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Abstract. The present article is a survey of known results on Schur and operator multipliers.
It starts with the classical description of Schur multipliers due to Grothendieck, followed by a
discussion of measurable Schur multipliers and a generalisation of Grothendieck’s Theorem due to
Peller. Thereafter, a non-commutative version of Schur multipliers, called operator multipliers
and introduced by Kissin and Schulman, is discussed, and a characterisation extending the
description in the commutative case is presented. Finally, multidimensional versions of Schur and
operator multipliers are considered. The article contains a brief discussion of some applications
of Schur multipliers, including double operator integrals and multipliers of group algebras.

Schur multipliers were introduced by Schur in the early 20th century and have since
then found a considerable number of applications in Analysis and enjoyed an intensive
development. Apart from the beauty of the subject in itself, sources of interest in them
were connections with Perturbation Theory, Harmonic Analysis, the Theory of Opera-
tor Integrals and others. Advances in the quantisation of Schur multipliers were recently
made in [29]. The aim of the present article is to summarise part of the ideas and re-
sults in the theory of Schur and operator multipliers. We start with the classical Schur
multipliers defined by Schur and their characterisation by Grothendieck, and make our
way through measurable multipliers studied by Peller and Spronk, operator multipliers
defined by Kissin and Shulman and, finally, multidimensional Schur and operator mul-
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tipliers developed by Juschenko and the authors. We point out connections of the area
with Harmonic Analysis and the Theory of Operator Integrals.

1. Classical Schur multipliers. For a Hilbert space H, let B(H) be the collection
of all bounded linear operators acting on H equipped with its operator norm ‖ · ‖op.
We denote by `2 the Hilbert space of all square summable complex sequences. With an
operator A ∈ B(`2), one can associate a matrix (ai,j)i,j∈N by letting ai,j = (Aej , ei),
where {ei}i∈N is the standard orthonormal basis of `2. The space M∞ of all matrices
obtained in this way is a subspace of the space MN of all complex matrices indexed
by N × N. It is easy to see that the correspondence between B(`2) and M∞ is one-
to-one.

Any function ϕ : N × N → C gives rise to a linear transformation Sϕ acting on MN
and given by Sϕ((ai,j)i,j) = (ϕ(i, j)ai,j)i,j . In other words, Sϕ((ai,j)i,j) is the entry-
wise product of the matrices (ϕ(i, j))i,j and (ai,j)i,j , often called Schur product. The
function ϕ is called a Schur multiplier if Sϕ leaves the subspace M∞ invariant. We
denote by S(N,N) the set of all Schur multipliers.

Let ϕ be a Schur multiplier. Then the correspondence between B(`2) and M∞ gives
rise to a mapping (which we denote in the same way) on B(`2). We first note that Sϕ is
necessarily bounded in the operator norm. This follows from the Closed Graph Theorem;
indeed, suppose that Ak → 0 and Sϕ(Ak)→ B in the operator norm, for some elements
Ak, B ∈ B(`2), k ∈ N. Letting (aki,j) and (bi,j) be the corresponding matrices of Ak and
B, we have that aki,j = (Akej , ei) →k→∞ 0, for each i, j ∈ N. But then {ϕ(i, j)aki,j}k∈N
converges to both bi,j and 0, and since this holds for every i, j ∈ N, we conclude that
B = 0. Let ‖ϕ‖m denote the norm of Sϕ as a bounded operator on B(`2); we call ‖ϕ‖m
the multiplier norm of ϕ.

It now follows that S(N,N) ⊆ `∞(N × N). Indeed, if {Ei,j}i,j∈N is the canonical
matrix unit system in B(`2) then we have that |ϕ(i, j)| = ‖Sϕ(Ei,j)‖op ≤ ‖ϕ‖m, for all
i, j ∈ N. It is trivial to verify that S(N,N) is a subalgebra of `∞(N×N) when the latter is
equipped with the usual pointwise operations; moreover, it can be shown that S(N,N) is a
semi-simple commutative Banach algebra when equipped with the norm ‖·‖m. We note in
passing that, since ϕ is a bounded function, the restriction of Sϕ to the class C2(`2) of all
Hilbert-Schmidt operators is bounded when C2(`2) is equipped with its Hilbert-Schmidt
norm ‖ · ‖2, and its norm as an operator on C2(`2) is equal to ‖ϕ‖∞. This follows from
the fact that if A ∈ C2(`2) and (ai,j)i,j ∈ M∞ is the matrix corresponding to A then
‖A‖2 = (

∑
i,j |ai,j |2)1/2.

Another immediate observation is the fact that if (ai,j)i,j ∈ M∞ and a ∈ `∞(N× N)
is the function given by a(i, j) = ai,j , then a is a Schur multiplier and ‖a‖m ≤ ‖a‖op.
To see this, let b ∈ M∞ and B ∈ B(`2) be the operator corresponding to b. If A ∈ B(`2)
is the operator corresponding to a, we have by general operator theory that the norm
of the operator A ⊗ B ∈ B(`2 ⊗ `2) is equal to ‖A‖op‖B‖op. Identifying `2 ⊗ `2 with
`2(N × N), and letting P ∈ B(`2 ⊗ `2) be the projection on the closed linear span of
{ei ⊗ ei}i∈N, we see that the matrix (ai,jbi,j)i,j corresponds to the operator P (A⊗B)P .
Thus, ‖Sa(B)‖op = ‖P (A⊗B)P‖op ≤ ‖A‖op‖B‖op, and the claim follows.
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We summarise the above inclusions:

M∞ ⊆ S(N,N) ⊆ `∞(N× N).

Both of them are strict: for the first one, take the constant function 1 taking the value 1
on N × N. Obviously, 1 is a Schur multiplier (in fact, S1 is the identity transformation)
but does not belong toM∞ since the rows and columns of the matrices inM∞ are square
summable. The fact that the second inclusion is strict is much more subtle. An example
of a function which belongs to `∞(N×N) but not to S(N,N) is the characteristic function
χ∆ of the set ∆ = {(i, j) : j ≤ i}, see for example [12].

The question that arises is: “which” functions are Schur multipliers? The following
description was obtained by Grothendieck [20]:

Theorem 1.1. Let ϕ ∈ `∞(N× N). The following are equivalent:

(i) ϕ is a Schur multiplier and ‖ϕ‖m < C;
(ii) There exist families {ak}k∈N, {bk}k∈N ∈ `∞ such that

sup
i∈N

∞∑
k=1

|ak(i)|2 < C, sup
j∈N

∞∑
k=1

|bk(j)|2 < C

and

ϕ(i, j) =
∞∑
k=1

ak(i)bk(j), for all i, j ∈ N.

Suppose that we are given two finite families {ak}Nk=1, {bk}Nk=1 ⊆ `∞ and let ϕ ∈
`∞(N×N) be the function given by ϕ(i, j) =

∑N
k=1 ak(i)bk(j). For a ∈ `∞, let Da ∈ B(`2)

be the operator whose matrix has the sequence a down its main diagonal and zeros
everywhere else. An easy computation shows that ϕ is a Schur multiplier and that, in fact,

Sϕ(T ) =
N∑
k=1

DakTDbk , T ∈ B(`2).

The transformations on B(`2) obtained in this way belong to the important class of
elementary operators. The norm of this operator, and hence ‖ϕ‖m, is bounded by(

sup
i∈N

N∑
k=1

|ak(i)|2 sup
j∈N

N∑
k=1

|bk(j)|2
)1/2

.

In fact, for f , g ∈ `2 we have

|(Sϕ(T )f, g)| =
∣∣∣( N∑

k=1

DakTDbkf, g
)∣∣∣ ≤ N∑

k=1

|(TDbkf,D
∗
ak
g)|

≤
N∑
k=1

‖TDbkf‖‖D∗akg‖

≤
( N∑
k=1

‖T‖2‖Dbkf‖2
)1/2( N∑

k=1

‖D∗akg‖
2
)1/2
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= ‖T‖
( N∑
k=1

D∗bkDbkf, f
)1/2( N∑

k=1

DakD
∗
ak
g, g
)1/2

≤ ‖T‖
∥∥∥ N∑
k=1

D∗bkDbk

∥∥∥1/2∥∥∥ N∑
k=1

DakD
∗
ak

∥∥∥1/2

‖f‖‖g‖, (1)

which proves the claim.
If ϕ is an arbitrary Schur multiplier and {ak}k∈N and {bk}k∈N are families arising

in Grothendieck’s description, then letting ϕN be the function given by ϕN (i, j) =∑N
k=1 ak(i)bk(j), N ∈ N, we have that ϕN → ϕ pointwise and, moreover (using again

Grothendieck’s theorem), the norms ‖ϕN‖m are uniformly bounded in N . Thus, the char-
acterisation of Grothendieck can be viewed as a uniform approximation result for Schur
multipliers by “elementary” Schur multipliers.

There is another convenient formulation of Theorem 1.1 which links the subject of
Schur multipliers to Operator Space Theory. Namely, the space of Schur multipliers can
be identified with the extended Haagerup tensor product `∞⊗eh `

∞. For the time being,
let us take this statement as the definition of the space `∞ ⊗eh `

∞; more on this will be
said later.

Truncation of matrices has been important in applications. Suppose that we are given
a matrix — either of finite size, or an element ofM∞. To truncate it along a certain subset
κ ⊆ N × N means to replace it by the matrix that has the same entries on the subset κ
and zeros everywhere else. Obviously, this is precisely the operation of Schur-multiplying
a matrix a ∈ M∞ by χκ. Thus, truncation along κ is a well-defined (and automatically
bounded) transformation on B(`2) if and only if χκ is a Schur multiplier. The Schur
multipliers of this form are precisely the idempotent elements of the Banach algebra
S(N,N).

