediately from the fact that
⋃
t>0 T (t)X is

dense in X , given that supz∈D(0,r)∩Sα ‖T (t)‖ < +∞.
Now consider a normalized semigroup (T (t))t∈Sα in a Banach algebra A, with un-

bounded generator, and assume that the algebra generated by the semigroup is dense in
A, so that A is not unital. It follows again from the analyticity of the semigroup that
T (t)A is dense in A for every t ∈ Sα. For every z ∈ C there exists a positive integer p
such that p+z ∈ Sα, and so T (z) can be defined as a quasimultiplier on A by the formula

T (z) =
T (p+ z)
T (p)

.

Then (T (z))z∈C is a group of elements of QM(A), and T (z) is a bounded operator on
the Fréchet space L =

⋂
t>0 T (t)A for z ∈ C. Again, the interest of this formal extension

seems rather limited. We propose first another construction of a larger Fréchet space
K containing

⋂
t>0 T (t)A for which the semigroup has “boundary values” on ∂Sα with

respect to the strong operator topology on K, but for which T (t) is not invertible in B(K)
for t ∈ Sα.

For α ∈ (0, π2 ] and n ≥ 1, let Sα,n = {z ∈ Sα : |z| ≤ n}.
Proposition 3.3. Let (T (t))t∈Sα be a normalized analytic semigroup in a Banach alge-
bra, so that the closed subalgebra A := AT generated by the semigroup satisfies A⊥ = {0}.
For n ≥ 1, set

Jn := {x ∈ A : sup
t∈Sα,n

‖T (t)x‖ < +∞},

set ‖x‖n = max(‖x‖, supt∈Sα,n ‖T (t)x‖) for x ∈ Jn, and denote by J0,n the closure of
T (1)Jn in (Jn, ‖.‖n).

(i) The ideal J0 :=
⋂
n≥1 J0,n, which contains

⋃
t∈Sα T (t)A, is a Fréchet space with

respect to the family (‖.‖n)n≥1, T (t)J0 is dense in (J0, (‖.‖n)n≥1) for every t ∈ Sα,
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ux ∈ J0 for every x ∈ J0 and every u ∈ M(A), and if we set ũ(x) = ux for x ∈ J0,

u ∈M(A), then the map u 7→ ũ is a bounded linear map from M(A) into B(J0).
(ii) We have T (ζ)J0 ⊂ J0 for every ζ ∈ ∂Sα and if we set T̃ (t)(x) = T (t)x for x ∈ J0,

t ∈ Sα, then (T̃ (t))t∈Sα is a strongly continuous semigroup of bounded operators on J0

(and (T̃ (t))t∈Sα is an analytic semigroup of bounded operators on J0).

Proof. Since T (1)Jn is dense in span{ay}a∈A,y∈Jn with respect to the norm ‖.‖n, the ide-
als Jn and J0,n and the norm ‖.‖n are the ideals and the norm associated with the pseu-
dobounded set {T (t)}t∈Sα,n in Lemma 2.4. So it follows from Lemma 2.4 that (J0,n, ‖.‖n)
is an ideal of A and a Banach A-module for every n ≥ 1, and so J0, which is an ideal of
A, is a Fréchet space with respect to the family (‖.‖n)n≥1.

Let x ∈ J0 ∩ Ω(A). It follows from Lemma 2.4 that x2J0,n ⊂ J0,n, and that x2J0,n is
dense in (J0,n, ‖.‖n) for n ≥ 1. Also x2 ∈ J0.

Now let u ∈ J0. There exists for each n ≥ 1 some vn ∈ J0,n such that ‖u−x4vn‖n ≤ 1
n .

Set wn = x2vn. Then wn ∈ J0, and limn→+∞ ‖u − x2wn‖p = 0 for every p ≥ 1, which
shows that x2J0 is dense in (J0, (‖.‖n)n≥1). In particular T (t) = T (t/2)2 ∈ J0, and
T (t)J0 is dense in (J0, (‖.‖n)n≥1) for every t ∈ Sα. It follows also from Lemma 2.4 that
uJ0,n ⊂ J0,n for every u ∈ M(A), and that ‖ux‖n ≤ ‖u‖M(A)‖x‖n for every x ∈ J0,n.

