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Abstract. This is an expository paper on the importance and applications of GB∗-algebras in
the theory of unbounded operators, which is closely related to quantum field theory and quantum
mechanics. After recalling the definition and the main examples of GB∗-algebras we exhibit
their most important properties. Then, through concrete examples we are led to a question
concerning the structure of the completion of a given C∗-algebra A0[‖ · ‖0], under a locally
convex ∗-algebra topology τ , making the multiplication of A0 jointly continuous. We conclude
that such a completion is a GB∗-algebra over the τ -closure of the unit ball of A0[‖ · ‖0]. Further,
we discuss some consequences of this result; we briefly comment the case when τ makes the
multiplication of A0 separately continuous and illustrate the results by examples.

1. Introduction. The motivation of what we shall present comes from mathematical
physics, quantum mechanics, and in particular, from the fact that our physical world is
mainly represented by unbounded operators. The best known of them is the Hamiltonian
operator H representing the observable energy, and the operators P,Q representing the

2010 Mathematics Subject Classification: Primary 46H20; Secondary 47L60.
Key words and phrases: C∗-algebra, GB∗-algebra, quasi locally convex ∗-algebra.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc91-0-9 [169] c© Instytut Matematyczny PAN, 2010



170 M. FRAGOULOPOULOU ET AL.

observable momentum and observable position respectively (see [9, 14, 31]). The following
algebraic equations involving the previous operators

[P,Q] = PQ−QP = −i~I, H =
P 2

2m
+
mω2Q2

2
,

correspond to the 1-dimensional harmonic oscillator [9, p. 9, Chapter II], where i is the
imaginary unit, ~ the Planck constant, I the identity operator and m,ω the mass respec-
tively frequency of the oscillator. According to quantum mechanics a physical observable
is represented by a linear operator, while certain algebraic relations, as before, corre-
spond to a physical system whose mathematical image is an operator ∗-algebra in an
inner product space. In the case of the 1-dimensional harmonic oscillator the respective
∗-algebra is the one generated by the hermitian operators, H,P,Q.

From the above it is clear and quite natural why scientists were led to the study
of unbounded operator algebras. Among them are the so-called GB∗-algebras initiated
and studied first by G. R. Allan [2], in 1967. In 1970, P. G. Dixon [10] extended the
concept of a GB∗-algebra, in order to include also examples of such algebras that are
topological ∗-algebras but not locally convex ∗-algebras (see discussion after Examples
2.2). GB∗-algebras generalize the notion of a C∗-algebra. Because of their importance
they have been investigated in different directions by various authors (see, for example,
[6, 11, 12, 25, 24, 27, 28, 35]). Even more, GB∗-algebras occur among the so-called
unbounded Hilbert algebras [18, 19, 20, 21, 22, 23, 34], which are very important for the
Tomita Takesaki theory for unbounded operator algebras developed in [26], by the second
named author.

The structure of this expository paper is as follows: In Section 2, we exhibit some
basic definitions and notation and present briefly the most representative and important
examples and results on the structure of GB∗-algebras. In Section 3, we discuss a recent
result on GB∗-algebras (see [16, Theorem 2.1]), which provides a very handy character-
ization of this sort of algebras, since using it one does not need to go through all the
requirements of the definition of a GB∗-algebra. We reach at the question we deal with
through concrete examples. In Section 4, we discuss briefly another aspect of the problem
we put in Section 3 (see [4, 5]).

2. Basic examples and results on GB∗-algebras. All algebras we consider are com-
plex and all topological spaces are supposed to be Hausdorff. If an algebra A has an
identity element, this will be denoted by 1 , and an algebra A with identity 1 will be
called unital.

