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Abstract. We consider quantum analogues of locally convex spaces in terms of the non-
coordinate approach. We introduce the notions of a quantum Arens–Michael algebra and a
quantum polynormed module, and also quantum versions of projectivity and contractibility. We
prove that a quantum Arens–Michael algebra is contractible if and only if it is completely iso-
morphic to a Cartesian product of full matrix C∗-algebras. Similar results in the framework of
traditional (non-quantum) approach are established, at the moment, only under some additional
assumptions.

1. Introduction. In this paper, we consider quantum Arens–Michael (
h
⊗-) algebras and

describe (in Theorem 1) those of them whose completely continuous derivations are all
inner, i.e., the so-called contractible algebras. We prove that a quantum Arens–Michael
algebra is contractible if and only if it is completely isomorphic to a Cartesian product of
full matrix algebras. Similar results in the homology of “classical” Arens–Michael algebras
are established, at the moment, only under some additional assumptions (see, e.g., [4,
Theorem IV.5.27], [11, Theorem 5] and [3, Theorem 3.3]). Our theorem can be regarded
as a generalization of the corresponding result (of V. I. Paulsen and R. R. Smith [8])
concerning operator Banach algebras.

2. Quantum polynormed spaces. We shall follow the non-coordinate approach to
the theory of quantum polynormed spaces; its “matricial” variant is presented in [2].

2010 Mathematics Subject Classification: Primary 46L07, 46H20, 46M20; Secondary 46H25.
Key words and phrases: quantum polynormed space, Haagerup tensor product, (quantum)

Arens–Michael
h
⊗-algebra, (quantum polynormed)

h
⊗-module, derivation, contractible algebra.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc91-0-25 [423] c© Instytut Matematyczny PAN, 2010



424 N. V. VOLOSOVA

In formulating definitions and proving essential facts we shall often take after [7], where
a quantization of normed spaces is considered.

Let L be an infinite-dimensional separable Hilbert space, B = B(L) the space (algebra)
of bounded linear operators on L, and F = F(L) the subspace (two-sided ideal) in B
consisting of the finite-rank operators on L.

For ξ, η ∈ L, let ξ © η denote the rank 1 operator ζ 7→ 〈ζ, η〉ξ. Recall that each
bounded rank 1 operator on L has such a form.

Let now E be a linear space. We denote by FE the algebraic tensor product F ⊗ E,
and we write ax for an elementary tensor a⊗ x (a ∈ F , x ∈ E).

The space FE is a B-bimodule with respect to the outer multiplications

a · bx = (ab)x, bx · a = (ba)x (a ∈ B, b ∈ F , x ∈ E).

Let u ∈ FE. A support of the element u is, by definition, every projection (i.e.,
self-adjoint idempotent) P ∈ B such that P · u · P = u. The supports P and Q of two
elements u and v of FE are called orthogonal if PQ = 0.

We shall call the space E a quantum polynormed space if FE is equipped with a family
of semi-norms ‖ · ‖λ (λ ∈ Λ) distinguishing elements of FE and satisfying the following
two conditions (“Ruan’s axioms”):

(R1) for each a ∈ B and u ∈ FE, we have ‖a · u‖λ, ‖u · a‖λ ≤ ‖a‖‖u‖λ,
(R2) for each u, v ∈ FE with orthogonal supports, we have ‖u+v‖λ = max{‖u‖λ, ‖v‖λ}.

Such semi-norms are called quantum semi-norms.
Note that the second condition can be replaced by a weaker one. Namely, if a semi-

norm on FE satisfies the first axiom of Ruan and the following condition:

(R′2) for each u, v ∈ FE with orthogonal supports, we have ‖u+v‖λ ≤ max{‖u‖λ, ‖v‖λ},

then it satisfies the second axiom of Ruan as well (see [7, Proposition 1.1.4]).
It is easily seen that the maximum of a finite number of quantum semi-norms is also a

quantum semi-norm. So we can consider a family of semi-norms on FE being saturated
(i.e., including the maximum of any two semi-norms contained in it) whenever this is
convenient.

For each λ ∈ Λ, we consider the semi-norm on E (denoted also by ‖ · ‖λ) defined, for
x ∈ E, by ‖x‖λ = ‖px‖λ, where p ∈ F is an arbitrary rank 1 projection. As is known
[7, Section 1.2], this semi-norm does not depend on a choice of p. Moreover, we have
‖ax‖λ = ‖a‖‖x‖λ for all a ∈ F and x ∈ E (cf. [7, Proposition 1.2.4]). Thus E becomes
a polynormed space. Since the family of semi-norms ‖ · ‖λ distinguishes elements of FE,
the space E is Hausdorff as well.

Proposition 1 (cf. [7, Proposition 1.2.2]). Let a family of quantum semi-norms ‖ · ‖λ
(λ ∈ Λ) on FE be such that the family of the corresponding semi-norms on E distin-
guishes elements of E. Then the initial family of semi-norms distinguishes elements of
FE.

Proof. Let u ∈ FE, u 6= 0. As is well known (see, e.g., [6, Proposition 2.7.1]), this
element can be represented in the form u =

∑n
k=1 akxk, where a1, . . . , an ∈ F are linearly
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independent, and x1 ∈ E is not zero. Then there exist elements ξ`, η` ∈ L (` = 1, . . . ,m)
such that

∑m
`=1〈akξ`, η`〉 is 1 if k = 1, and 0 otherwise (cf. [6, Proposition 4.2.3]).