Hence uJ0 ⊂ J0 for u ∈ M(A), and a trivial verification shows that the map u 7→ ũ is
a bounded map from M(A) into B(J0). Since the map u 7→ ũ is a bounded map from
M(A) into B(J0), the semigroup (T (t))t∈Sα is analytic in B(J0).

Let ζ ∈ Sα,n, let n ≥ 1, let p ≥ |ζ| and let x ∈ J2n. Since t + ζ ∈ Sα,n+p for every
t ∈ Sα,n, we have T (t)T (ζ)x ∈ A for every t ∈ Sα,n and

sup
t∈Sα,n

‖T (t)T (ζ)x‖ ≤ sup
s∈Sα,2n

‖T (s)x‖ ≤ ‖x‖2n. (1)

Applying Proposition 2.6 to T (ζ)x and to the sequence (T ( 1
p ))p≥1 we see that T (ζ)x ∈

M(A) for ζ ∈ Sα,n, x ∈ J2n, that T (ζ)x ∈ J0,n for ζ ∈ Sα,n, x ∈ J0,2n, and that
T (ζ) : J0,2n → J0,n is contractive. Hence T (ζ)(J0) ⊂ J0 and T̃ (ζ) ∈ B(J0) for every
ζ ∈ Sα.

The map t → T (t)T (1)x is clearly a continuous map from Sα into J0,2n for every
x ∈ J2n. Since T (1)J2n is dense in (J0,2n, ‖.‖n), it follows from (1) that the map t→ T (t)x
is a continuous map from Sα,n into (J0,n, ‖.‖n) for every x ∈ J0,2n and every n ≥ 1. Hence
(T̃ (t))t∈Sα,n is strongly continuous on J0.

The next proposition links various properties of the semigroup and its boundary
values. From now we shall identify T̃ (t) with T (t) for simplicity of notation.

Proposition 3.4. Let T (t)t∈Sα be a normalized analytic semigroup. Consider the fol-
lowing properties of the semigroup.

1. There exist λ > 0 and δ > 0 such that {λnT (nδeiα) : n ≥ 0} is bounded in B(J0);
2. there exist λ > 0 and δ > 0 such that {λnT (nδeiα + η) : n ≥ 0} is bounded in A for

all η ∈ Sα;
3. there exists µ ∈ R such that for all η ∈ Sα, one has

sup
t>0

eµt‖T (η + teiα)‖ <∞;
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4. there exists δ > 0 such that T (δeiα) is in QMr(A);
5. there exists µ ∈ R such that {eµtT (teiα) : t > 0} is pseudobounded.

Then 1.⇒ 2.⇔ 3.⇒ 4.⇔ 5.

Proof. 1. ⇒ 2.: this follows immediately from the fact that T (η) = T (η/2)2 ∈ J0 for
every η ∈ Sα.
2. ⇒ 3.: given η ∈ Sα, write η = η0 + seiα, where η0 > 0 and s ∈ R. For t sufficiently
large, one can write

η + teiα = (η0/2 + nδeiα) + (η0/2 + (s+ t− nδ)eiα),

with (s+ t− nδ) ∈ [0, δ]. Then

‖T (η + teiα)‖A ≤ C1λ
−n × C2,

for constants C1, C2 > 0. The existence of the constant C1 follows from Condition 2., and
that of C2 from the compactness of [0, δ] and the analyticity of the semigroup. Noting
that n is asymptotic to t/δ and so λ−n is bounded by a constant times e−t(log λ)/δ, we
deduce 3, taking µ = (log λ)/δ.
3.⇒ 2.: this is immediate, as indeed one can take any δ > 0, and then, for every η ∈ Sα,

sup
n≥1

enµδ‖T (nδeiα + η)‖A <∞.

2. ⇒ 4.: take x = T (η) for η ∈ Sα, and note that x ∈ Ω(A) ∩
[⋂

u∈U Du
]
, where

U = {λnT (nδeiα) : n ≥ 1}. With this choice we see immediately that T (δeiα) is in
QMr(A).
4.⇒ 5.: by the definition of QMr(A) there exist λ > 0 and x ∈ Ω(A) such that

sup
n≥1
‖λnT (nδeiα)x‖A <∞.