Let us begin with a locally convex ∗-algebra A[τ ]. At the moment we suppose that
the multiplication is separately continuous. We shall always assume that the involution
is continuous. An element x ∈ A is called (Allan-) bounded if there is a non-zero complex
number λ, such that the set {(λx)n : n = 1, 2, ...} is bounded in A[τ ]. Denote by B∗ the
family of all subsets B of A[τ ] such that:

(1) B is absolutely convex, B2 ⊆ B and B∗ = B, where B∗ = {x∗ ∈ B, ∀x ∈ B};
(2) B is bounded and closed.
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For any B ∈ B∗, let A[B] be the ∗-subalgebra of A generated by B. Then

A[B] = {λx : λ ∈ C, x ∈ B}.

A[B] becomes a normed ∗-algebra under the gauge function ‖x‖B := inf{λ > 0 : x ∈ λB},
x ∈ A[B]. If for every B ∈ B∗, A[B] is a Banach ∗-algebra, then A[τ ] is called pseudo-
complete [1, (2.5) Definition]. When A[τ ] is sequentially complete, then it is pseudo-
complete (ibid., (2.6) Proposition).

Definition 2.1. A unital pseudo-complete locally convex ∗-algebra A[τ ] is called a GB∗-
algebra (cf. [2, 10]), if B∗ has a greatest member B0 and for each x ∈ A, (1 + x∗x)−1

exists in A[τ ] and it is bounded.

For every GB∗-algebra A[τ ], the Banach ∗-algebra A[B0] is a C∗-algebra and (1 +
x∗x)−1 ∈ A[B0], for each x ∈ A (see [2, (2.6) Lemma]).

A pro-C∗-algebra (or locally C∗-algebra) is a complete locally convex algebra A[τ ]
with involution, whose topology τ is defined by a directed family of C∗-seminorms. Each
pro-C∗-algebra is topologically ∗-isomorphic to an inverse limit of C∗-algebras [15].

If A[‖ · ‖] is a normed algebra we shall use the symbol ‖ · ‖ to denote its topology.

Examples 2.2. 1. Every unital C∗-algebra A[‖ · ‖] is a GB∗-algebra over its unit ball.
2. Every unital pro-C∗-algebra A[τ ] is a GB∗-algebra over the unit ball of its bounded

part D(pΓ), where Γ = {pλ}λ∈Λ is a directed family of C∗-seminorms defining τ . More
precisely,

D(pΓ) := {x ∈ A : sup
λ
pλ(x) <∞}

is a ∗-subalgebra of A, which is a C∗-algebra under the C∗-norm pΓ(x) := supλ pλ(x), x ∈
D(pΓ) and moreover it is τ -dense in A[τ ] [15, Theorem 10.23]. If, e.g., we take the pro-C∗-
algebra C(R) = lim←−

n

C[−n, n] of all C-valued continuous functions on R, with the topology

of compact convergence, then D(pΓ) = Cb(R), the C∗-algebra of all bounded continuous
functions on R, and C(R)[B0] = Cb(R), with B0 the unit ball of D(pΓ).

3. Suppose now that A[τ ] is a locally convex algebra with involution, where τ is
defined by a directed family Γ = {pλ}λ∈Λ of seminorms with the following properties:
for each λ ∈ Λ there is λ′ ∈ Λ such that pλ(xy) ≤ pλ′(x)pλ′(y), pλ(x∗) ≤ pλ′(x) and
pλ(x)2 ≤ pλ′(x∗x), for all x, y ∈ A. That is, A[τ ] is a locally convex ∗-algebra with
continuous multiplication, whose seminorms determining τ fulfill a C∗-like condition.
A[τ ], as before, is called a C∗-like locally convex ∗-algebra if it is moreover complete and
the normed ∗-algebra D(pΓ)[pΓ] is τ -dense in A [3, 24]. In [24, Theorem 2.1], it is proved
that every C∗-like locally convex ∗-algebra A[τ ] is a GB∗-algebra over the unit ball B0 of
D(pΓ).

4. The Arens algebra Lω[0, 1] = ∩1≤p<∞L
p[0, 1] endowed with the topology induced

by the family Γ of the Lp-norms, 1 ≤ p < ∞, is a C∗-like locally convex ∗-algebra [24],
hence a GB∗-algebra (see also [2, p. 96]) over the unit ball B0 of L∞[0, 1] = D(pΓ) =
Lω[0, 1][B0].