It is easy to exhibit idempotent Schur multipliers: if {αk}∞k=1 and {βk}∞k=1 are families
of pairwise disjoint subsets of N and κ = ∪∞k=1αk × βk then

Sχκ(T ) =
∞∑
k=1

PkTQk, T ∈ B(`2),

where Pk (resp. Qk) is the projection onto the closed span of {ei : i ∈ αk} (resp. {ei :
i ∈ βk}), and hence ‖χκ‖m ≤ 1. Since S(N,N) is an algebra with respect to pointwise
addition and multiplication, the function χκ is a Schur multiplier for every set κ belonging
to the subset ring generated by the sets of the above form. It is natural to ask whether
the elements of this algebra are all idempotent Schur multipliers. Although the answer
to this question is not known (in fact, the question is one of the difficult open problems
in the area), a related result was recently established by Davidson and Donsig [13]. Let
us call a subset κ ⊆ N×N a Schur bounded pattern if every function ϕ ∈ `∞(N×N)
supported on κ is a Schur multiplier. Obviously, if κ is a Schur bounded pattern then
χκ is a Schur multiplier, and not vice versa (just take κ = N × N). The aforementioned
theorem reads as follows:

Theorem 1.2. Let κ ⊆ N× N. The following are equivalent:

(i) κ is a Schur bounded pattern;
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(ii) there exist sets κr, κc ⊆ N × N and a number N ∈ N such that κr (resp. κc) has
at most N entries in every row (resp. column) and κ = κr ∪ κc.

In fact, the Davidson-Donsig results cover the more general case of non-negative func-
tions ϕ ∈ `∞(N × N) which are “hereditary Schur multipliers” (the terminology is ours)
in the sense that if ψ ∈ `∞(N× N) and |ψ| ≤ ϕ then ψ is a Schur multiplier.

Once there is a complete characterisation of Schur multipliers, it is natural to ask for
a description of certain special classes of Schur multipliers. Say that a Schur multiplier
ϕ is compact if the mapping Sϕ : B(`2) → B(`2) is a compact operator. The following
result was established by Hladnik in [24]:

Theorem 1.3. A Schur multiplier ϕ is compact if and only if a representation can be
chosen for ϕ as in Theorem 1.1 (ii), such that {ak}k∈N, {bk}k∈N ⊆ c0 and the series∑∞
k=1 |ak|2 and

∑∞
k=1 |bk|2 are uniformly convergent.

Positivity is another natural property that a Schur multiplier may (or may not) have:
a Schur multiplier ϕ is called positive if Sϕ(A) is a positive operator for every positive
operator A. The following holds:

Theorem 1.4. A Schur multiplier ϕ is positive if and only if there exists {ak}k∈N ⊆ `∞
such that supi∈N

∑∞
k=1 |ak(i)|2 <∞ and ϕ(i, j) =

∑∞
k=1 ak(i) ak(j), for all i, j ∈ N.

2. Schur multipliers over measure spaces. If ϕ ∈ `∞(N×N) then the operator on the
Hilbert space `2(N×N) of multiplication by ϕ is bounded. If we equip `2(N×N) with the
norm arising from its identification with the space C2(`2) of all Hilbert-Schmidt operators
on `2, then it is easy to see that ϕ is a Schur multiplier if and only if this multiplication
operator is bounded in the operator norm. This approach is useful because it allows us to
study Schur multipliers in a more general setting. To describe this setting, let (X,µ) and
(Y, ν) be standard σ-finite measure spaces. We equip X × Y with the product measure
µ×ν. The space L2(X×Y ) can be canonically identified with the space C2(L2(X), L2(Y ))
of all Hilbert-Schmidt operators from L2(X) into L2(Y ): if f ∈ L2(X ×Y ), let Tf be the
Hilbert-Schmidt operator given by

Tfξ(y) =
∫
X

f(x, y)ξ(x)dµ(x), ξ ∈ L2(X).

For f ∈ L2(X × Y ), let ‖f‖op be the operator norm of Tf .
Now let ϕ ∈ L∞(X×Y ). The operator Sϕ : L2(X×Y )→ L2(X×Y ) of multiplication

by ϕ is bounded in the L2-norm (its norm is equal to ‖ϕ‖∞). If Sϕ is moreover bounded in
‖ ·‖op, that is, if there exists C > 0 such that ‖ϕf‖op ≤ C‖f‖op for every f ∈ L2(X×Y ),
then we call ϕ a Schur µ, ν-multiplier (or simply a Schur multiplier if the measures are
clear from the context). If X = Y = N is equipped with the counting measure, this new
notion reduces to the one described in the previous section.

We note that the property of a function ϕ to be or not to be a Schur multiplier depends
only on the values of the function up to a null with respect to the product measure set.

If ϕ ∈ L∞(X×Y ) is a Schur multiplier then the mapping Sϕ extends by continuity to a
mapping on K(L2(X), L2(Y )); after taking its second dual we arrive at a bounded weak*
continuous linear transformation (which we denote in the same way) on B(L2(X), L2(Y )).
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The multiplier norm ‖ϕ‖m of ϕ is defined as the operator norm of Sϕ. We denote by
S(X,Y ) the set of all Schur multipliers. Clearly, S(X,Y ) is a subalgebra of L∞(X × Y )
(with respect to pointwise multiplication).

Let D1 (resp. D2) be the multiplication masa of L∞(X) (resp. L∞(Y )). We denote
by Ma the element of D1 corresponding to the element a ∈ L∞(X); we use a similar
notation for the operators in D2. If f ∈ L2(X × Y ), a ∈ L∞(X) and b ∈ L∞(Y ),
then MbTfMa = Tf(a⊗b), where (a ⊗ b)(x, y) = a(x)b(y), x ∈ X, y ∈ Y . It follows
that Sϕ is a D2,D1-bimodule map in the sense that Sϕ(BTA) = BSϕ(T )A, for all
T ∈ B(L2(X), L2(Y )), A ∈ D1 and B ∈ D2.

A characterisation similar to the one of Grothendieck also holds in the measurable
setting: the following result was established by Peller [31] (see also Spronk’s paper [38]).

Theorem 2.1. Let ϕ ∈ L∞(X × Y ). The following are equivalent:

(i) ϕ is a Schur multiplier and ‖ϕ‖m < C;
(ii) there exist families {ak}k∈N ⊆ L∞(X) and {bk}k∈N ⊆ L∞(Y ) such that

esssup
x∈X

∞∑
k=1

|ak(x)|2 < C, esssup
y∈Y

∞∑
k=1

|bk(y)|2 < C

and

ϕ(x, y) =
∞∑
k=1

ak(x)bk(y), for almost all (x, y) ∈ X × Y.

We outline the proof of the theorem using results of Smith [37] and Haagerup [21];
this proof relies on the notion of complete boundedness whose mention is deliberately
omitted for the time being but will be discussed in detail later.

Sketch of proof. Assume (X,µ) = (Y, ν) and ϕ is a Schur µ, µ-multiplier with ‖ϕ‖m < C.
Then Sϕ can be extended to a bounded D,D-bimodule map on K(L2(X)), where D is the
multiplication masa of L∞(X). By [37, Theorem 2.1, Theorem 3.1], there exist sequences
{ak}∞k=1 and {bk}∞k=1 in L∞(X) such that ‖

∑∞
k=1MbkM

∗
bk
‖‖
∑
M∗akMak‖ = ‖ϕ‖2m and,

for all T ∈ K(L2(X)),

Sϕ(T ) =
∞∑
k=1

MbkTMak , (2)

where the sum on the right hand side converges in the strong operator topology. Let ψ ∈
L∞(X ×X) be the function given by ψ(x, y) =

∑∞
k=1 ak(x)bk(y). For all f ∈ L2(X ×X)

we have Sϕ(Tf ) = Tϕf and
∑∞
k=1MbkTfMak = Tψf . We obtain that ϕ(x, y)f(x, y) =

ψ(x, y)f(x, y) for every f ∈ L2(X×X) and this implies that ϕ(x, y) = ψ(x, y) for almost
all (x, y) ∈ X ×X.

To obtain the converse statement one should first note that for a function of the
form ϕ(x, y) =

∑∞
k=1 ak(x)bk(y) we have that the operator Sϕ(T ) is given by (2), for

all T ∈ C2(L2(X)). To complete the proof, one can apply estimation arguments similar
to (1).

Certain notions pertinent to Measure Theory that were initially introduced by Arveson
[1] and later developed in [18] play an important role in the study of measurable Schur
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multipliers. A subset E ⊆ X × Y is called marginally null if E ⊆ (M × Y ) ∪ (X ×N)
for some null sets M ⊆ X and N ⊆ Y . Two measurable sets E,F ⊆ X × Y are called
marginally equivalent if their symmetric difference is marginally null. A measurable
subset κ ⊆ X × Y is called ω-open if κ is marginally equivalent to a subset of the
form ∪∞i=1αi × βi, where αi ⊆ X and βi ⊆ Y are measurable; κ is called ω-closed if its
complement is ω-open. The collection of all ω-open subsets of X × Y is an ω-topology;
that is, a family of sets closed under finite intersections and countable unions, containing
the empty set and the set X × Y . The described ω-topology plays an important role
in the theory of masa-bimodules (see [18]). The morphisms of ω-topological spaces are
ω-continuous mappings – a function f : X × Y → C is ω-continuous if f−1(U) is an
ω-open set for every open subset U ⊆ C. The following was shown in [29]:

Proposition 2.2. If ϕ is a µ, ν-multiplier then there exists an ω-continuous function ψ
such that ϕ and ψ coincide almost everywhere.

From this result, we immediately obtain that if χκ is an idempotent Schur multiplier,
where κ ⊆ X × Y then κ is differs by a null set from a subset that is both ω-closed and
ω-open. This fact was pointed out in [27].