Fix an arbitrary e ∈ L with ‖e‖ = 1. Then p = e© e ∈ F is a rank 1 projection. Let
us consider the following element of FE:

v =
m∑
`=1

(e© η`) · u · (ξ`© e) =
m∑
`=1

(e© η`) ·
( n∑
k=1

akxk

)
· (ξ`© e) =

=
∑
k,`

[(e© η`)ak(ξ`© e)]xk =
∑
k,`

[〈akξ`, η`〉p]xk =
( m∑
`=1

〈a1ξ`, η`〉p
)
x1 = px1.

By our assumption, there exists λ ∈ Λ for which

‖x1‖λ = ‖px1‖λ = ‖v‖λ 6= 0.

However, it follows from the triangle inequality and from the first axiom of Ruan that

‖v‖λ ≤
m∑
`=1

‖(e© η`) · u · (ξ`© e)‖λ ≤
m∑
`=1

‖e© η`‖‖u‖λ‖ξ`© e‖,

and hence ‖u‖λ 6= 0.

In particular, if ‖ · ‖λ is a norm on E, then the initial semi-norm ‖ · ‖λ is a norm
on FE.

If E is a polynormed space, then the space FE equipped with a family of quantum
semi-norms which induce the initial topology on E is called a quantization of E.

Note that for a finite-dimensional space there exists a unique, up to a continuous
isomorphism, quantization (this is not true in the general case). In order to prove this,
we shall first show that we can use an equivalent family of quantum norms instead of a
family of quantum semi-norms.

The maximum of several quantum semi-norms is also a quantum semi-norm. Take a
semi-norm ‖ · ‖λ1 from our family and consider the subspace

E1 = {x ∈ E : ‖x‖λ1 = 0}.

If E1 = {0}, then ‖ · ‖λ1 is a norm. Otherwise choose a non-zero x ∈ E1 and a semi-norm
‖ · ‖λ2 such that ‖x‖λ2 6= 0. Obviously,

E2 = {x ∈ E : max{‖x‖λ1 , ‖x‖λ2} = 0}

is a subspace in E1 of dimension less then the dimension of E1. If E2 6= {0}, again choose
a non-zero element in it, and so on. After repeating this procedure a finite number of
times we get no more than n = dimE semi-norms ‖ · ‖λ1 , . . . , ‖ · ‖λk such that

max{‖ · ‖λ1 , . . . , ‖ · ‖λn}

is a norm on E, and hence on FE. We replace each quantum semi-norm by the quantum
norm so obtained, and thus we get a family of quantum norms which is equivalent to the
initial family.
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However, it is known (cf. [7, Proposition 2.2.2(iii)]) that all quantum norms on a finite-
dimensional space are equivalent, which leads to the assertion we prove. In particular, on
FC = F the operator norm is the only (non-zero) quantum semi-norm.

Let E be a quantum polynormed space, and let F be a subspace of E. Then, obviously,
there exists a quantum polynormed space structure on F determined by the restriction
of semi-norms on FE to FF .

Suppose now that E is a quantum polynormed space with a saturated family of
quantum semi-norms ‖ · ‖λ (λ ∈ Λ), and F is a closed subspace of E. Consider the
semi-norms ‖ · ‖∧λ on F(E/F ) defined by

‖ũ‖∧λ = inf{‖u‖λ : u ∈ FE, (1F ⊗ π)u = ũ},

where ũ ∈ F(E/F ), and π : E → E/F is the quotient map.

Proposition 2. The family of semi-norms ‖ · ‖∧λ (λ ∈ Λ) determines a quantization of
the space E/F .

Proof. First we show that each semi-norm ‖ · ‖∧λ on E/F is the quotient semi-norm
corresponding to the semi-norm ‖ · ‖λ on E. This follows from the fact that for each
x̃ ∈ E/F , a rank 1 projection p ∈ B and u ∈ FE such that px̃ = (1F ⊗ π)u we have

(1F ⊗ π)(p · u · p) = p · px̃ · p = px̃,

and moreover ‖p · u · p‖λ ≤ ‖u‖λ and p · u · p = py for some y ∈ E. So

‖x̃‖∧λ = ‖px̃‖∧λ = inf{‖py‖λ : y ∈ E, π(y) = x̃} = inf{‖y‖λ : y ∈ E, π(y) = x̃},

which had to be proved. The subspace F is closed, so the family of quotient semi-norms
distinguishes elements of E/F , and therefore also elements of F(E/F ).

It remains to prove that the semi-norms ‖ · ‖∧λ satisfy the axioms of Ruan:
1. Let ũ ∈ F(E/F ), a ∈ B. For any ε > 0 there exists u ∈ FE such that (1F⊗π)u = ũ

and ‖u‖λ < ‖ũ‖∧λ + ε. Then (1F ⊗ π)(a · u) = a · ũ, and hence

‖a · ũ‖∧λ ≤ ‖a · u‖λ ≤ ‖a‖‖u‖λ < ‖a‖‖ũ‖∧λ + ε‖a‖.

Therefore, ‖a · ũ‖∧λ ≤ ‖a‖‖ũ‖∧λ . Similarly, we obtain the inequality ‖ũ · a‖∧λ ≤ ‖a‖‖ũ‖∧λ .
2. Let ũ, ṽ ∈ F(E/F ), and let P,Q ∈ B be orthogonal supports of ũ and ṽ, respectively.