By compactness, we have
sup

0≤t≤δ
‖T (teiα + η)‖A <∞.

Hence, we get
sup

n≥1,0≤t≤δ
‖λnT ((nδ + t)eiα)T (η)x‖A <∞.

Since T (η)x ∈ Ω(A), we obtain 5., taking µ = (log λ)/δ as in the proof of 2.⇒ 3.
5.⇒ 4.: this is immediate.

Suppose now that there exist µ1, µ2 ∈ R such that V1 := {e−µ1tT (teiα) : t > 0}
and V2 := {e−µ2tT (te−iα) : t > 0} are pseudobounded. Set V0 = {e−µ0T (t)}t>0, where
µ0 > log(ρ(T (1)), so that V0 is pseudobounded. Then, take V = V1∪V2∪V1V2, W = V if
α < π

2 , and set W = V0 ∪V ∪V0V if α = π
2 . Note that V and W are pseudobounded and

stable under products. We can construct the ideal J0 associated to W as in Lemma 2.4.
Then the regular quasimultipliers T (t) become multipliers on J0 for t ∈ ∂Sα, and

‖T (reiα)‖M(J0) ≤ eµ1r and ‖T (re−iα)‖M(J0) ≤ eµ2r,

for r > 0. Since any t ∈ Sα can be written in the form t = r1e
iα + r2e

−iα, with r1 > 0
and r2 > 0, we see that if α < π

2 then there exists ν > 0 such that ‖T (t)‖M(J0) ≤ eν Re(t)

for every t ∈ Sα. Similarly if α = π
2 we have ‖T (t)‖M(J0) ≤ eµ0 Re(t)+µ1 Im(t) if Im(t) ≥ 0,
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and ‖T (t)‖M(J0) ≤ eµ0 Re(t)−µ2 Im(t) if Im(t) ≤ 0. We obtain in particular the following
result.

Proposition 3.5. Let α ∈ (0, π2 ], and let (T (t))t∈Sα be an analytic semigroup with un-
bounded generator. Assume that there exists δ > 0 and η > 0 such that

lim sup
n→∞

‖T (η + nδeiα)‖ 1
n < +∞ and lim sup

n→∞
‖T (η + nδe−iα)‖ 1

n < +∞.

Then there exists ν > 0, a commutative Banach algebra B and a contractive homomor-
phism θ : AT → B satisfying the following properties:

(i) ‖θ(T (t))‖ ≤ eν|t| for t ∈ Sα, the generator of the semigroup (θ(T (t))t∈Sα is un-
bounded, and there exists a strongly continuous semigroup (T̃ (t))t∈Sα of multipliers on B
such that T̃ (t) = θ(T (t)) for t ∈ Sα.

(ii) θ(AT ) is dense in B, and the map φ : J → θ(J )
B
is a surjective map from the set

of closed ideals of AT onto the set of closed ideals of B. If, further, lim supt→0+ ‖T (t)‖ <
+∞, then φ is a bijection.

Proof. We can assume without loss of generality that A⊥T = {0}, since otherwise we can
construct ν > 0, a commutative Banach algebra B and a map θ : AT /A⊥T → B with the
required properties, and θ ◦ π : AT → B satisfies the conditions of the proposition, where
π : AT → AT /A⊥T denotes the canonical surjection. It follows from the fact that 4. implies
5. in Proposition 3.4 that there exists µ1, µ2 ∈ R such that V1 := {e−µ1tT (teiα) : t > 0}
and V2 := {e−µ2tT (te−iα) : t > 0} are pseudobounded. We can define V and W as
above and construct the ideal J0 associated to W as in Lemma 2.4. Then the regular
quasimultipliers T (t) become multipliers on J0 for t ∈ ∂Sα, which gives a semigroup
T̃ (t) on Sα in M(J0) which extends (θ(t))t∈Sα , where we denote by θ : A → B the
natural injection. Denote by B the closure of θ(AT ) (or, equivalently, the closure of J0)
in (M(J0), ‖.‖M(J0)). It follows from the definition of J0 that R(x) ∈ J0 for every x ∈ J0

and every R ∈M(B), and so M(J0) = M(B).
The algebras AT and B are similar in the sense of [9], which obviously implies that

B is nonunital since AT is nonunital. Hence the generator of the semigroup (θ(T (t))t∈Sα
is unbounded. It follows from the discussion above that there exists µ > 0 such that
‖θ(T (t))‖ ≤ eµ|t| for t ∈ Sα. Since the algebra generated by (θ(t))t∈Sα is dense in B, the
semigroup (T̃ (t))t∈Sα is strongly continuous. Assertion (ii) follows from an elementary
argument given in the proof of Proposition 7.3 (2), p. 113, and Proposition 7.8 (2), p. 122,
in [9].