The predual of B(L2(X), L2(Y )) can be naturally identified with the projective tensor
product L2(X)⊗̂L2(Y ). Suppose that h ∈ L∞(X)⊗̂L2(Y ) and let h =

∑∞
k=1 fk⊗gk be an

associated series for h, where
∑∞
k=1 ‖fk‖22 < ∞ and

∑∞
k=1 ‖gk‖22 < ∞. These conditions

easily imply that the formula

h(x, y) =
∞∑
k=1

fk(x)gk(y), (x, y) ∈ X × Y,

defines a function (which we denote again by h). If the fk’s or the gk’s are replaced by
some equivalent functions (with respect to the measures µ and ν) then the function h

will change only on a marginally null set.
Let Γ(X,Y ) be the set of all functions h defined as above. Another useful result of

Peller [31] identifies S(X,Y ) with the multiplier algebra of Γ(X,Y ). Before its formula-
tion, let us agree to say that two measurable functions are equivalent if they agree almost
everywhere.

Proposition 2.3. A function ϕ ∈ L∞(X × Y ) is a Schur multiplier if and only if ϕh is
equivalent to a function in Γ(X,Y ) for every h ∈ Γ(X,Y ).

Proof. For k ∈ L2(X × Y ) and h ∈ Γ(X,Y ), one has 〈Tk, Th〉 =
∫
khd(µ× ν). It follows

that h ∈ Γ(X,Y ) if and only if

∃C > 0 with
∣∣∣∣∫ khd(µ× ν)

∣∣∣∣ ≤ C‖Tk‖op for all k ∈ L2(X × Y ).

Now we have that if ϕ is a Schur multiplier then∣∣∣∣∫ ϕhkd(µ× ν)
∣∣∣∣ = |〈Sϕ(Tk), Th〉| ≤ |ϕ‖m‖Th‖1‖Tk‖op,

and that this happens if and only if ϕh is equivalent to an element of Γ(X,Y ).
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Conversely, if ϕh is equivalent to an element of Γ(X,Y ) for all h ∈ Γ(X,Y ), then by
the Closed Graph Theorem, the mapping Th 7→ Tϕh on C1(L2(X), L2(Y )) is bounded and

|〈Sϕ(Tk), Th〉| =
∣∣∣∣∫ ϕhkd(µ× ν)

∣∣∣∣ = |〈Tk, Tϕh〉| ≤ C‖Tk‖op‖Th‖1.

Thus, ‖Sϕ(Tk)‖op ≤ C‖Tk‖op.

Measurable Schur multipliers are closely related to the theory of double operator
integrals developed by Birman and Solomyak in a series of papers [3], [4], [5] (see also the
survey paper [6]). We describe here briefly this connection. Let E(·) and F (·) be spectral
measures defined on measure spaces X and Y , and taking values in the projection lattices
of Hilbert spaces H and K, respectively. We fix a scalar valued measure µ (resp. ν) on X
(resp. Y ), equivalent to E (resp. F ). A double operator integral is a formal expression
of the form

IE,Fϕ (T ) =
∫
ϕ(x, y)dE(x)TdF (y), (3)

where ϕ is an essentially bounded function defined on X × Y , and T ∈ B(K,H). A
precise meaning can be given to (3) as follows. Let G be the (unique) spectral measure
defined on the product X × Y of the measure spaces X and Y and taking values in
the projection lattice of the Hilbert space C2(K,H), given on measurable rectangles by
G(α× β)(T ) = E(α)TF (β). For ϕ ∈ L∞(X × Y, µ× ν) and T ∈ C2(K,H), let

IE,Fϕ (T )
def
=
(∫

X×Y
ϕ(x, y)dG(x, y)

)
(T ).

Spectral Theory gives a precise meaning to the right hand side of the above expression,
a well-defined element of C2(K,H). Note that IE,Fϕ (T ) depends only on the equivalence
class (with respect to product measure) of the function ϕ. For some functions ϕ, there
may exist a constant C > 0 such that

‖IE,Fϕ (T )‖op ≤ C‖T‖op; (4)

in this case the mapping IE,Fϕ extends uniquely to a bounded mapping on K(K,H) and,
after taking second duals, to a bounded mapping on B(K,H).

Suppose for a moment that the spectral measures E and F are multiplicity free, that
is, the (abelian) von Neumann algebras generated by their ranges are maximal. It is easy
to note that in this case a function ϕ satisfies the inequality (4) for some constant C > 0
if and only if ϕ is a Schur multiplier.

If E possesses non-trivial multiplicity then one can decompose the Hilbert space H as
a direct integral H =

∫
X
H(x)dµ(x) in such a way that the elements of the abelian

von Neumann algebra generated by E(·) are precisely the diagonal operators. Simi-
larly, K =

∫
Y
K(y)dν(y). The space C2(K,H) possesses a decomposition as C2(K,H) =∫

X×Y C2(K(y), H(x))dµ × ν(x, y). Thus, every element T of C2(K,H) gives rise to an
operator valued “kernel” (T (x, y))x,y. We have that IE,Fϕ (T ) is the operator with corre-
sponding kernel (ϕ(x, y)T (x, y))x,y. In this way, double operator integrals may again be
realised as measurable Schur multipliers.

One application of double operator integrals is to perturbation theory, in particular,
to the study of operators of the form h(A)−h(B) depending on the properties of A−B,
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where A, B are selfadjoint operators and h is a function defined on an interval containing
the spectra of A and B.

Assume h(x) is a uniformly Lipschitz function on R, and let

ȟ(x, y) =
h(x)− h(y)

x− y
.

This function is well-defined and bounded outside the diagonal {(x, x) : x ∈ R}. Since
the diagonal has measure zero, ȟ(x, y) is well defined up to a null set. Thus, extending
it in an arbitrary fashion to a bounded function defined on the whole of R × R always
yields the same element of L∞(R× R) which we again denote by ȟ.

Theorem 2.4 ([6]). Let E(·), F (·) be the spectral measures of A and B respectively.
Suppose that ȟ satisfies (4). Then

h(A)− h(B) = IE,F
ȟ

(A−B)

and hence
‖h(A)− h(B)‖ ≤ C‖A−B‖.

The property of ȟ being a Schur multiplier is closely related to a kind of “operator
smoothness” of h. Let α be a compact set in R. A continuous function h on α is called
Operator Lipschitz on α if there is D > 0 such that

‖h(A)− h(B)‖ ≤ D‖A−B‖

for all selfadjoint operators A, B with spectra in α.

Proposition 2.5. Let I be a compact set. A function ȟ is a Schur multiplier on I × I if
and only if h is Operator Lipschitz on I.

The proof of this result is based on the result by Kissin and Shulman [28] that for all
compact sets I of R a function h is Operator Lipschitz on I if and only if h is commutator
bounded, that is, there exists D > 0 such that for any selfadjoint A with spectrum in I
and any bounded operator X, the inequality

‖h(A)X −Xh(A)‖ ≤ D‖AX −XA‖ (5)

holds. Note also that if A is the multiplication operator (Ag)(x) = xg(x) on L2(I, µ)
and X = Tk, where k(x, y) = (x − y)k1(x, y) for some k1 ∈ L2(I × I, µ × µ), then (5) is
equivalent to

‖Sȟ(Tk)‖ ≤ D‖Tk‖.

For other applications, in particular to differentiation of functions of selfadjoint oper-
ators, we refer the reader to [6], and for more results on applications of Schur multipliers
to operator inequalities to [23].

As the connection with double operator integrals shows, the purpose of introducing
measurable Schur multipliers is not limited to studying the notion in the greatest possi-
ble generality. We now further illustrate this by describing a connection with Harmonic
Analysis. Let G be a locally compact group which we assume for technical simplicity
to be σ-compact. We let Lp(G), p = 1, 2,∞, be the corresponding function spaces with
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respect to the (left) Haar measure. By λ : G → B(L2(G)) we denote the left regular
representation of G; thus, λsf(t) = f(s−1t), s, t ∈ G, f ∈ L2(G). We recall that the
Fourier algebra A(G) of G is the space of all “matrix coefficients of G in its left regular
representation”, that is,

A(G) = {s→ (λsξ, η) : ξ, η ∈ L2(G)}.

If G is commutative, then A(G) is the image of L1(Ĝ) under Fourier transform, where Ĝ is
the dual group ofG. The Fourier algebra of general locally compact groups was introduced
and studied (along with other objects pertinent to Non-commutative Harmonic Analysis)
by Eymard in [19]. It is a commutative regular semi-simple Banach algebra of continuous
functions vanishing at infinity and has G as its spectrum. Moreover, its Banach space
dual is isometric to the von Neumann algebra VN(G) of G, that is, the weakly closed
subalgebra of B(L2(G)) generated by the operator λs, s ∈ G. The duality between these
two spaces is given by the formula 〈λx, f〉 = f(x).

A function ϕ ∈ L∞(G) is called a multiplier of A(G) if ϕf ∈ A(G) for every f ∈ A(G).
The identification of the multipliers of A(G) (which, as is easy to see, form a function
algebra on G) has received a considerable attention in the literature. A classical result in
this direction (see [35]) states that if G is abelian then ϕ is a multiplier of A(G) if and
only if it is the Fourier transform of a complex regular Borel measure on Ĝ.

Up to date, a satisfactory characterisation of the multiplier algebra of A(G) is not
known. There is, however, a neat and useful characterisation of the subalgebra McbA(G)
of completely bounded multipliers of A(G) introduced in [10]. In order to define
these multipliers, we need the notions of an operator space and a completely bounded
map.