5. We should also note that every closed ∗-subalgebra of a GB∗-algebra A[τ ] is also a
GB∗-algebra if it contains the identity 1 of A [2, (2.9) Proposition].
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P. G. Dixon, in 1969, extended Allan’s definition of a GB∗-algebra to an arbitrary
topological ∗-algebra, in order to include also examples of non-locally convex topological
GB∗-algebras [10, (2.5) Definition]. Such an example is given by the algebra M[0, 1]
of all measurable functions on [0, 1] (modulo equality a.e.), endowed with the topology
of convergence in measure (ibid., p. 696, (3.4)). More precisely, M[0, 1] is a complete
metrizable non-locally-convex GB∗-algebra, with jointly continuous multiplication and
M[0, 1][B0] = L∞[0, 1], with B0 the corresponding greatest member of B∗ in the modified
definition of Dixon.

In [11, Sections 6,7], P. G. Dixon constructs another example of a non-locally convex
topological GB∗-algebra by considering a W ∗-algebra A on a separable Hilbert space H
and Q(A) the locally convex ∗-algebra of all operators on H “quasi-measurable" with
respect to A (ibid., (6.4) Definition). He endows Q(A) with a vector space topology
resembling to the topology of convergence in measure on a space of measurable functions
and he proves that, under this topology, Q(A) becomes a topological GB∗-algebra.

Furthermore, the same author points out in [10, p. 696, (3.3)] that if H is a Hilbert
space and A a normed ∗-algebra of bounded linear operators onH, containing the identity
operator, then endowed with the weak operator topology, A becomes a locally convex
GB∗-algebra. Moreover, in [12, p. 160, Example 1], Dixon shows that there is a ∗-algebra
A of functions with no GB∗-topology. In fact A is the algebra of all C-valued Borel
functions on [0, 1], modulo a.e., where a.e. in this case means “outside a set of first
category”.

Other interesting examples of GB∗-algebras are given by the Lω-algebras of operators
associated with an unbounded Hilbert algebra; see [19, 21, 22] and in particular [20,
Theorem 3.3, Corollary 3.4], [23, p. 32, Theorem1].

Furthermore, S.J.L. van Eijndhoven and P. Kruszyński have considered in [13] a di-
rected family R of commuting positive bounded operators on a Hilbert space H and
constructed an inductive limit SR ⊆ H of Hilbert spaces, that serves as the maximal
common dense domain for the unbounded operator algebras Rc,Rcc, corresponding to
the strong commutant respectively strong bicommutant of R. It is proved (ibid., (3.10)
Theorem) that both of Rc,Rcc are GB∗-algebras.

Before we proceed to a selection of representative results on GB∗-algebras, we should
stress their contribution to the introduction of the so called EW ∗-algebras (extended
W ∗-algebras) [11, 23, 26], which play a decisive role in the development of the unbounded
Tomita-Takesaki theory by the second named author.

We also remark, that using techniques of GB∗-algebras, A. B. Patel [32, Theorem 2.2]
proved a “joint spectral theorem” for an n-tuple of doubly commuting unbounded normal
operators, and independently A. Danrun-Zh. Dianzhou [17] studied various properties of
the joint spectrum of a commuting n-tuple of unbounded normal operators in terms of
GB∗-algebras and EC∗-algebras (extended C∗-algebras; see [18]).
• In the rest of the paper we use Allan’s definition of a GB∗-algebra.
The first structure results for GB∗-algebras were given by G. R. Allan [2] in the

commutative case and concern functional representation and functional calculus [2, The-
orems (3,9), (3.12)]. We discuss briefly the functional representation result. If A[τ ] is a
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commutative GB∗-algebra, then A[B0] coincides with the subalgebra A0 of all bounded
elements of A. So, in this case, for brevity’s sake, we shall use the notation A0 in place of
A[B0]. Denote by M0 the Gel’fand space of A0 and by C∗ the one point compactification
of C. Then, the following holds:

Theorem 2.3 (Allan). Let A[τ ] be a commutative GB∗-algebra. Then A[τ ] is ∗-isomor-
phic to a ∗-algebra of C∗-valued continuous functions on the compact space M0.