For every ε > 0 there exist u, v ∈ FE such that (1F ⊗ π)u = ũ, (1F ⊗ π)v = ṽ,
‖u‖λ < ‖ũ‖∧λ + ε and ‖v‖λ < ‖ṽ‖∧λ + ε. Then

(1F ⊗ π)(P · u · P +Q · v ·Q) = P · (1F ⊗ π)u · P +Q · (1F ⊗ π)v ·Q
= P · ũ · P +Q · ṽ ·Q = ũ+ ṽ.

Therefore ‖ũ + ṽ‖∧λ ≤ ‖P · u · P + Q · v ·Q‖λ, and, P and Q being supports of P · u · P
and Q · v ·Q respectively, this implies

‖ũ+ ṽ‖∧λ ≤ max{‖P · u · P‖λ, ‖Q · v ·Q‖λ}
≤ max{‖u‖λ, ‖v‖λ} ≤ max{‖ũ‖∧λ , ‖ṽ‖∧λ}+ ε.

Since this holds for any ε > 0, we have
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‖ũ+ ṽ‖∧λ ≤ max{‖ũ‖∧λ , ‖ṽ‖∧λ},

and hence the semi-norm ‖ · ‖∧λ satisfies the second axiom of Ruan.

Now suppose that E and F are quantum polynormed spaces, and ϕ : E → F is a
linear operator. The operator

ϕ∞ = 1F ⊗ ϕ : FE → FF, ax 7→ aϕ(x),

is called the amplification of ϕ. We shall call ϕ : E → F completely continuous if the op-
erator ϕ∞ : FE → FF is continuous. The following assertion is a “polynormed” analogue
of [7, Theorem 2.2.1].

Proposition 3. Let E be a quantum polynormed space with respect to a family of quan-
tum semi-norms ‖ · ‖λ (λ ∈ Λ), and let f : E → C be a continuous linear functional
such that for some λ ∈ Λ and C > 0 we have |f(x)| ≤ C‖x‖λ for all x ∈ E. Then f is
completely continuous. Moreover, ‖f∞(u)‖ ≤ C‖u‖λ for all u ∈ FE.

Proof. Let u ∈ FE. Since f∞(u) ∈ FC = F is an operator in the Hilbert space L, we
have

‖f∞(u)‖ = sup{|〈f∞(u)ξ, η〉| : ξ, η ∈ L, ‖ξ‖, ‖η‖ ≤ 1}.

Fix an arbitrary e ∈ L with ‖e‖ = 1. Then p = e© e ∈ F is a rank 1 projection. We have

〈f∞(u)ξ, η〉p = 〈f∞(u)ξ, η〉(e© e) = (e© η)(f∞(u)ξ© e)

= (e© η)f∞(u)(ξ© e) = f∞[(e© η) · u · (ξ© e)],

and hence
|〈f∞(u)ξ, η〉| = ‖f∞[(e© η) · u · (ξ© e)]‖.

Note that (e© η) · u · (ξ© e) = pxξ,η for some xξ,η ∈ E. By virtue of the first axiom
of Ruan,

‖xξ,η‖λ = ‖pxξ,η‖λ ≤ ‖e© η‖‖u‖λ‖ξ© e‖ ≤ ‖u‖λ
whenever ‖ξ‖, ‖η‖ ≤ 1. Hence for the same ξ, η ∈ L we have

|〈f∞(u)ξ, η〉| = ‖f∞(pxξ,η)‖ = ‖f(xξ,η)p‖ = |f(xξ,η)| ≤ C‖xξ,η‖λ ≤ C‖u‖λ.

Taking the supremum over all ξ, η ∈ L with ‖ξ‖, ‖η‖ ≤ 1, we see that ‖f∞(u)‖ ≤ C‖u‖λ.

A quantum polynormed space E is said to be complete if its underlying polynormed
space is complete. There exists a way of completing a quantum polynormed space, i.e., of
defining such quantization of E which provides the initial one when restricted to E, with
the obtained quantum polynormed space possessing the following universal property: for
every complete quantum polynormed space F and a completely continuous linear operator
ϕ : E → F there exists a unique completely continuous linear operator ϕ : E → F which
makes the diagram

E

i

��

ϕ

��?
??

??
??

?

E
ϕ // F

(i standing for the continuous embedding of E into its completion) commutative.
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This construction repeats the construction of completing of a quantum normed space
described in [7, Section 3] with replacement of converging sequences by nets and of
bounded and completely bounded linear operators by continuous and completely contin-
uous linear operators, respectively.

If Eσ (σ ∈ S) is a set of quantum polynormed spaces with defining families of semi-
norms ‖·‖σµ (σ ∈ S, µ ∈ Λσ), then the Cartesian product ×σ Eσ is a quantum polynormed
space with respect to the family of quantum semi-norms ‖ · ‖σµ (σ ∈ S, µ ∈ Λσ) on
F(×σ Eσ) determined by

‖u‖σµ = ‖iσ∞(u)‖σµ,

where iσ : ×σ Eσ → Eσ is the natural projection onto Eσ.
Now suppose that E, F and G are quantum polynormed spaces with defining families

of quantum semi-norms ‖ · ‖λ (λ ∈ Λ), ‖ · ‖µ (µ ∈ M) and ‖ · ‖ν (ν ∈ N), respectively.
Let R : E × F → G be a bilinear operator. The bilinear operator

R : FE ×FF → FG, (ax, by) 7→ (ab)R(x, y),

is called the strong amplification of R. We shall call R : E × F → G strongly completely
continuous if the bilinear operator R : FE × FF → FG is continuous. This means,
assuming that the families of quantum semi-norms on E and F are saturated, that for
any ν ∈ N there exist λ ∈ Λ and µ ∈M such that

‖R(u, v)‖ν ≤ C‖u‖λ‖v‖µ
for some C > 0 and for all u ∈ FE, v ∈ FF .