An operator space is a complex vector space X for which a norm ‖ · ‖n is given
on the space Mn(X ) of all n by n matrices with entries in X satisfying the following
conditions, called Ruan’s axioms:

(R1) ‖x ⊕ y‖n+m = max{‖x‖n, ‖y‖m}, for all m,n ∈ N and all x ∈ Mn(X ) and
y ∈Mm(X );

(R2) ‖α · x · β‖m ≤ ‖α‖‖β‖‖x‖n, for all x ∈Mn(X ), α ∈Mm,n(C), β ∈Mn,m(C) and
all m,n ∈ N.

In property (R2), we have denoted by · the natural left action of Mm,n on Mn(X ) as
well as the natural right action of Mn,m on Mn(X ). (Here Mk,l is the space of all k by l
complex matrices.) By ‖α‖ we mean the norm of the matrix α ∈Mm,n when considered
as an operator from Cn into Cm (where Cn and Cm are equipped with the `2-norm).

If X and Y are operator spaces and φ : X → Y is a linear map, then one may
consider the maps φ(n) : Mn(X ) → Mn(Y) defined by applying the mapping φ entry-
wise. The map φ is called completely bounded if each φ(n), n ∈ N, is bounded, and
supn∈N ‖φ(n)‖ < ∞. It is called a complete isometry if φ(n) is an isometry for every
n ∈ N. Since complete isometries preserve all the given structure of an operator space,
they constitute the right notion of an isomorphism in the category of operator spaces.

If X is an operator space and X ∗ is its dual Banach space, then the space Mn(X ∗)
can be naturally identified with the space CB(X ,Mn(C)) of all completely bounded
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linear maps from X into Mn(C). If we equip Mn(X ∗) with the norm coming from this
identification, then the obtained family of norms turns X ∗ into an operator space.

If X ⊆ B(H) for some Hilbert space H, then Mn(X ) is naturally embedded into
B(Hn) and hence inherits its operator norm. The family of norms obtained in this way
satisfies Ruan’s axioms. Ruan’s representation theorem asserts that every operator space
is completely isometric to a subspace of B(H), for some Hilbert space H.

After this very brief introduction of the basic notions of Operator Space Theory, we
can return to multipliers. From the last paragraph it follows that every von Neumann
algebra, in particular VN(G), is an operator space. Hence its dual, and therefore its
predual A(G) (which is a subspace of its dual) possesses a canonical operator space
structure. A multiplier ϕ of A(G) is called completely bounded if the mapping f → ϕf

is completely bounded. The following was established by Bożejko and Fendler in [9] (see
also [33]):

Theorem 2.6. If ϕ ∈ L∞(G), let ϕ̃ ∈ L∞(G × G) be the function given by ϕ̃(s, t) =
ϕ(s−1t). A function ϕ ∈ L∞(G) belongs to McbA(G) if and only if the function ϕ̃ is a
Schur multiplier with respect to the left Haar measure.

3. Going non-commutative. Let (X,µ) and (Y, ν) be standard (σ-finite) measure
spaces. It is immediate from the definitions that if ϕ,ψ ∈ S(X,Y ) then SϕSψ = Sϕψ.
Thus, SϕSψ = SψSϕ for every ϕ,ψ ∈ S(X,Y ); in other words, the collection of all
mappings {Sϕ : ϕ ∈ S(X,Y )} is commutative. In view of the contemporary trend in
Functional Analysis to seek non-commutative versions of “classical” notions and results
[7], [16], [30], [34], it is natural to ask whether there is a natural non-commutative,
or “quantised” version of Schur multipliers. This question was pursued by Kissin and
Shulman in [29], and is the topic of this section.

For a Hilbert space H, we write Hd for the (Banach space) dual of H. There exists a
conjugate-linear surjective isometry ∂ : H → Hd given by ∂(x)(y) = (y, x), x, y ∈ H.

Let H and K be Hilbert spaces and θ : H ⊗K → C2(Hd,K) be the natural surjec-
tive isometry from the Hilbert space tensor product H ⊗ K onto the space C2(Hd,K)
of all Hilbert-Schmidt operators from Hd into K given by θ(x ⊗ y)(zd) = (x, z)y. This
identification allows us to equip H ⊗ K with an “operator” norm: if ξ ∈ H ⊗ K, let
‖ξ‖op = ‖θ(ξ)‖op. We call an element ϕ ∈ B(H ⊗K) a concrete operator multiplier
if there exists a constant C > 0 such that ‖ϕξ‖op ≤ C‖ξ‖op, for every ξ ∈ H ⊗ K.
We call the smallest possible constant C with this property the concrete multiplier
norm of ϕ. It follows from this definition that the set M(H,K) of all concrete oper-
ator multipliers on H ⊗ K is a subalgebra of B(H ⊗ K). It is also immediate that if
H = L2(X,µ) and K = L2(Y, ν) for some standard measure spaces (X,µ) and (Y, ν)
and ϕ is the multiplication operator on L2(X × Y ) = L2(X) ⊗ L2(Y ) corresponding to
a function ϕ̃ ∈ L∞(X × Y ) then ϕ is a concrete operator multiplier if and only if ϕ̃ is
a Schur µ, ν-multiplier. Thus, the algebra M(H,K) contains S(X,Y ) as a commutative
subalgebra. Note that there are “many” commutative subalgebras of M(H,K) of this
form, one for each realisation of H and K as L2-spaces over some standard measure
spaces.
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In the commutative theory, a special attention has been paid to the case where the
measure spaces (X,µ) and (Y, ν) are regular Borel spaces of complete metrisable topolo-
gies, and the multipliers ϕ are continuous functions on X × Y . The non-commutative
expression of continuous functions is given in terms of C*-algebras. Therefore, it is natu-
ral to extend the setting of concrete operator multipliers given above as follows. Suppose
that A and B are unital C*-algebras and π : A → B(Hπ) and ρ : B → B(Hρ) are
*-representations. It is well-known that there exists a unique *-representation π ⊗ ρ of
the minimal tensor product A ⊗ B of A and B on Hπ ⊗ Hρ. An element ϕ ∈ A ⊗ B is
called a π, ρ-multiplier [29] if (π⊗ρ)(ϕ) is a concrete operator multiplier. We let ‖ϕ‖π,ρ
be the concrete operator multiplier norm of (π ⊗ ρ)(ϕ).

Let Mπ,ρ(A,B) be the set of all π, ρ-multipliers. It is immediate that Mπ,ρ(A,B) is
a subalgebra of A ⊗ B containing the algebraic tensor product A � B. To see the last
statement, note that if a ∈ A and b ∈ B then θ((π ⊗ ρ)(a ⊗ b)(ξ)) = ρ(b)θ(ξ)π(a)d, for
every ξ ∈ Hπ ⊗Hρ; we hence have that ‖a⊗ b‖π,ρ ≤ ‖a‖‖b‖.

We let M(A,B) = ∩π,ρMπ,ρ(A,B) where the intersection is taken over all representa-
tions π of A and ρ of B. The elements of M(A,B) are called universal multipliers. By
the previous paragraph, every element of the algebraic tensor product A�B is a universal
multiplier. It is not difficult to see that if ϕ ∈ M(A,B) then ‖ϕ‖m

def
= supπ,ρ ‖ϕ‖π,ρ is

finite; we call ‖ϕ‖m the (universal) multiplier norm of ϕ.
Two immediate questions arise:

(a) How does the algebra Mπ,ρ(A,B) depend on π and ρ?
(b) Is there a characterisation of its elements extending Grothendieck-Peller’s char-

acterisation of Schur multipliers?

It was observed by Kissin and Shulman [29] that (a) is related to the notion of ap-
proximate equivalence of representations due to Voiculescu [41] and its extension, the
approximate sub-ordinance introduced by Hadwin [22]. We recall these notion here. Let
π and π′ be ∗-representations of a C∗-algebra A on Hilbert spaces H and H ′, respectively.
We say that π′ is approximately subordinate to π and write π′

a
� π if there is a net {Uλ}

of isometries from H ′ to H such that

‖π(a)Uλ − Uλπ′(a)‖ → 0 for all a ∈ A. (6)

The representations π′ and π are said to be approximately equivalent if the operators Uλ
can be chosen to be unitary; in this case we write π′ a∼ π.

The following result was established in [29]:

Theorem 3.1 (Comparison Theorem). Let A and B be C*-algebras and π, π′ (resp. ρ, ρ′)
be representations of A (resp. B). Suppose that π′

a
� π and ρ′

a
� ρ. Then Mπ,ρ(A,B) ⊆

Mπ′,ρ′(A,B). Moreover, if ϕ ∈Mπ,ρ(A,B) then ‖ϕ‖π′,ρ′ ≤ ‖ϕ‖π,ρ.
In particular, if π′ a∼ π and ρ′ a∼ ρ then Mπ,ρ(A,B) = Mπ′,ρ′(A,B) and ‖ϕ‖π′,ρ′ =

‖ϕ‖π,ρ for every ϕ ∈Mπ,ρ(A,B).

We note that, by [22], π′
a
� π if and only if

rankπ′(a) ≤ rankπ(a), for every a ∈ A.
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Theorem 3.1 has some interesting consequences about measurable and classical Schur
multipliers [29]:

Corollary 3.2. Let X and Y be locally compact Hausdorff spaces with countable bases,
and let µ and µ′ (resp. ν and ν′) be σ-finite Borel measures on X (resp. Y ). Suppose
that suppµ′ ⊆ suppµ and supp ν′ ⊆ supp ν. Then every µ, ν-multiplier in C0(X × Y ) is
also a µ′, ν′-multiplier.

In particular, if suppµ = X and supp ν = Y then an element ϕ ∈ C0(X × Y ) is a
µ, ν-multiplier if and only if ϕ is a classical Schur multiplier on X × Y .