In the general case of an analytic semigroup in a sector, a similar result remains true
with a weaker conclusion.

Proposition 3.6. Let α ∈ (0, π2 ], and let (T (t))t∈Sα be an analytic semigroup with un-
bounded generator. Then there exists ν > 0, a commutative Banach algebra B and a
contractive homomorphism θ : AT → B satisfying the following properties:

(i) For every β ∈ (0, α) there exists νβ > 0 such that ‖θ(T (t))‖ ≤ eνβ Re(t) for every
t ∈ Sβ , and the generator of the semigroup (θ(T (t))t∈Sα is unbounded.
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(ii) θ(AT ) is dense in B, and the map φ : J → θ(J )
B
is a surjective map from the set

of closed ideals of AT onto the set of closed ideals of B. If, further, lim supt→0+ ‖T (t)‖ <
+∞, then φ is a bijection.

Proof. Since there exists µ0 > 0 such that the set W := {e−µ0tT (t)}t>0 is pseudobound-
ed, we can use the same procedure as in Proposition 3.5, which allows us to assume
without loss of generality that ‖T (t)‖ ≤ eµ0t for t > 0. Set βn = αn

n+1 for n ≥ 1.
We can define by induction a sequence (µn)n≥1 of positive real numbers such that we

have

sup
r>0

e−µnr‖T (2−n)T (reiβn)‖ < e2−nµ0(1 + 2−n),

sup
r>0

e−µnr‖T (2−n)T (re−iβn)‖ < e2−nµ0(1 + 2−n).

To see this, notice that limr→+∞ e−µr‖T (2−n)T (re±iβn)‖ = 0 when µ is sufficiently
large. This shows that for every δ > 0 there exists σδ > 0 such that

e−σδr‖T (2−n)T (re±iβn)‖ < e2−nµ0(1 + 2−n)

for r > δ. So the two conditions are satisfied, taking µn = σδ
cos(βn) when δ is sufficiently

small. Set

V1,n = {e−µnrT (2−n)T (reiβn)}r>0 ∪ {I}, V2,n = {e−µnrT (2−n)T (re−iβn)}r>0 ∪ {I},

and
W =

⋃
n≥1

V1,1 . . . V1,nV2,1 . . . V2,n.

Then W is stable under products and pseudobounded, since supw∈W ‖T (2)w‖ < +∞.
Applying to W the same procedure as in the proof of Proposition 3.5, we obtain the
result.

Remark 3.7. Assume that A⊥ = {0}. If the generator of the semigroup is unbounded,
we have lim supn→∞ ‖T (−nδ)x‖ 1

n = +∞ for every nonzero x ∈
⋂
t>0 T (t)AT ∩Ω(A), and

lim supn→+∞ ‖∆nx‖ 1
n = +∞ for every nonzero x ∈

⋂
n≥1 Dom(∆n) ∩ Ω(AT ).

Proof. Assume that
lim sup
n→∞

‖T (−nδ)x‖ 1
n < +∞

for some x ∈ Ω(A)∩
⋂
t>0 T (t)AT . Then T (−δ) would be a regular quasimultiplier on AT .

Applying the procedure of Lemma 2.4 we would obtain a commutative Banach algebra B
containing AT and an ideal J0 of AT which is also a dense ideal of B such that T (−δ) is a
bounded multiplier on B. This would imply that limt→0+ ‖I−T (t)‖ = 0, and B would be
unital. Hence J0 = B, AT = B, and AT would be unital, which is impossible. A similar
argument shows that if the generator of an analytic semigroup is unbounded, then it is
not a regular quasimultiplier.