The following assertion is a “polynormed” analogue of [7, Proposition 4.2.2].

Proposition 4. Let f : E → C and g : F → C be continuous linear functionals such
that |f(x)| ≤ C1‖x‖λ for all x ∈ E and |g(y)| ≤ C2‖y‖µ for all y ∈ F . Then the bilinear
functional

f × g : E × F → C, (x, y) 7→ f(x)g(y),

is strongly completely continuous. Moreover, for its strong amplification R we have

‖R(u, v)‖ ≤ C1C2‖u‖λ‖v‖µ
for all u ∈ FE, v ∈ FF .

Proof. For elementary tensors, we have

R(ax, by) = (ab)f(x)g(y) = f∞(ax)g∞(by),

which implies, together with the bilinearity of R, that R(u, v) = f∞(u)g∞(v) for all
u ∈ FE, v ∈ FF . By Proposition 3, we have ‖f∞(u)‖ ≤ C1‖u‖λ and ‖g∞(v)‖ ≤ C2‖v‖µ,
and the desired assertion follows.

3. The Haagerup tensor product. Let E and F be complete quantum polynormed
spaces with corresponding saturated families of semi-norms ‖ · ‖λ (λ ∈ Λ) on FE and
‖ · ‖µ (µ ∈M) on FF . Consider the bilinear operator θ : E×F → E⊗F , (x, y) 7→ x⊗ y,
and its strong amplification Θ: FE ×FF → F(E ⊗ F ). Denote by

� : FE ⊗FF → F(E ⊗ F )
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the linear operator associated with Θ, and, for u ∈ FE and v ∈ FF , use the notation
u� v instead of �(u⊗ v) = Θ(u, v).

Since every element of F is a product of other elements, every elementary tensor and
hence an arbitrary element in F(E ⊗ F ) belongs to the image of �; in other words, the
operator � is surjective. Therefore we can consider F(E ⊗ F ) as a quotient space of
FE ⊗FF , and consequently, for the projective semi-norms on FE ⊗FF , we obtain the
corresponding quotient semi-norms on F(E ⊗F ). Namely, for U ∈ F(E ⊗F ), λ ∈ Λ and
µ ∈M , we define

‖U‖λ,µ = inf
{ n∑
k=1

‖uk‖λ‖vk‖µ
}
,

where the infimum is taken over all representations of U in the form
n∑
k=1

uk � vk (uk ∈ FE, vk ∈ FF ).

We shall show that the family of semi-norms ‖ · ‖λ,µ distinguishes elements of F(E ⊗ F )
and that all these semi-norms satisfy the axioms of Ruan, and thus E ⊗ F becomes a
quantum polynormed space.

Proposition 5. The semi-norms ‖ · ‖λ,µ satisfy the first axiom of Ruan.

The proof is easy.

Proposition 6. Let {G, ‖ · ‖ν (ν ∈ N)} be a quantum polynormed space, R : E×F → G

a bilinear operator such that, for its strong amplification R,

‖R(u, v)‖ν ≤ ‖u‖λ‖v‖µ

for all u ∈ FE and v ∈ FF . Let ρ : E ⊗F → G be the linear operator associated with R.
Then ‖ρ∞(w)‖ν ≤ ‖w‖λ,µ for all w ∈ F(E ⊗ F ).

Proof. The proof is analogous to that of [7, Proposition 6.1.4] with replacement of norms
by corresponding semi-norms.

Proposition 7 (cf. [7, Proposition 6.1.5]). The family of semi-norms ‖·‖λ,µ distinguishes
elements of F(E ⊗ F ).

Proof. By virtue of Proposition 1, it is sufficient to prove that, for each non-zero elemen-
tary tensor aw ∈ F(E ⊗ F ), there exist λ ∈ Λ and µ ∈ M such that ‖aw‖λ,µ 6= 0. It is
not hard to show (cf. [6, Proposition 2.7.6]) that there exist continuous linear functionals
f : E → C and g : F → C such that (f⊗g)(w) 6= 0. Let |f(x)| ≤ C1‖x‖λ for all x ∈ E and
|g(y)| ≤ C2‖y‖µ for all y ∈ F . Then, by Proposition 4, for the strong amplification R of
the bilinear functional f × g and for all u ∈ FE, v ∈ FF we have ‖R(u, v)‖ ≤ ‖u‖λ‖v‖µ.
Therefore, for the functional f ⊗ g associated with f × g, we have (see Proposition 6)

|(f ⊗ g)(w)|‖a‖ = ‖((f ⊗ g)(w))a‖ = ‖(f ⊗ g)∞(aw)‖ ≤ ‖aw‖λ,µ.

Since (f ⊗ g)(w) 6= 0 and a 6= 0, we see that ‖aw‖λ,µ > 0.
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Proposition 8. Each element U ∈ F(E ⊗ F ) can be represented in the form u � v

(u ∈ FE, v ∈ FF ). Moreover, for all λ ∈ Λ, µ ∈M

‖U‖λ,µ = inf{‖u‖λ‖v‖µ},

where the infimum is taken over all possible representations of U in the indicated form.