There is a version of the last result for functions ϕ that are not required to be con-
tinuous [29]:

Theorem 3.3. Let (X,µ) and (Y, ν) be standard σ-finite measure spaces and let ϕ ∈
L∞(X × Y ) be an ω-continuous function. The following are equivalent:

(i) ϕ is a µ, ν-multiplier;
(ii) there exist null sets X0 ⊆ X and Y0 ⊆ Y such that the restriction ϕ̃ of ϕ to

(X \X0)× (Y \ Y0) is a classical Scur multiplier.
Moreover, if (i) holds then the sets X0 and Y0 can be chosen in such a way that the

µ, ν-multiplier norm of ϕ equals the classical Schur multiplier norm of ϕ̃.

We now address Question (b) above concerning the characterisation of operator mul-
tipliers. At the moment, no such characterisation is known for the classes Mπ,ρ(A,B).
The reason lies in the lack of complete boundedness, which we now explain. Suppose
that A ⊆ B(H) and B ⊆ B(K) are concrete C*-algebras, and take an element ϕ ∈
Mid,id(A,B), where id denotes the identity representations of A and B on H and K, re-
spectively. Since ϕ is a concrete operator multiplier on H⊗K, we have that the mapping
Sϕ : C2(Hd,K) → C2(Hd,K) given by Sϕ(θ(ξ)) = θ(ϕξ), has a canonical extension to a
bounded mapping (denoted in the same way) Sϕ : K(Hd,K)→ K(Hd,K). By passing to
second duals, we arrive at a bounded mapping S∗∗ϕ : B(Hd,K)→ B(Hd,K). In general,
however, the mappings Sϕ and S∗∗ϕ need not be completely bounded. If ϕ is assumed to
lie in the smaller class M(A,B) of universal multipliers, then the mappings Sϕ and S∗∗ϕ
turn out to be completely bounded. This can be seen by considering the n-fold amplia-
tions id(n) of the identity representations of A and B. In fact, the following statement [25]
shows that in order to decide whether an element ϕ ∈ A⊗ B is a universal multiplier, it
suffices to check that it is an id(n), id(n)-multiplier for all n ∈ N. The proof of this result
uses the Comparison Theorem 3.1.

Proposition 3.4. Let A ⊆ B(H) and B ⊆ B(K). An element ϕ ∈ A ⊗ B is a universal
multiplier if and only if the (weak* continuous) mapping S∗∗ϕ is completely bounded.

The structure of normal (that is, weak* continuous) completely bounded maps on
B(K,H) is well understood. We recall a well-known result of Haagerup [21]: a mapping
Φ : B(K,H) → B(K,H) is normal and completely bounded if and only if there exist
families {ak}∞k=1 ⊆ B(H) and {bk}∞k=1 ⊆ B(K) such that the series

∑∞
k=1 aka

∗
k and
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k=1 b

∗
kbk are weak* convergent and

Φ(x) =
∞∑
k=1

akxbk, for all x ∈ B(K,H).

Thus, one may associate with every normal completely bounded map Φ on B(K,H) a
formal series

∑∞
k=1 ak ⊗ bk where the families {ak}∞k=1 ⊆ B(H) and {bk}∞k=1 ⊆ B(K) are

assumed to satisfy the above convergence conditions. Two such formal series are identified
if the corresponding mappings are equal. The collection of all such series is known as the
weak* (or the extended) Haagerup tensor product of B(H) and B(K) and denoted by
B(H)⊗ehB(K). In fact, B(H)⊗ehB(K) can be viewed as a certain weak completion of the
algebraic tensor product B(H)�B(K) (see [8] where this tensor product was introduced).

The weak* Haagerup tensor product can be defined for any pair of dual operator
spaces X ∗ and Y∗ and is the dual operator space of the Haagerup tensor product
X ⊗h Y of X and Y. The latter is the tensor product that linearises completely bounded
bilinear mappings. These are defined as follows: Suppose that φ : X × Y → Z is a
bilinear mapping, where Z is another operator space. One may define the mappings φ(n) :
Mn(X ) ×Mn(Y) → Mn(Z), n ∈ N, by φ(n)((xi,j), (yk,l)) = (

∑n
k=1 φ(xi,k, yk,j)i,j . The

mapping φ is called completely bounded if ‖φ‖cb
def
= supn∈N ‖φ(n)‖ < ∞. The operator

space X ⊗h Y has the property that for every completely bounded bilinear mapping
φ : X × Y → Z the linearised mapping φ̃ is completely bounded as a map from X ⊗h Y
into Z with the same cb norm. We note that we will introduce later a generalisation of
the above notion of complete boundedness to multilinear maps.

The correspondence between elements of B(H) ⊗eh B(K) and normal completely
bounded mappings on B(K,H) is bijective; if u ∈ B(H) ⊗eh B(K), we write Φu for
the corresponding mapping. The space B(H) ⊗eh B(K) is an operator space in its own
right (indeed, we have the completely isometric identification B(H)⊗ehB(K) = (C1(H)⊗h

C1(K))∗), and the norm ‖u‖eh of an element u is equal to the completely bounded norm
of Φu.

The extended Haagerup tensor product can be defined for every pair of operator spaces
[17]. To do this, we follow the approach given in [38]. Let E ⊆ B(H) and F ⊆ B(K) be
norm closed subspaces. Then the extended Haagerup tensor product E ⊗eh F of E and F
is the subspace

{u ∈ B(H)⊗eh B(K) : id⊗ω(u) ∈ E , τ ⊗ id(u) ∈ F , ∀ ω ∈ B(K)∗, τ ∈ B(H)∗}.

Here, id⊗ω (resp. τ⊗ id) is the left (resp. right) slice map from B(H)⊗ehB(K) into B(H)
(resp. B(K)) along the functional ω (resp. τ). The fact that these maps are well-defined
needs a justification that we omit.

The extended Haagerup tensor product of operator spaces is functorial: if f : E → E ′
and g : F → F ′ are completely bounded maps then there exists a unique completely
bounded map f⊗g : E ⊗ehF → E ′⊗ehF ′ given on elementary tensors by (f⊗g)(a⊗b) =
f(a)⊗ g(b). Moreover, if f and g are complete isometries then so is f ⊗ g [17].

We now return to universal multipliers. Recall that we have fixed two C*-algebras
A ⊆ B(H) and B ⊆ B(K). Suppose that ϕ ∈ A ⊗ B is a universal multiplier. By
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Proposition 3.4, the map S∗∗ϕ : B(Hd,K) → B(Hd,K) is completely bounded. Thus, by
Haagerup’s result described above, there exists an element u ∈ B(K) ⊗eh B(Hd) such
that S∗∗ϕ = Φu. It was shown in [26] that, in fact, u lies in the extended Haagerup
tensor product B ⊗ehAd, and that it does not depend on the concrete representations of
the C*-algebras A and B that we started with. More precisely, the following “symbolic
calculus” result holds. (We denote by Ao the opposite C*-algebra of A which coincides
with A as an involutive normed linear space but is equipped with the product a ◦ b = ba.
For a representation π : A → B(H) we let πd : Ao → B(Hd) be the representation given
by πd(ao) = π(a)d.)

Theorem 3.5 (Symbolic Calculus for universal multipliers). Let A and B be C*-algebras.
There exists an injective homomorphism ϕ → uϕ from M(A,B) into B ⊗eh Ao with the
following universal property: if π : A → B(H) and ρ : B → B(K) are *-representations
then

S∗∗π⊗ρ(ϕ) = Φρ⊗πd(uϕ).

Moreover, ‖ϕ‖m = ‖uϕ‖eh, and ua⊗b = b⊗ ao, for all a ∈ A, b ∈ B.

We call the element uϕ the symbol of the universal multiplier ϕ. The term “symbolic
calculus” was first used in the context of Schur multipliers by Katavolos and Paulsen [27]
where they explored the correspondence between a measurable Schur multiplier ϕ and
the mapping Sϕ.

Suppose now that ϕ ∈ M(A,B). The corresponding symbol uϕ has an associated
series

∑∞
i=1 bi ⊗ aoi , where ai ∈ A and bi ∈ B, i ∈ N. Let uN =

∑N
i=1 bi ⊗ aoi and

ϕN =
∑N
i=1 ai ⊗ bi ∈ A � B, N ∈ N. By Symbolic Calculus, uϕN = uN ; moreover,

uϕ = w∗-limN→∞ uN . We also have that ‖ϕN‖m = ‖uN‖eh ≤ ‖uϕ‖eh for allN ∈ N. These
observations can be used to prove the next result which is the appropriate generalisation
of Grothendieck’s and Peller’s theorems. Before its formulation, we note that it is easy
to see that, for an element v ∈ B �Ao, we have

‖v‖eh = inf
{∥∥∥ k∑

i=1

did
∗
i

∥∥∥ 1
2
∥∥∥ k∑
i=1

cic
∗
i b
∥∥∥ 1

2
: v =

k∑
i=1

di ⊗ coi
}
.

For en element ψ =
∑k
i=1 ci ⊗ di ∈ A� B, we let ‖ψ‖ph = ‖

∑k
i=1 di ⊗ coi ‖eh.

Theorem 3.6 (Characterisation Theorem). Let A and B be C*-algebras and ϕ ∈ A⊗B.
The following statements are equivalent:

(i) ϕ ∈M(A,B) and ‖ϕ‖m < C;
(ii) there exists a net {ϕα} ⊆ A�B such that ‖ϕα‖ph < C for all α and (π⊗ρ)(ϕα)→α

(π ⊗ ρ)(ϕ) weakly, for every pair π, ρ of irreducible representations of A and B.