P. G. Dixon studied the structure of non-commutative GB∗-algebras. He showed that
they are algebras of unbounded operators, and he investigated their functional calculus
and their ∗-representation theory [10].

We briefly refer to the notion of an “algebra of closed operators", as this is used by
P. G. Dixon [10, p. 705] in Theorem 2.4, below. Let H be a Hilbert space and T a linear
operator inH, with domain a dense subspace D ofH. T is called closed if its graph G(T ) is
closed in H⊕H. A linear operator T in H is said to be closable if it has a closed extension.
Every closable operator has a smallest closed extension, called its closure, denoted by T
[3, pp. 6, 7]. A set A of closed operators in H will be called a ∗-algebra of closed operators
[10, p. 705, (7.1)] if it forms a ∗-algebra under the operations of addition, multiplication
and involution defined as follows:

(T, S) 7→ T + S, (T, S) 7→ TS and T 7→ T ∗,

where T ∗ is the adjoint of T . The definition of addition and multiplication implicitly
means that T + S, TS are closable operators for all T, S ∈ A.

A ∗-representation of a ∗-algebra A (in the sense of P. G. Dixon) is a ∗-homomorphism
π of A onto a ∗-algebra of closed operators on a Hilbert space H, such that π(1 ) is the
identity operator on H; π is called faithful if it is injective [10, p. 705, (7.2)].

Theorem 2.4 (Dixon). Every GB∗-algebra A[τ ] over B0 is *-algebraically realized as an
algebra of closed operators on a Hilbert space H. In other words, there exists a faithful
∗-representation π of A onto a ∗-algebra of closed operators on a Hilbert space H, with
common dense domain, such that the elements of B0 correspond to the operators T ∈
π(A)∩B(H) with ‖T‖ ≤ 1, where B(H) is the C∗-algebra of all bounded linear operators
on H under the operator norm ‖ · ‖.

It is clear that Theorem 2.3 is a Gel’fand-type representation theorem, while Theorem
2.4 is a non-commutative Gel’fand-Naimark-type theorem for GB∗-algebras.

Some further results on GB∗-algebras are listed in the following

Proposition 2.5. (1) [27, p. 10] (i) If Aλ[τλ], λ ∈ Λ, is a family of GB∗-algebras,
then the product A =

∏
λ∈ΛAλ, endowed with algebraic operations defined coordinate-

wise and with the product topology, is a GB∗-algebra, with A[B0] = {(xλ) ∈ A : xλ ∈
Aλ[B0λ] and supλ∈Λ ‖xλ‖B0λ

<∞}.
(ii) If Aλ[τλ], λ ∈ Λ, is an inverse system of GB∗-algebras, with Λ a directed index

set, then the inverse limit algebra A[τ ] = lim←−
λ

Aλ[τλ] is a GB∗-algebra, with A[B0] =

{(xλ) ∈ A : xλ ∈ Aλ[B0λ] and supλ∈Λ ‖xλ‖B0λ
<∞}. B0λ is a greatest member in B∗Aλ

.
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(iii) Let A[τ ] be a GB∗-algebra with x(1 + x∗x)−1 bounded, for every x ∈ A. Let I be
a closed 2-sided ideal in A[τ ]. Then I is a ∗-ideal and the quotient algebra A/I, with the
quotient topology, is a GB∗-algebra such that (A/I)[B′0] = A[B0]/I ∩A[B0], with respect
to an isometric ∗-isomorphism, B′0 being a greatest member in B∗A/I .

(2) [6, Corollary 3, II] Every GB∗-algebra (not necessarily with identity) has a bounded
approximate identity.

(3) [6, (2) Theorem, I] If A[τ ] is a GB∗-algebra over B0, then the C∗-algebra A[B0]
is sequentially dense in A[τ ].