Proof. First we shall show that in the definition of the semi-norm ‖U‖λ,µ we can take the
infimum over the representations U =

∑n
k=1 uk�vk for which, for all k, either ‖uk‖λ 6= 0

and ‖vk‖µ 6= 0, or ‖uk‖λ = ‖vk‖µ = 0. Indeed, let ε > 0 and let a representation
U =

∑n
k=1 uk � vk be such that

n∑
k=1

‖uk‖λ‖vk‖µ < ‖U‖λ,µ + ε/2. (1)

Take u0 ∈ FE with 0 < ‖u0‖λ < ε/4n and v0 ∈ FF with 0 < ‖v0‖µ < ε/4n. In the
representation U =

∑n
k=1 uk � vk we replace each summand uk � vk with ‖uk‖λ = 0 and

‖vk‖µ 6= 0 by the sum

(uk − u0/‖vk‖µ)� vk + u0/‖vk‖µ � vk,

and similarly we do with those summands for which ‖uk‖λ 6= 0 and ‖vk‖µ = 0. We come
to a representation possessing the desired property. Moreover, the difference between the
sum of the form (1) for this representation and

∑n
k=1 ‖uk‖λ‖vk‖µ is not greater than ε/2,

and hence the first sum mentioned does not exceed ‖U‖λ,µ+ε. Further argument repeats
the proof of [7, Proposition 6.1.6].

Proposition 9. The semi-norms ‖ · ‖λ,µ satisfy the second axiom of Ruan.

Proof. Let elements U, V ∈ F(E ⊗ F ) possess orthogonal supports. If ‖U‖λ,µ = 0, then

‖U + V ‖λ,µ = ‖V ‖λ,µ = max{‖U‖λ,µ, ‖V ‖λ,µ}.

The similar holds in the case ‖V ‖λ,µ = 0. If the semi-norms of both these elements do
not equal zero, then for them the same argument holds which is used for the Haagerup
norm on the tensor product of quantum normed spaces (see [7, Proposition 6.1.7]).

Thus E ⊗ F with the family of semi-norms ‖ · ‖λ,µ is a quantum polynormed space.

We denote its (quantum) completion by E
h
⊗F . This space is called the Haagerup tensor

product of E and F . It follows from Proposition 6 and the universal property of quantum

completion that E
h
⊗F possesses the universal property with respect to the class of strongly

completely continuous bilinear operators. Namely, for any complete quantum polynormed
space G and strongly completely continuous bilinear operator R : E×F → G there exists

a unique completely continuous linear operator ρ : E
h
⊗ F → G such that the diagram

E
h
⊗ F
ρ

��
E × F

θ
::vvvvvvvvv

R
// G

is commutative.
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In the following proposition Ek, Fk (k = 1, 2) are quantum polynormed spaces, and
ϕ : E1 → E2, ψ : F1 → F2 are two completely continuous linear operators. The proof of
the proposition repeats, in essence, the proof of [7, Theorem 6.5.1].

Proposition 10. There exists a completely continuous linear operator

ϕ
h
⊗ ψ : E1

h
⊗ F1 → E2

h
⊗ F2

uniquely determined by

(ϕ
h
⊗ ψ)(x⊗ y) = ϕ(x)⊗ ψ(y) (x ∈ E1, y ∈ F1).

Now suppose that Eσ (σ ∈ S) and F are complete quantum polynormed spaces with
(saturated) defining families of semi-norms ‖ · ‖σµ (σ ∈ S, µ ∈ Λσ) and ‖ · ‖ν (ν ∈ Λ),
respectively. We shall prove the following property of the Haagerup tensor product (cf. [4,
Theorem II.5.19]):

Proposition 11. There exists a complete topological isomorphism between quantum poly-
normed spaces

i : ( ×
σ∈S

Eσ)
h
⊗ F ∼−→ ×

σ∈S
(Eσ

h
⊗ F )

uniquely determined by i({xσ} ⊗ y) = {xσ ⊗ y}, where {xσ} ∈ ×σ Eσ, y ∈ F .

Proof. Consider the bilinear operator

R : ( ×
σ∈S

Eσ)×F → ×
σ∈S

(Eσ
h
⊗ F ), ({xσ}, y) 7→ {xσ ⊗ y}.

Denote by R its strong amplification, and by

iσ : ×
σ∈S

Eσ → Eσ and jσ : ×
σ∈S

(Eσ
h
⊗ F )→ Eσ

h
⊗ F

the natural projections onto respective factors. Then we have

‖R(u, v)‖σµ,ν = ‖jσ∞R(u, v)‖µ,ν = ‖iσ∞(u)� v‖µ,ν ≤ ‖u‖σµ‖v‖ν .

Therefore R is strongly completely continuous. So we define i as the completely continuous
linear operator associated with R.

For each σ ∈ S, let Lσ denote the linear span of elements of the form {xσ}⊗ y, where
y ∈ F and all the coordinates of {xσ} ∈ ×σ Eσ apart from the σ-th are zero. Let L

denote the linear span of all Lσ. Clearly, L is dense in (×σ∈S Eσ)
h
⊗ F , and i(L) is dense

in ×σ∈S(Eσ
h
⊗ F ).

We fix σ1, . . . , σn ∈ S, α = (µ1 ∈ Λσ1 , . . . , µn ∈ Λσn) and ν ∈ Λ, and we denote

by ‖ · ‖α,ν the quantum semi-norm on F((×σ Eσ)
h
⊗ F ) corresponding to the semi-norms

max{‖ · ‖σ1
µ1
, . . . , ‖ · ‖σnµn} and ‖ · ‖ν . Each element u ∈ FL has the form

n∑
k=1

uk +
∑
σ′

vσ′ ,
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where uk ∈ FLσk , vσ′ ∈ FLσ′ and σ′ ∈ S runs over a finite set of indices other than
σ1, . . . , σk. Note that

‖vσ′‖α,ν = ‖i∞(vσ′)‖σkµk,ν = 0 (k = 1, . . . , n).