In the case A = C(X) and B = C(Y ) are (unital) C*-algebras (X and Y being
compact Hausdorff spaces), we obtain the following fact as a consequence of the Charac-
terisation Theorem, which shows that it does extend Theorem 2.1 to the non-commutative
case: If µ and ν are regular Borel measures on X and Y , respectively, then a function
ϕ ∈ C(X × Y ) is a µ, ν-multiplier if and only if there exist families {ai}∞i=1 ⊆ C(X) and
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{bi}∞i=1 ⊆ C(Y ) such that, if ϕk ∈ C(X × Y ) is given by ϕk(x, y) =
∑k
i=1 ai(x)bi(y),

(x, y) ∈ X×Y , then supk∈N ‖ϕk‖m <∞ and ϕk → ϕ pointwise µ×ν-almost everywhere.
We now turn our attention to a subclass of universal multipliers; in order to define

it we recall a notion of compactness of completely bounded maps introduced by Saar in
[36]. Let E and F be operator spaces and Φ : E → F be a completely bounded map. One
calls Φ completely compact if for every ε > 0 there exists a finite dimensional subspace
F0 ⊆ F such that dist(Φ(n)(x),Mn(F0)) < ε, for every x in the unit ball of Mn(X ), and
for every n ∈ N. Clearly, every completely compact map is compact.

The following characterisation of completely compact maps on K(H) was first ob-
tained by Saar in [36] and later in [26] using a different method.

Theorem 3.7. A completely bounded map Φ : K(H) → K(H) is completely compact if
and only if there exist sequences {ai}, {bi} ⊆ K(H) such that the series

∑∞
i=1 bib

∗
i and∑∞

i=1 a
∗
i ai are norm convergent and

Φ(x) =
∞∑
i=1

bixai, for all x ∈ K(H).

We call an element ϕ ∈M(A,B) a compact (resp. completely compact) multiplier
if there exist faithful representations π and ρ of A and B, respectively, such that the
mapping S∗∗π⊗ρ(ϕ) is compact (resp. completely compact). It is clear that every completely
compact multiplier is compact. It was shown in [26] that an element ϕ ∈ M(A,B) is
(completely) compact if and only if the mapping S∗∗πa,ρa is (completely) compact, where
πa (resp. ρa) is the reduced atomic representation of A (resp. B). This is rather natural to
expect: let us recall a result of Ylinen concerning the compact elements of a C*-algebra.
An element a ∈ A is called compact if the mapping x → axa on A is compact. Ylinen
[42] showed that an element a ∈ A is compact if and only if there exists a faithful
representation π of A such that π(a) is a compact operator; moreover, this happens if
and only if πa(a) is a compact operator.

Let us denote by K(A) the set of all compact elements of A; it is well-known that
K(A) is a closed two sided ideal of A. By virtue of Ylinen’s result, K(A) is *-isomorphic
to a C*-algebra of compact operators, and is hence *-isomorphic to a c0-direct sum of
the form ⊕c0j∈JK(Hj), for some index set J and some Hilbert spaces Hj , j ∈ J .

In the theorem that follows, we view the Haagerup tensor product E ⊗h F of two
operator spaces E and F as sitting completely isometrically in their extended Haagerup
tensor product E ⊗eh F .

Theorem 3.8. Let A and B be C*-algebras and ϕ ∈M(A,B). The following statements
are equivalent:

(i) ϕ is a completely compact multiplier;
(ii) uϕ ∈ K(B)⊗h K(Ao);
(iii) there exists a sequence {ϕk}∞k=1 ⊆ K(A)�K(B) such that ‖ϕ− ϕk‖m →k→∞ 0.

Of course, it is natural to ask what happens if ϕ is only assumed to be a compact
multiplier. One can show [26, Proposition 7.1] that if ϕ ∈M(A,B) is a compact multiplier
then uϕ ∈ K(B) ⊗eh K(Ao); however, the converse statement fails. We do not have at
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present a complete characterisation of the compact universal multipliers; however, the
following “automatic complete compactness” result holds:

Theorem 3.9. Let A and B be C*-algebras. Assume that K(A) ' ⊕c0i∈J1
Mni and K(B) '

⊕c0j∈J2
Mmj , where supi∈J1

ni and supj∈J2
mj are both finite. Then every compact multi-

plier ϕ ∈M(A,B) is automatically completely compact.

We now see that Theorem 3.8 generalises Hladnik’s description of compact Schur
multipliers (Theorem 1.3) since in this case, by Theorem 3.9, every compact multiplier
is automatically completely compact.

In the case that supi∈J1
ni and supj∈J2

mj are both infinite, we were able to exhibit in
[26] a compact multiplier ϕ ∈M(A,B) that is not completely compact. The construction
is based on an example of Saar [36] of a compact completely bounded map on K(H)
which is not completely compact.

In the last result that we mention in this section, an answer is provided to the question
of when every universal multiplier is automatically compact. It is not surprising that finite
dimensionality is crucial for this to happen.

Theorem 3.10. Let A and B be C*-algebras. The following statements are equivalent:

(i) every element of M(A,B) is a compact multiplier;
(ii) either A is finite dimensional and K(B) = B or B is finite dimensional and

A = K(A).

The proof is based, in particular, on a result of Varopoulos [40] showing that if X
and Y are infinite compact Hausdorff spaces then there exists a sequence (fi)∞i=1 ⊆
C(X) ⊗h C(Y ) such that supi∈N ‖fi‖h < ∞ which converges uniformly to a function
f ∈ C(X × Y ) \ C(X) ⊗h C(Y ). By the Characterisation Theorem 3.6, such an f must
belong to M(C(X), C(Y )).

4. Going multidimensional. In the present section we discuss a multidimensional
version of Schur and operator multipliers that was introduced in [25] and later developed
in [26].

If R1, . . . , Rn+1 are rings, Mi is a Ri-left and Ri+1-right module for each i = 1, . . . , n,
and M is an R1-left and Rn+1-right module, a multilinear map Φ : M1 × · · · ×Mn →M

is called R1, . . . , Rn+1-modular (or simply modular if R1, . . . , Rn+1 are clear from the
context) if

Φ(a1m1a2,m2a3, . . . ,mnan+1) = a1Φ(m1, a2m2, a3m3, . . . , anmn)an+1,

for all mi ∈Mi (i = 1, . . . , n) and aj ∈ Rj (j = 1, . . . , n+ 1).
A multilinear Schur product was introduced by Effros and Ruan [15] as a multilinear

map T : Mn(C)× · · · ×Mn(C)︸ ︷︷ ︸
r

→Mn(C) which is Dn, . . . , Dn︸ ︷︷ ︸
r+1

-modular, where Dn is the

algebra of all diagonal matrices in Mn(C).
It is not difficult to see that any such mapping T has the form

T (ar, . . . , a1)i,j =
∑

(k1,...,kr−1)

A
kr−1...k1
i,j ari,kr−1

ar−1
kr−1,kr−2

. . . a1
k1j ,
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where ai = (aik,l)k,l and, given the usual matrix units ei,j ∈Mn(C),

A
kr−1...k1
i,j = T (ei,kr−1 , ekr−1,kr−2 . . . ek1,j)i,j .

The following theorem gives a characterisation of all bounded multilinear Schur prod-
ucts.

Theorem 4.1. Suppose T : Mn(C)× · · · ×Mn(C)︸ ︷︷ ︸
r

→Mn(C) is a multilinear Schur prod-

uct map. Then the following are equivalent:

(i) the linearisation of T is a contraction for the Haagerup norm;
(ii) there exists a Hilbert space H, 2n contractions a1(j) ∈ B(H,C), ar(i) ∈ B(C, H),

i, j = 1, . . . , n and nr−1 contractions al(k) ∈ B(H), l = 2, . . . , r − 1, k = 1, . . . , n such
that

A
kr−1...k1
i,j = ar(i)ar−1(kr−1) . . . a2(k1)a1(j).

The theorem was proved in [15] for a complete contraction T . A generalisation of
Smith’s result [37, Theorem 2.1] to the mutlidimensional setting, [25, Lemma 3.3], giving
that any Dn, Dn-modular contraction T is a complete contraction allows us to formulate
the statement in this generality. More about completely bounded multilinear maps will
be said later.

We now introduce multidimenisonal measurable Schur multipliers following [25].
Let (Xi, µi), i = 1, . . . , n, be standard σ-finite measure spaces. For notational conve-

nience, integration with respect to µi will be denoted by dxi. Let

Γ(X1, . . . , Xn) = L2(X1 ×X2)� L2(X2 ×X3)� · · · � L2(Xn−1 ×Xn),

where each product Xi ×Xi+1 is equipped with the corresponding product measure.
We identify the elements of Γ(X1, . . . , Xn) with functions on

X1 ×X2 ×X2 × · · · ×Xn−1 ×Xn−1 ×Xn

in the obvious fashion and equip Γ(X1, . . . , Xn) with two norms; one is the projective
norm ‖·‖2,∧, where each of the L2-spaces is equipped with its L2-norm, and the other is the
Haagerup tensor norm ‖ · ‖h, where the L2-spaces are given their opposite operator space
structure arising from the identification of L2(X × Y ) with the class of Hilbert-Schmidt
operators from L2(X) into L2(Y ) given by f 7→ Tf .

For each ϕ ∈ L∞(X1×· · ·×Xn), we consider a linear map Sϕ defined on Γ(X1, . . . , Xn)
and taking values in L2(X1 ×Xn): for a tensor f1 ⊗ · · · ⊗ fn−1 ∈ Γ(X1, . . . , Xn), we set
Sϕ(f1 ⊗ · · · ⊗ fn−1)(x1, xn) to be equal to∫

X2×···×Xn−1

ϕ(x1, . . . , xn)f1(x1, x2)f2(x2, x3) . . . fn−1(xn−1, xn)dx2 . . . dxn−1. (7)

One can show that Sϕ is bounded from (Γ(X1, . . . , Xn), ‖·‖2,∧) into (L2(X1×Xn), ‖·‖2).
Moreover, any multilinear bounded map S : L2(X1×X2)×L2(X2×X3)×· · ·×L2(Xn−1×
Xn) → L2(X1 × Xn) which is L∞(X1), . . . L∞(Xn)-modular is given by (7) in analogy
with Effros-Ruan’s multilinear Schur product.