Recall that a semigroup is quasinilpotent if ρ(T (t)), the spectral radius of T (t), equals
zero for each t > 0 (or, in the case of a sectorial semigroup, for each t ∈ Sα). This
coincides with the notion of superstability studied by Balakrishnan [2]. An example of a
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quasinilpotent analytic semigroup on Lp(0, 1) for p ≥ 1 was given in [11, pp. 663–664]. It
is defined by

T (t)f(x) =
1

Γ(t)

∫ x

0

(x− u)t−1f(u) du (Re t > 0).

For quasinilpotent semigroups, we have in fact lim infn→∞ ‖T (−nδ)x‖ 1
n = +∞ for

every nonzero x ∈
⋂
t>0 T (t)AT , and lim infn→+∞ ‖∆nx‖ 1

n = +∞ for every nonzero
x ∈

⋂
p≥1 Dom(∆p).

To see this assume that S is a quasinilpotent bounded operator on a Banach space X ,
that x ∈ ∩n≥1S

n(X ), and that a sequence (xn)n≥1 of elements of X satisfies Snxn = x.

If x 6= 0, we have

‖xn‖
1
n ≥ ‖x‖

1
n

‖Sn‖ 1
n

,

and so lim infn→+∞ ‖xn‖
1
n = +∞.

Now if a quasinilpotent strongly continuous semigroup (T (t)) of bounded operators
on a Banach space X is bounded near the origin, we can define a bounded operator on
X by the formula

R =
∫ +∞

0

T (t) dt,

where the Bochner integral is computed with respect to the strong operator topology;
then R∆x = x for every x ∈ Dom(∆), where ∆ denotes the generator of the semigroup.
Similarly the formula

φ(f) =
∫ +∞

0

f(t)T (t) dt

defines a homomorphism from the convolution algebra
⋃
a>0 L

1(R+, eat dt) into B(X ),
and R = φ(1). Hence we have

Rn = φ(1∗n) =
∫ +∞

0

tn−1

(n− 1)!
T (t) dt,

and Rn∆nx = x for every x ∈ Dom(∆n).
If the semigroup is not bounded near the origin, we can nevertheless define for α > 0

and n ≥ 1 a bounded operator Rα,n by using the formula

Rα,n =
∫ +∞

0

tn−1

(n− 1)!
T (α+ t) dt,

and Rα,n∆nx = T (α)x for every x ∈ Dom(∆n).
For every p ≥ 1, there exists Mp,α > 0 such that we have, for every n ≥ 1,

‖Rα,n‖ ≤Mα,p

∫ +∞

0

tn−1

(n− 1)!
e−tp dt =

1
pn
,

and so limn→+∞ ‖Rα,n‖
1
n = 0. Since T (α)x 6= 0 when α is sufficiently small for every

x ∈ Dom(∆), we obtain, for every nonzero x ∈
⋂
n≥1 Dom(∆n),

lim inf
n→+∞

‖∆nx‖ 1
n = +∞.
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4. Inequalities for analytic semigroups. The next lemma demonstrates that non-
trivial quasinilpotent analytic semigroups cannot be bounded on the right half-plane. In
fact, more is true.

Lemma 4.1. Let (T (t))Re t>0 be a quasinilpotent analytic semigroup of bounded operators
on a Banach space X . Suppose that there exists r > 0 such that

sup
t∈D+(0,r)

‖T (t)‖ < +∞,

and define T (iy) for y ∈ R by Remark 3.2. If∫ ∞
−∞

log+ ‖T (iy)‖
1 + y2

dy < +∞,

then T (t) = 0 for Re t > 0.

Proof. Take a nonzero x ∈ X and φ ∈ X ∗, and define f by f(t) = φ(T (t)x). Since each
T (t) is quasinilpotent, it follows that

log |f(reiθ)|
r

→ −∞,

as r tends to +∞ and for all θ ∈ (−π/2, π/2). Now, recall that the Ahlfors–Heins theorem
(see [7, Thm A.2.47] or [6, Thm 7.1]) asserts that if g is a not identically zero function
of exponential type in C+ := {z ∈ C : Re(z) > 0}, such that∫ ∞

−∞

log+ |g(iy)|
1 + y2

dy <∞,

then

c = lim
r→∞

2
πr

∫ π/2

−π/2
log |g(reiθ)| cos θ dθ

exists in R, and for almost all θ ∈ (−π/2, π/2),

lim
r→∞

log |g(reiθ)|
r

= c cos θ.