Also, it is not hard to verify that, for all k,

‖i∞(uk)‖σkµk,ν = ‖uk‖α,ν .

So we have

‖u‖α,ν ≤
n∑
k=1

‖uk‖α,ν +
∑
σ′

‖vσ′‖α,ν =
n∑
k=1

‖i∞(uk)‖σkµk,ν

≤ nmax
k
{‖i∞(uk)‖σkµk,ν} = nmax

k
{‖i∞(u)‖σkµk,ν}.

However, max{‖ · ‖σ1
µ1,ν , . . . , ‖ · ‖

σn
µn,ν} is a semi-norm from the defining family of semi-

norms for ×σ∈S(Eσ
h
⊗ F ). Since α = (µ1 ∈ Λσ1 , . . . , µn ∈ Λσn) and ν ∈ Λ are arbitrary,

it follows from the above inequality that i provides a complete topological isomorphism

between the subspaces L and i(L) in (×σ∈S Eσ)
h
⊗F and ×σ∈S(Eσ

h
⊗F ) respectively, and

hence the latter are isomorphic.

4. Quantum Arens–Michael algebras. Let A be a quantum polynormed space which
is at the same time an algebra with multiplication determined by a bilinear operator
m : A×A→ A. A quantum semi-norm ‖·‖λ is called strongly completely submultiplicative
if ‖M(u, v)‖λ ≤ ‖u‖λ‖v‖λ for all u, v ∈ FA, where M : FA × FA → FA is the strong
amplification of m.

If the structure of a quantum polynormed space in A can be defined by a family of
strongly completely submultiplicative quantum semi-norms and A is complete, then A

is called an Arens–Michael
h
⊗-algebra. We can consider the category of Arens–Michael

h
⊗-algebras with Arens–Michael

h
⊗-algebras as objects and completely continuous algebra

homomorphisms as morphisms. By a complete isomorphism between two Arens–Michael
h
⊗-algebras A and B we understand a completely continuous algebraic isomorphism from
A onto B with completely continuous inverse.

If the structure of a quantum polynormed space in A is determined by a unique

strongly completely submultiplicative quantum norm, then A is called a Banach
h
⊗-

algebra. Certainly we can consider the category of Banach
h
⊗-algebras as a full subcategory

in the category of Arens–Michael
h
⊗-algebras.

It is not hard to show that the Cartesian product of a family of Arens–Michael
h
⊗-algebras is an Arens–Michael

h
⊗-algebra with respect to coordinatewise multiplication.

Suppose now that A is an Arens–Michael
h
⊗-algebra, ‖ · ‖λ (λ ∈ Λ) is a family of

strongly completely submultiplicative semi-norms on FA that defines the structure of a
quantum polynormed space on A,m : A×A→ A is the bilinear operator of multiplication,
andM : FA×FA→ FA is the strong amplification of m.
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Since the maximum of strongly completely submultiplicative semi-norms is also a
strongly completely submultiplicative semi-norm (this fact is easily checked), we may
assume that the family ‖ · ‖λ (λ ∈ Λ) is saturated.

For each λ, we put
Iλ = {a ∈ A : ‖a‖λ = 0}.

Obviously, Iλ is a closed two-sided ideal of A. Consider the quotient algebra A/Iλ. Denote
the bilinear operator of multiplication in this algebra by m̃, and its strong amplification
by M̃. By Proposition 2, the quotient semi-norm ‖ · ‖∧λ on F(A/Iλ) (defined by

‖ũ‖∧λ = inf{‖u‖λ : u ∈ FA, τλ∞(u) = ũ},

where τλ : A → A/Iλ is the quotient map) satisfies the axioms of Ruan. It follows from
the definition of Iλ that ‖ · ‖∧λ is a norm on A/Iλ, and hence on F(A/Iλ). Moreover, if

τλ∞(u) = τλ∞(v),

then τλ∞(u − v) = 0, and therefore u − v ∈ FIλ, which implies that ‖u − v‖λ = 0 and
‖u‖λ = ‖v‖λ. Consequently, ‖u‖λ = ‖τλ∞(u)‖∧λ for any u ∈ FA.

It is not hard to check that this norm is strongly completely submultiplicative. Indeed,
let ũ, ṽ ∈ F(A/Iλ). Then, for u, v ∈ FA such that τλ∞(u) = ũ and τλ∞(v) = ṽ, we have
τλ∞M(u, v) = M̃(ũ, ṽ), and therefore

‖M̃(ũ, ṽ)‖∧λ = ‖M(u, v)‖λ ≤ ‖u‖λ‖v‖λ = ‖ũ‖∧λ‖ṽ‖∧λ .

We let Aλ denote the completion of A/Iλ with respect to ‖ · ‖∧λ , and we still use the
notation τλ for the map A → Aλ, a 7→ a + Iλ ∈ A/Iλ ⊆ Aλ. Clearly, Aλ is a Banach
h
⊗-algebra.

We introduce on Λ an order relation “µ ≺ λ if ‖ · ‖µ ≤ ‖ · ‖λ”. In this way, since our
family of semi-norms is saturated, we get a directed set.