If, moreover, Sϕ is bounded from (Γ(X1, . . . , Xn), ‖ · ‖h) into (L2(X1 ×Xn), ‖ · ‖op),
that is, if there exists C > 0 such that ‖Sϕ(F )‖op ≤ C‖F‖h, for all F ∈ Γ(X1, . . . , Xn),
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then we say that ϕ is a Schur µ1, . . . , µn-multiplier or simply a Schur multiplier, if the
measures are clear from the context. The smallest constant C with this property will be
denoted by ‖ϕ‖m.

We note also that if Hi = L2(Xi), Di = {Mψ : ψ ∈ L∞(Xi)}, i = 1, . . . , n, and

Ŝϕ : C2(H1, H2)× · · · × C2(Hn−1, Hn)→ C2(H1, Hn)

is the map defined by Ŝϕ(Tf1 , . . . , Tfn−1) = TSϕ(f1,...,fn−1), then if ai ∈ L∞(Xi), i =
1, . . . , n, and ϕ(x1, . . . , xn) = a1(x1) . . . an(xn), we obtain

Ŝϕ(Tf1 , . . . , Tfn−1) = ManTfn−1Man−1 . . . Tf1Ma1 .

The next theorem generalizes Theorem 2.1 to the multidimensional case giving a
characterisation of all Schur multipliers in L∞(X1 × . . .×Xn).

Theorem 4.2. Let ϕ ∈ L∞(X1 × · · · ×Xn). The following are equivalent:

(i) ϕ is a Schur multiplier and ‖ϕ‖m < C;
(ii) there exist essentially bounded functions a1 : X1 → M∞,1, an : Xn → M1,∞ and

ai : Xi →M∞, i = 2, . . . , n− 1, such that, for almost all x1, . . . , xn we have

ϕ(x1, . . . , xn) = an(xn)an−1(xn−1) . . . a1(x1) and esssup
xi∈Xi

n∏
i=1

‖ai(xi)‖ < C.

The proof is based on the fact that if ϕ is a Schur multiplier then Ŝϕ gives rise to a
multilinear map from B(Hn−1, Hn)×· · ·×B(H1, H2) into B(H1, Hn) which is completely
bounded, normal and Dn, . . . ,D1-modular, and a characterisation of such maps given by
Christensen and Sinclair [11].

The space of all functions satisfying condition (ii) of Theorem 4.2 can be identified
with the extended Haagerup tensor product L∞(X1) ⊗eh . . . ⊗eh L

∞(Xn) which will be
discussed later.

In the same way two dimensional Schur multipliers are related to double operator
integrals, multidimensional Schur multipliers are related to multiple operator integrals
studied recently by Peller in [32]. This notion is important due to its application to the
study of higher order differentiability of functions of operators.

To define multiple operator integrals we fix spectral measures E1(·), . . . , En(·) on
X1, . . . , Xn, respectively. Let µ1, . . . , µn be scalar measures equivalent to E1, . . . , En,
respectively. Consider the space of all functions ϕ for which there exists a measure space
(T , ν) and measurable functions gi on Xi × T such that

ϕ(x1, . . . , xn) =
∫
T
g1(x1, t) . . . gn(xn, t)dν(t), (8)

for almost all x1, . . . , xn, where∫
T
‖g1(·, t)‖∞ . . . ‖gn(·, t)‖∞dν(t) <∞.

The space is called the integral projective tensor product of L∞(X1), . . . , L∞(Xn) and
denoted by L∞(X1)⊗̂i . . . ⊗̂iL∞(Xn).

In the case n = 2 this space coincides with the space of all Schur multipliers by [31].
For n > 2 we can only show that the space consists of Schur multipliers.
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For ϕ ∈ L∞(X1)⊗̂i . . . ⊗̂iL∞(Xn) and (n− 1)-tuple (T1, . . . , Tn−1) of bounded oper-
ators Peller defines a multiple operator integral by

Iϕ((T1, . . . , Tn−1) =
∫
T

(∫
X1

g1(x1, t)dE1(x1)
)
T1

(∫
X2

g2(x2, t)dE2(x2)
)
T2

. . . Tn−1

(∫
Xn

gn(xn, t)dEn(xn)
)
dν(t).

If the spectral measures are multiplicity free and T1, . . . , Tn−1 are Hilbert-Schmidt oper-
ators with respective kernels f1, . . . , fn−1 then one can easily see that Iϕ(T1, . . . , Tn) is a
Hilbert-Schmidt operator with kernel Sϕ(f1 ⊗ . . .⊗ fn).

Like measurable Schur multipliers, operator multipliers defined by Kissin and Shulman
can be generalised to the multidimensional setting.

Let H1, . . . ,Hn be Hilbert spaces (n is even) and let H = H1 ⊗ · · · ⊗Hn. We define
a Hilbert space HS(H1, . . . ,Hn) isometrically isomorphic to H: we let HS(H1, H2) =
C2(Hd

1 , H2), and by induction define

HS(H1, . . . ,Hn) = C2(HS(H2, H3)d, HS(H1, H4, . . . , )).

Let θ : H⊗K → C2(Hd,K) be the natural surjective isometry from the product of Hilbert
spaces H ⊗ K to the Hilbert space C2(Hd,K) of Hilbert-Schmidt operators defined in
Section 3. We extend this map by induction to the multidimensional case to get a map
θ : H → HS(H1, . . . ,Hn) by letting

θ(ξ2,3 ⊗ ξ) = θ(θ(ξ2,3)⊗ θ(ξ)),

where ξ2,3 ∈ H2 ⊗H3 and ξ ∈ H1 ⊗H4 ⊗ · · · ⊗Hn.
Let Γ(H1, . . . ,Hn) = (H1⊗H2)� (Hd

2 ⊗Hd
3 )� · · · � (Hn−1⊗Hn) equipped with the

Haagerup norm ‖ · ‖h where Hi ⊗ Hi+1 is given the operator space structure opposite
to the one arising from the embedding θ : Hi ⊗Hi+1 ↪→ B(Hd

i , Hi+1) (and similarly for
(Hi ⊗Hi+1)d = Hd

i ⊗Hd
i+1).

Fix ϕ ∈ B(H). We define a mapping Sϕ : Γ(H1, . . . ,Hn) → B(Hd
1 , Hn) as follows: if

ζ ∈ Γ(H1, . . . ,Hn) is an elementary tensor, namely,

ζ = ξ1,2 ⊗ ηd
2,3 ⊗ ξ3,4 ⊗ · · · ⊗ ξn−1,n,

we let
Sϕ(ζ) = θ(ϕ(ξ1,2 ⊗ · · · ⊗ ξn−1,n)(θ(ηd

2,3)) . . . (θ(ηd
n−2,n−1)).

Using the natural identification, we consider Sϕ as a map from C2(Hd
1 , H2) � . . . �

C2(Hd
n−1, Hn) into B(Hd

1 , Hn) which in particular satisfies the following:

Sa1⊗...⊗an(T1 ⊗ · · · ⊗ Tn−1) = anTn−1 . . . ad
3T2a2T1ad

1

for any a1 ⊗ . . .⊗ an ∈ B(H).
For odd n, a similar definition can be given by “adding” to H1, . . . ,Hn the one-

dimensional Hilbert space C. For technical simplicity from now on we restrict our atten-
tion to the case of even n and refer the reader to [25, 26] for the general case.

We call ϕ a concrete operator multiplier if there exists C > 0 such that

‖Sϕ(ζ)‖op ≤ C‖ζ‖h, for all ζ ∈ Γ(H1, . . . ,Hn).
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As in the two dimensional case, we want to specify classes of “continuous” operator
multipliers. Let Ai be a C*-algebra and πi : Ai → B(Hi) be a representation, i = 1, . . . , n.
An element ϕ ∈ A1⊗· · ·⊗An is called an operator π1, . . . , πn-multiplier if (π1⊗· · ·⊗πn)(ϕ)
is a concrete operator multiplier. We denote the set of all (π1, . . . , πn)-multipliers by
Mπ1,...,πn and denote by ‖ϕ‖π1,...,πn the concrete multiplier norm.

In analogy with the two-dimensional case we say that ϕ is a universal operator mul-
tiplier if it is a π1, . . . , πn-multiplier for all choices of π1, . . . , πn. In this case,

‖ϕ‖m
def
= sup ‖ϕ‖π1,...,πn <∞.

By M(A1, . . . ,An) we will denote the set of all universal operator multipliers. For n = 2
one obtains the notion of universal operator multipliers introduced by Kissin and Shulman
and discussed in Section 3. Moreover, natural analogs of the Comparision Theorem 3.1
and Corollary 3.2 hold in the new multidimensional setting.

As one may expect, multidimensional operator multipliers are related to completely
bounded multilinear maps. We now recall the definition and some related notions.

Let E , E1, . . . , En be closed subspaces of B(H), B(H1), . . . ,B(Hn), respectively. We
denote by E1 � · · · � En the algebraic tensor product of E1, . . . En. Let ak = (aki,j) ∈
Mmk,mk+1(Ek), k = 1, . . . , n. We denote by

a1 � · · · � an ∈Mm1,mn+1(E1 � · · · � En) (9)

the matrix whose i, j-entry is∑
i2,...,in

a1
i,i2 ⊗ a

2
i2,i3 ⊗ · · · ⊗ a

n
in,j .