(4) [35, (8.16) Theorem] (Vidav-Palmer theorem) Let A[τ ] be a Fréchet locally convex
algebra. Then, A[τ ] is a GB∗-algebra if and only if there exists a directed family of
seminorms defining the topology τ of A, with respect to which A = H + iH, where H
stands for the hermitian elements of A, i.e., those elements of A having real numerical
range.

3. The completion of a C∗-algebra under a locally convex ∗-algebra topology
is a GB∗-algebra. There are examples of C∗-algebras A0[‖ · ‖0] endowed with a locally
convex topology τ , coarser than the C∗-topology ‖ · ‖0 and such that A0[τ ] is a locally
convex ∗-algebra with jointly continuous multiplication, whose completion Ã0[τ ] contains
continuously A0[‖·‖0]. Take, for instance, the C∗-algebra Cb(R) of all bounded continuous
functions on R and the algebra C(R) of all continuous functions on R, with the topology
τ of uniform convergence on compacta. Then,

Cb(R) ↪→ C(R) = C̃b(R)[τ ].

The same happens if we take the GB∗-algebra Lω[0, 1] (Arens algebra) of the example
2.2(4) and the C∗-algebra L∞[0, 1]. More precisely,

L∞[0, 1] ↪→ Lω[0, 1] = ˜L∞[0, 1][τ ],

with τ the topology on Lω[0, 1] induced by the Lp-norms ‖ · ‖p, 1 ≤ p <∞. Moreover, if
(fλ)λ∈Λ is a Cauchy net in L∞[0, 1] such that fλ −→

τ
f ∈ L∞[0, 1], then also fλ −→

‖·‖∞
f .

Topologies with the last property are called normal [3, p. 352].
In particular, if A0[‖ · ‖0] and A0[τ ] are like at the beginning of this Section and

τ � ‖ · ‖0, we say that τ, ‖ · ‖0 are compatible if each net in A0, which is a Cauchy net
in both of these topologies and converges in one of them, converges also with respect to
the other one. The topology τ of the Arens algebra and the C∗-norm ‖ · ‖∞ on L∞[0, 1]
are compatible. Such examples lead to the following natural

Question: Suppose A0[‖ · ‖0] is a unital C∗-algebra and τ a locally convex topology on
A0 making the involution continuous and the multiplication jointly continuous. Suppose
also that τ � ‖ · ‖0 and τ, ‖ · ‖0 are compatible. What can be said about the completion
Ã0[τ ] of A0[τ ]?

We shall see that Ã0[τ ] has the structure of a GB∗-algebra. Before we outline the
proof of this result, let Bτ denote the τ -closure of the unit ball U0 = {x ∈ A0 : ‖x‖0 ≤ 1}
of A0[‖ · ‖0] in Ã0[τ ]. By the joint continuity of the multiplication in Ã0[τ ], it is easily
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seen that Bτ belongs to the (corresponding to p. 171) family B∗ of subsets in Ã0[τ ].
Moreover (see [16, p. 157, (2.1)]),

∀ x ∈ Ã0[τ ], the element (1 + x∗x)−1 exists and (1 + x∗x)−1 ∈ Bτ .

Theorem 3.1. Ã0[τ ] is a GB∗-algebra over Bτ [16, Theorem 2.1].

Proof. We present the main steps of the proof:
Since Ã0[τ ] is a complete locally convex ∗-algebra, it suffices to show that Bτ is a

greatest member in B∗ and that (1 + x∗x)−1 ∈ A[Bτ ], ∀x ∈ Ã0[τ ]. The latter follows
from the preceding discussion.
• A crucial point for showing that Bτ is greatest in B∗, is to show that A[Bτ ] is a

C∗-algebra.
For this consider the C∗-algebra A of all ‖ · ‖0-bounded nets (xλ)λ∈Λ in A0[‖ · ‖0],

where the index set Λ consists of a 0-neighborhood basis for τ , and the C∗-norm is given
by ‖(xλ)λ∈Λ‖∞ := supλ∈Λ ‖xλ‖0, (xλ)λ∈Λ ∈ A. Take now

Ac := {(xλ)λ∈Λ ∈ A : (xλ)λ∈Λ is a τ -Cauchy net},
A0 := {(xλ)λ∈Λ ∈ Ac : τ -limλ xλ = 0}.