If µ ≺ λ, then Iλ ⊆ Iµ. Therefore the map

a+ Iλ 7→ a+ Iµ

of A/Iλ onto A/Iµ is well-defined and is a completely continuous homomorphism. If we
extend this by continuity, we get a completely continuous homomorphism τµλ : Aλ → Aµ.
Moreover, τµ = τµλ τ

λ and, if ν ≺ µ ≺ λ, then τνλ = τνµτ
µ
λ . Thus

A = (Λ, {Aλ}, {τµλ })

is an inverse system in the category of Banach
h
⊗-algebras (as well as in the category of

Arens–Michael
h
⊗-algebras). We shall call an element ā = {aλ ∈ Aλ}λ∈Λ of the Cartesian

product ×λAλ a compatible family of the system A if aµ = τµλ (aλ) whenever µ ≺ λ.
We let A0 denote the subalgebra of ×λAλ consisting of all those “rows” ā = {aλ}λ∈Λ

that are compatible families; since all the τµλ are continuous, this subalgebra is closed.
Further, we put

τλ0 : A0 → Aλ, ā 7→ aλ (λ ∈ Λ).

Just as in the case of classical Arens–Michael algebras [5, Chapter V, §2], it can be
proved that both (A, {τλ}) and (A0, {τλ0 }) are the inverse limit of the system A in the
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category of Arens–Michael
h
⊗-algebras. Consequently, A is isomorphic in this category

(i.e, completely isomorphic) to the closed subalgebra A0 of the Cartesian product ×λAλ.

5. Quantum polynormed modules and derivations. Suppose that A is an Arens–

Michael
h
⊗-algebra and X is a complete quantum polynormed space which is also a left

A-module. Thus there is a bilinear operator

ṁ : A×X → X, (a, x) 7→ a · x,

such that (ab) · x = a · (b · x) for a, b ∈ A, x ∈ X. Then X is called a left
h
⊗-module

over A (a left A-
h
⊗-module for short) if the above module operator is strongly completely

continuous. Given two left A-
h
⊗-modules X and Y , a morphism of left A-

h
⊗-modules is

a completely continuous linear operator ϕ : X → Y such that ϕ(a · x) = a · ϕ(x) for all

a ∈ A, x ∈ X. Right A-
h
⊗-modules, A-

h
⊗-bimodules, and their morphisms are defined

similarly.

For example, the algebra A is itself an A-
h
⊗-bimodule with respect to the outer multi-

plications given by the product in A. It is not hard to show that, if X is a left A-
h
⊗-module

and Y is a right A-
h
⊗-module, then X

h
⊗ Y is an A-

h
⊗-bimodule for the products defined

by
a · (x⊗ y) = a · x⊗ y, (x⊗ y) · a = x⊗ y · a (a ∈ A, x ∈ X, y ∈ Y ).

In particular, A
h
⊗A is an A-

h
⊗-bimodule in this way.

We recall now that a linear operator δ : A → X, where A is an algebra and X is an
A-bimodule, is called a derivation of A with values in X if it satisfies

δ(ab) = a · δ(b) + δ(a) · b (a, b ∈ A).

A derivation is called an inner derivation if there exists x ∈ X such that, for any a ∈ A,
δ(a) = a · x− x · a.

Let A be an Arens–Michael
h
⊗-algebra, and letX be an A-

h
⊗-bimodule. Obviously, each

inner derivation is automatically completely continuous. An Arens–Michael
h
⊗-algebra is

said to be contractible if each completely continuous derivation of A with values in any

A-
h
⊗-bimodule is inner. The main result of this paper is a description of contractible

Arens–Michael
h
⊗-algebras (see Theorem 1 below).

For some results concerning contractible Banach and Arens–Michael algebras in the
framework of traditional (non-quantum) approach, see [13, 14, 10, 4, 11, 9, 3, 8, 12].

6. Main results. We shall now characterize contractible Arens–Michael
h
⊗-algebras; to

do this we first introduce the notion of a diagonal.

Let A be an Arens–Michael
h
⊗-algebra. Recall that A

h
⊗ A is an A-

h
⊗-bimodule for

products determined by the conditions a · (b ⊗ c) = ab ⊗ c and (b ⊗ c) · a = b ⊗ ca for
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a, b, c ∈ A. Further, we put

πA : A
h
⊗A→ A, a⊗ b 7→ ab,

i.e., we take the completely continuous linear operator associated with the bilinear oper-

ator of multiplication. Note that πA : A
h
⊗ A→ A is a morphism of A-

h
⊗-bimodules, and

so the kernel of πA is a submodule of A
h
⊗A.

Suppose now that A is a unital Arens–Michael
h
⊗-algebra. An element d ∈ A

h
⊗ A is

said to be a diagonal for A if a · d = d · a for all a ∈ A and if πA(d) is an identity element
of A.

Proposition 12. An Arens–Michael
h
⊗-algebra A is contractible if and only if it is unital

and has a diagonal.

Proof. ⇒ Suppose that A is contractible. Let X be the A-
h
⊗-bimodule whose underlying

space is A, but on which A acts via

a · x = ax and x · a = 0 (a ∈ A, x ∈ X).

The map
δ : A→ X, a 7→ a,

(i.e, the identity map on A) is a completely continuous derivation, and so there exists
r ∈ X with δ(a) = a · r − r · a (a ∈ A). But then ar = a (a ∈ A), i.e, r is a right identity
for A.

A similar argument applies to prove that A has a left identity s. Hence r = s, and so
A has an identity, say e.