Let Φ : E1 × · · · × En → E be a multilinear map and

Φ(m) : Mm(E1)×Mm(E2)× · · · ×Mm(En)→Mm(E)

be the multilinear map given by

Φ(m)(a1, . . . , an)i,j =
∑

i2,...,in

Φ(a1
i,i2 , a

2
i2,i3 , . . . , a

n
in,j),

where ak = (aki,j) ∈ Mm(Ek), 1 ≤ i, j ≤ m. The map Φ is called completely bounded if
there exists C > 0 such that for all m ∈ N and all elements ak ∈ Mm(Ek), k = 1, . . . , n,
we have

‖Φ(m)(a1, . . . , an)‖ ≤ C‖a1‖ . . . ‖an‖.

Every completely bounded multilinear map Φ : E1 × · · · × En → E gives rise to a
completely bounded linear map from the Haagerup tensor product E1⊗h · · ·⊗h En into E .

The extended Haagerup tensor product E1⊗eh · · ·⊗eh En is defined in [17] as the space
of all normal (in each variable) completely bounded maps u : E1∗×· · ·×En∗ → C. It was
shown in [17] that if u ∈ E1⊗eh · · ·⊗eh En then there exist index sets J1, J2, . . . , Jn−1 and
matrices a1 = (a1

1,s) ∈M1,J1(E1), a2 = (a2
s,t) ∈MJ1,J2(E2), . . . , an = (ant,1) ∈MJn−1,1(En)

such that if fi ∈ Ei∗, i = 1, . . . , n, then

〈u, f1 ⊗ · · · ⊗ fn〉
def= u(f1, . . . , fn) = 〈a1, f1〉 . . . 〈an, fn〉, (10)



406 I. G. TODOROV AND L. TUROWSKA

where 〈ak, fk〉 =
(
fk(aks,t)

)
s,t

and the product of the (possibly infinite) matrices in (10)
is defined to be the limit of the sums∑

i1∈F1,...,in−1∈Fn−1

f1(a1
1,i1)f2(a2

i1,i2) . . . fn(anin−1,1)

along the net {(F1 × · · · × Fn−1) : Fj ⊆ Jj finite, 1 ≤ j ≤ n− 1}.
We identify u with the matrix product a1 � · · · � an; two elements a1 � · · · � an

and ã1 � · · · � ãn coincide if 〈a1, f1〉 . . . 〈an, fn〉 = 〈ã1, f1〉 . . . 〈ãn, fn〉 for all fi ∈ Ei∗,
i = 1, . . . , n. Moreover,

‖u‖eh = inf{‖a1‖ . . . ‖an‖ : u = a1 � · · · � an}.

There is a natural bijection γ between the extended Haagerup tensor product B(H1)
⊗eh · · · ⊗eh B(Hn) and the space of multilinear normal completely bounded maps from
B(H2, H1) × . . . × B(Hn, Hn−1) to B(Hn, H1) given as follows: if u = A1 � · · · � An ∈
B(H1)⊗eh · · · ⊗eh B(Hn) then

γ(u)(T1, . . . , Tn−1) = A1(T1 ⊗ I)A2 . . . An−1(Tn−1 ⊗ I)An,

for all Ti ∈ B(Hi+1, Hi), i = 1, . . . , n− 1. This is due to Christensen and Sinclair [11].
The connection of multilinear completely bounded maps with universal multidimen-

sional operator multipliers arises as follows. Let Ai be a C∗-algebra, i = 1, . . . , n, and
ϕ ∈M(A1, . . . ,An). Then the map Sϕ is completely bounded for the opposite operator
space structures, and hence has a completely bounded extension to a map

Φϕ :
(
K(Hd

n−1, Hn)⊗h · · · ⊗h K(Hd
1 , H2), ‖ · ‖h

)
→
(
K(Hd

1 , Hn), ‖ · ‖op

)
given by

Φϕ(Tn−1 ⊗ · · · ⊗ T1) = Sϕ(T1 ⊗ · · · ⊗ Tn−1).

Thus, Φ∗∗ϕ is a completely bounded normal map, and the (A′n, (Ad
n−1)′, . . . , (Ad

1)′)-
modularity of Φϕ allows then to define a symbol of a multidimensional universal multi-
plier:

Theorem 4.3. Let A1, . . . ,An be C*-algebras and ϕ ∈ M(A1, . . . ,An). There exists a
unique element uϕ ∈ An ⊗eh Aon−1 ⊗eh · · · ⊗eh A2 ⊗eh Ao1 with the property that if πi
is a representation of Ai for i = 1, . . . , n then the map Φπ1⊗···⊗πn(ϕ) coincides with the
restriction of γ(πn ⊗eh πd

n−1 ⊗eh . . .⊗eh πd
1 (uϕ)).

The map ϕ→ uϕ is linear and if ai ∈ Ai, i = 1, . . . , n then ua1⊗···⊗an = an ⊗ aon−1 ⊗
· · · ⊗ ao1. Moreover, ‖ϕ‖m = ‖uϕ‖eh.

The notion of completely compact map, completely compact and compact multipliers
have natural extensions to the mutlidimensional case. Namely, if Y,X1, . . . ,Xn are oper-
ator spaces and Φ : X1 × · · · ×Xn → Y is a completely bounded multilinear map, we call
Φ completely compact if for each ε > 0 there exists a finite dimensional subspace F ⊆ Y
such that

dist(Φ(m)(x1, . . . , xn),Mm(F )) < ε,

for all xi ∈Mm(Xi), ‖xi‖ ≤ 1, i = 1, . . . , n, and all m ∈ N. We denote by CC (X1 × · · · ×
Xn,Y) the space of all completely bounded completely compact multilinear maps from
X1 × · · · × Xn into Y.
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Let Ai be a C∗-algebra, i = 1, . . . , n. We define Mcc(A1, . . . ,An) (resp. Mc (A1,

. . . , An) and Mff (A1, . . . ,An)) as the set of all ϕ ∈M(A1, . . . ,An) such that there exist
faithful representations π1, . . . , πn ofA1, . . . ,An with the property that if π = π1⊗· · ·⊗πn
then Φπ(ϕ) is completely compact (resp. Φπ(ϕ) is compact and the range of Φπ(ϕ) is a
finite dimensional space of finite-rank operators).

Let
Kh

def= K(H2, H1)⊗h · · · ⊗h K(Hn, Hn−1).

Saar’s result (Theorem 3.7) has the following generalisation:

Theorem 4.4. The operator space E def= K(H1)⊗h (B(H2)⊗eh · · ·⊗ehB(Hn−1))⊗hK(Hn)
is isometrically isomorphic to F def= CC (Kh,K(Hn, H1)) via the restriction of γ to E.

This leads to the following characterisation of completely compact universal multipli-
ers in terms of their symbols:

Theorem 4.5. Let A1, . . . ,An be C*-algebras and ϕ ∈ M(A1, . . . ,An). The following
are equivalent:

(i) ϕ ∈Mcc(A1, . . . ,An);
(ii) uϕ ∈ K(An)⊗h (Aon−1 ⊗eh · · · ⊗eh A2)⊗h K(Ao1)
(iii) there exists a net {ϕα}α ⊆Mff (A1, . . . ,An) such that ‖ϕα − ϕ‖m →α 0.

The important point to note here is that there is no direct correspondence to the
two-dimensional case: the space CC (Kh,K(Hn, H1)) is not isometrically isomorphic to
K(H1)⊗h K(H2)⊗h . . .⊗h K(Hn), and the symbol of a completely compact map maybe
an element of a space bigger than K(An)⊗h K(Aon−1)⊗h . . .⊗h K(Ao1), contrary to what
one may expect by following the analogy with the two-dimensional case.

The property of the set of universal completely compact multipliers in A1 ⊗ · · · ⊗An
to coincide with the set of compact universal multipliers depends only on the structure
of compact elements of A1 and An and not on Ak, k = 2, . . . , n − 1. The conditions on
K(A1) and K(An) are exactly the ones given in Theorem 3.9.

We shall end the section by describing an application of multidimensional Schur mul-
tipliers to abstract harmonic analysis. Let G be a locally compact, σ-compact group and
let A(G) be the Fourier algebra of G. We recall that λ denotes the left regular represen-
tation of G on L2(G). Since A(G) is the predual of the von Neumann algebra VN(G), it
possesses a canonical operator structure. Therefore we can define the multidimensional
Fourier algebra as follows:

An(G) = A(G)⊗eh · · · ⊗eh A(G)︸ ︷︷ ︸
n

.

Since VN(G) is generated by λx, x ∈ G, it follows from the definition that the ele-
ments of An(G) can be identified with functions f ∈ L∞(Gn) given by f(xn, . . . , x1) =
Φ(λxn , . . . , λx1), where Φ : VN(G) × · · · × VN(G) → C is a normal completely bounded
multilinear map.

For f ∈ A(G) we define a map θ : A(G)→ An(G) by

θ(f)(xn, . . . , x1) = f(xn . . . x1).
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We call a function ϕ ∈ L∞(Gn) an n-multiplier of A(G) if ϕθ(f) ∈ An(G) whenever
f ∈ A(G). We call ϕ a completely bounded n-multiplier if the mapping f 7→ ϕθ(f) is
completely bounded. The following characterisation, which is a multidimensional version
of Theorem 2.6, was established in [39].

Theorem 4.6. Let ϕ ∈ L∞(Gn). The following are equivalent:

(i) ϕ is a completely bounded n-multiplier;
(ii) the function ϕ̃ ∈ L∞(Gn+1) given by

ϕ̃(x1, . . . , xn) = ϕ(x−1
n+1xn, . . . , x

−1
2 x1)

is a Schur multiplier with respect to the left Haar measure.
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