It is easily checked that Ac is a closed ∗-subalgebra of the C∗-algebra A[‖ · ‖∞], hence a
C∗-algebra, and that A0 is a closed ideal (hence a ∗-ideal) in Ac. Therefore, the quotient
Ac/A0 is a C∗-algebra. Now, an element a ∈ Bτ is of the form τ -limλ xλ where (xλ)λ∈Λ

is a net in A0 with ‖xλ‖0 ≤ 1, for all λ ∈ Λ. In other words, a = τ -limλ xλ with (xλ)λ∈Λ

in Ac. Thus, the following correspondence

Θ : Ac → A[Bτ ] : (xλ)λ∈Λ 7→ τ - lim
λ
xλ,

is a well-defined ∗-homomorphism, with ker Θ = A0. Θ induces an isometric ∗-isomor-
phism from Ac/A0 onto A[Bτ ]. Hence, the Banach ∗-algebra A[Bτ ] is a C∗-algebra.
• Let now B be an arbitrary element in B∗. We shall show that B ⊆ Bτ . Take an

element h = h∗ inB. Consider the maximal commutative ∗-subalgebra of Ã0[τ ] containing
h, 1 . Using C∗-algebra theory and properties of the elements of B∗ from [1], we conclude
that (see [16, p. 158])

A[B] ⊆ A[Bτ ].

Take now an arbitrary element x ∈ B. Then, by the preceding inclusion, x ∈ A[Bτ ].
Moreover, x∗x as a self-adjoint element in B belongs also to Bτ , which is the unit ball of
A[Bτ ]. Therefore, ‖x‖2Bτ

= ‖x∗x‖Bτ
≤ 1. Hence, x ∈ Bτ and B ⊆ Bτ , which proves that

Bτ is a greatest member in B∗.

It is clear that the C∗-algebra A0[‖ · ‖0] that determines the locally convex ∗-algebra
Ã0[τ ] is not unique. Thus, if C∗(A0, τ) denotes the collection of all C∗-algebras A[‖ · ‖]
such that A0 ⊆ A ⊆ Ã0[τ ], τ � ‖ · ‖ and ‖x‖ = ‖x‖0,∀ x ∈ A0, then C∗(A0, τ) has an
order defined as follows:

A1[‖ · ‖1] � A2[‖ · ‖2] ⇐⇒ A1 ⊆ A2 and ‖x‖1 = ‖x‖2, ∀ x ∈ A1.

From Theorem 3.1 it follows that the C∗-algebra A[Bτ ] is the largest member in C∗(A0, τ).
The same theorem implies the following characterization, which is related to some previ-
ous results in [6, 27, 28].
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Corollary 3.2. The following statements are equivalent:

(i) Ã0[τ ] is a GB∗-algebra over U0.
(ii) U0 is τ -closed.

After Theorem 3.1 one naturally is led to a functional calculus for Ã0[τ ], in the
commutative and non-commutative case, as well as to the investigation of the existence
of (unbounded) faithful ∗-representations on this ∗-algebra. Such results are exhibited in
[16, Theorems 2.3, 2.4, 2.6].

Corollary 3.2 provides a very useful characterization, which allows us to check more
easily whether Ã0[τ ] is a GB∗-algebra, instead of showing all the properties of the defi-
nition given in Section 2.

Other relatively recent results on the existence of either continuous or “well-behaved”
(unbounded) ∗-representations on GB∗-algebras can be found in [7, Proposition 4.8,
Corollary 5.4] and [8, Corollary 4.5, 5.5 and Example 5.7].