It follows that f is identically equal to 0. Then by the Hahn–Banach theorem, since the
above conclusion holds for any x ∈ X and φ ∈ X ∗, we have that T (t) is identically equal
to 0.

We are now ready to make estimates for semigroups on the imaginary axis.

Theorem 4.2. Let (T (t))Re t>0 be a nonzero quasinilpotent analytic semigroup satisfying
the conditions of Remark 3.2, and let s > 0. Then

max(ρ(T (iy)− T (iy + is)), ρ(T (−iy)− T (−iy − is))) ≥ 2,

for every y > 0.

Proof. Assume that λ 6= −|λ| for every λ in Spec(T (is)), the spectrum of T (is). Then
there exists a determination of log(z) which is analytic on a neighbourhood of Spec(T (is)),
which means that there exists a bounded operator U on X such that T (is) = eU . Now
set T̃ (t) = T (t)eitU/s. Then T̃ (t) is quasinilpotent for Re t > 0, and T̃ (is) = Id = T̃ (0).
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So T̃ (iy) is periodic, hence bounded for y ∈ R. Using Lemma 4.1, T (t) = T̃ (t) = 0 for
Re t ≥ 0, a contradiction.

Thus we may take λ ∈ Spec(T (is)) such that λ = −|λ|. Hence

max(ρ(Id− T (is)), ρ(Id− T (−is))) ≥ max(1 + |λ|, 1 + |λ|−1) ≥ 2.

Let B be a maximal commutative subalgebra of L(X ) containing T (t) for Re t ≥ 0. There
exists a character χ on B such that χ(T (is)) = λ. We have, for y ∈ R,

|χ(T (iy)− T (iy + is))| = |χ(T (iy))||1− χ(T (is))| = |χ(T (iy))|(1 + |λ|),

and

|χ(T (−iy)− T (−iy − is))| = |χ(T (−iy))||1− χ(T (−is))| = 1
|χ(T (iy))|

(
1 +

1
|λ|

)
.

Since the group (T (iy))y∈R is strongly continuous, it follows from the Banach–Stein-
haus theorem that this group is locally bounded, which implies that there exists α ∈ R
such that |χ(T (iy))| = eαy for y ∈ R. Now let y > 0. If |λ| ≥ 1, then α ≥ 0, |χ(T (iy))| ≥ 1,
and so

|χ(T (iy)− T (iy + is))| ≥ 2.

If |λ| < 1, then α < 0, |χ(T (iy))| < 1, and so

|χ(T (−iy)− T (−iy − is))| > 2.

Combining these, it follows that

max(|χ(T (iy)− T (iy + is))|, |χ(T (−iy)− T (−iy − is))|) ≥ 2,

which proves the theorem.

Corollary 4.3. Let (T (t))Re t>0 be a quasinilpotent analytic semigroup such that

sup
y∈R

e−µ|y|‖T (δ + iy)‖ < +∞

for some δ > 0 and some µ > 0, and let γ > 0. Then

sup
t∈D+(0,r)

‖T (t)− T ((1 + γ)t)‖ ≥ 2,

for every r > 0.

Proof. It follows from Proposition 3.5 that we may assume without loss of generality
that supz∈D+(0,ρ) ‖T (t)‖ < +∞ for some ρ > 0. Since T (iy)−T (i(1 + γ)y) is the limit of
T (iy + ε) − T ((1 + γ)(iy + ε)) as ε → 0+ with respect to the strong operator topology,
we have, for every y ∈ R,

ρ(T (iy)− T ((1 + γ)iy)) ≤ ‖T (iy)− T ((1 + γ)iy)‖
≤ lim inf

ε→0+
‖T (iy + ε)− T ((1 + γ)(iy + ε))‖.

Hence, by Theorem 4.2

max
η∈{−1,1}

lim inf
ε→0+

‖T (iηy + ε)− T ((1 + γ)(iηy + ε))‖ ≥ 2

for every y > 0, and the corollary follows.
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