4. A brief discussion on the structure of Ã0[τ ] when the multiplication in
A0[τ ] is separately continuous. Let A[τ ] be a locally convex ∗-algebra with separately
continuous multiplication. Taking the completion Ã[τ ] of A[τ ] we have no more a locally
convex ∗-algebra, since multiplication among the elements of Ã[τ ] cannot be defined
everywhere. For instance, x · y is well defined if x, y ∈ A[τ ] or x ∈ Ã[τ ], y ∈ A[τ ] and
vice-versa. Such objects are called partial ∗-algebras. More precisely [3, p. 44], a partial
∗-algebra is a pair (A,Γ) consisting of a complex vector space A endowed with a vector
space involution and a subset Γ of A×A, with the properties:

(i) (x, y) ∈ Γ yields (y∗, x∗) ∈ Γ;
(ii) (x, y1), (x, y2) ∈ Γ and λ, µ ∈ C yield (x, λy1 + µy2) ∈ Γ;
(iii) for every (x, y) ∈ Γ, a product xy ∈ A is defined, such that xy depends linearly

on x and y and (xy)∗ = y∗x∗.

Saying that A is a partial ∗-algebra we shall always mean a pair (A,Γ) as before.
A locally convex partial ∗-algebra is a partial ∗-algebra equipped with a locally convex

topology such that the involution is continuous and the partial multiplication is separately
continuous [3, p. 45].

An important subclass of partial ∗-algebras is the so-called quasi ∗-algebras. A partial
∗-algebra A, which contains a ∗-algebra A0, such that (x, y) ∈ Γ ⇔ x or y belongs to A0,
is called a quasi ∗-algebra over A0. A locally convex partial ∗-algebra A[τ ] is said to be
a locally convex quasi ∗-algebra if A is a quasi ∗-algebra over A0 and A0 is dense in A[τ ]
(ibid., p. 46). For the basic theory and applications of the preceding classes of algebras the
reader is referred to [3]. The impetus for the introduction of partial ∗-algebras and quasi
∗-algebras has again its roots in mathematical physics. Partial ∗-algebras were initiated
by J.-P. Antoine and W. Karwowski in 1983 and quasi ∗-algebras by G. Lassner in 1981.
For more details, motivation and all relevant literature, see [3].

The completion of a locally convex ∗-algebra A[τ ] with separately continuous multi-
plication may not be (as we noticed above) a locally convex ∗-algebra, but it is a quasi
∗-algebra.
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Suppose, for instance, that Ω is a compact subset of Rn that coincides with the closure
of its interior and let C(Ω) be the algebra of all continuous functions on Ω. Then, endowed
with the Lp-norm, 1 ≤ p < ∞, C(Ω) becomes a locally convex ∗-algebra. Its completion
coincides with the space Lp(Ω), hence Lp(Ω) is a locally convex quasi ∗-algebra over C(Ω).

Furthermore, if A[τ ] is a GB∗-algebra over B0, then A[B0] is a C∗-algebra under the
gauge function ‖ · ‖B0 of B0, as we noticed in Section 2. If τ is determined by a directed
family {pλ}λ∈Λ of seminorms, with the property:

∀ λ ∈ Λ ∃ λ′ ∈ Λ such that pλ(xy) ≤ ‖x‖B0pλ′(y), ∀ x, y ∈ A[B0] : xy = yx,

then Ã[B0][τ ] = A[τ ], and it readily follows that A[τ ] is a locally convex quasi ∗-algebra
over A[B0].

If A0[‖ · ‖0] is a C∗-algebra (or even a normed ∗-algebra with the C∗-property) and τ
a locally convex topology on A0 making the multiplication of A0 not jointly continuous,
then as we noticed before, the completion Ã0[τ ] of A0 with respect to τ , has the structure
of a locally convex quasi ∗-algebra. The investigation of the structure and the (unbounded)
∗-representation theory of this sort of algebras started in [16, Section 3] and continued
in [4, 5], with a plethora of examples illustrating the results. We also note that Allan’s
spectral theory for locally convex algebras [1], as well as the related to GB∗-algebras
theory of unbounded operator algebras of P. G. Dixon [11], play an important role in the
development of the aforementioned study of Ã0[τ ] as a locally convex quasi ∗-algebra.
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