We next consider the A-
h
⊗-bimodule KerπA ⊆ A

h
⊗A. The map

δ : A→ KerπA, a 7→ a⊗ e− e⊗ a,

is a completely continuous derivation, and so there exists u ∈ KerπA with δ(a) = a·u−u·a
(a ∈ A). Set d = e⊗ e− u. Then d is the required diagonal.

⇐ Suppose that A has an identity e ∈ A and a diagonal d ∈ A
h
⊗ A. Let X be an

A-
h
⊗-bimodule, and let δ : A→ X be a completely continuous derivation. We put

y = δ(e)− δ(e) · e− πX(δ
h
⊗ 1A)d ∈ X,

where
πX : X

h
⊗A→ X, x⊗ a 7→ x · a.

For each a ∈ A, we have

a · y − y · a

= a · δ(e)− a · δ(e) · e− a · πX(δ
h
⊗ 1A)d− δ(e) · a+ δ(e) · a+ πX(δ

h
⊗ 1A)d · a

= a · δ(e)− (δ(a)− δ(a) · e) · e− πX(a · (δ
h
⊗ 1A)d) + πX(δ

h
⊗ 1A)(d · a)

= a · δ(e)− πX(a · (δ
h
⊗ 1A)d) + πX(δ

h
⊗ 1A)(a · d).
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Let u 7→ δ(a) · u be the operator from A
h
⊗A to X

h
⊗A defined on elementary tensors

by δ(a) · (b⊗ c) = (δ(a) · b)⊗ c. (It is not hard to check that this operator is completely

continuous.) Then, for any u ∈ A
h
⊗A, we have

(δ
h
⊗ 1A)(a · u) = a · (δ

h
⊗ 1A)u+ δ(a) · u. (2)

This equality can be easily checked on elementary tensors.
Using (2), we continue the calculations:

a · y − y · a = a · δ(e) − πX(a · (δ
h
⊗ 1A)d) + πX(a · (δ

h
⊗ 1A)d) + πX(δ(a) · d).

Since
πX(δ(a) · d) = δ(a) · πA(d) (3)

(again it suffices to check this equality for elementary tensors), we get

a · y − y · a = a · δ(e) + δ(a) · πA(d) = a · δ(e) + δ(a) · e = δ(a),

which means that δ is inner. So A is contractible.

Let Aσ (σ ∈ S) be a family of Arens–Michael
h
⊗-algebras. As in the homology of

classical polynormed algebras (see [11, Lemma 11] or [12, Lemma 1.4.7]), by using Propo-
sition 11 it is easy to prove the following.

Proposition 13. If each of the algebras Aσ has a diagonal dσ ∈ Aσ
h
⊗ Aσ, then ×σ Aσ

has a diagonal d ∈ (×σ Aσ)
h
⊗ (×σ Aσ).

We now proceed to getting our main result.

Theorem 1. An Arens–Michael
h
⊗-algebra A is contractible if and only if it is completely

isomorphic to the Cartesian product of a family of full matrix C∗-algebras.

Proof. ⇐ Suppose that A is completely isomorphic to the Cartesian product of a family
of full matrix C∗-algebras. By [5, Proposition VII.1.73], each full matrix algebra has a
diagonal, and so, by virtue of Proposition 13, A has a diagonal, too. By Proposition 12,
A is contractible.
⇒ Suppose that A is contractible. By Proposition 12, A has an identity e ∈ A and a

diagonal d ∈ A
h
⊗A. Let ‖ · ‖λ (λ ∈ Λ) be a saturated family of strongly completely sub-

multiplicative quantum semi-norms that defines the structure of a quantum polynormed
space on A. For each λ, we put

Iλ = {a ∈ A : ‖a‖λ = 0},

and we define, as in Section 4, the Banach
h
⊗-algebra Aλ to be the completion of A/Iλ

with respect to the quotient norm ‖ · ‖∧λ , and also the operators

τλ : A→ Aλ, a 7→ a+ Iλ ∈ A/Iλ ⊆ Aλ.

It is easy to check that eλ = τλ(e) is the identity in Aλ. For the elements ã ∈ Aλ that
belong to A/Iλ the equality
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ãeλ = eλã = ã

is obvious. The rest follows from the density of A/Iλ in Aλ.

Let us check that dλ = (τλ
h
⊗ τλ)(d) ∈ Aλ

h
⊗ Aλ is a diagonal for Aλ. For the oper-

ators πA : A
h
⊗ A → A and πλ : Aλ

h
⊗ Aλ → Aλ which linearize the bilinear operators of

multiplication in A and Aλ respectively, we have

πλ(τλ
h
⊗ τλ)(u) = τλπA(u)

for all u ∈ A
h
⊗A (this is easily checked on elementary tensors). Therefore,

πλ(dλ) = πλ(τλ
h
⊗ τλ)(d) = τλπA(d) = τλ(e) = eλ.

Now we show that ã · dλ = dλ · ã for all ã ∈ Aλ. It is sufficient to verify this equality for
elements ã of the form τλ(a) (a ∈ A), because of the density of the set of such elements in

Aλ and the complete continuity of the outer multiplications in the Aλ-bimodule Aλ
h
⊗Aλ.

We have

τλ(a) · dλ = τλ(a) · (τλ
h
⊗ τλ)(d) = (τλ

h
⊗ τλ)(a · d)

= (τλ
h
⊗ τλ)(d · a) = (τλ

h
⊗ τλ)(d) · τλ(a) = dλ · τλ(a).

Thus dλ is indeed a diagonal for Aλ.

Recall now [1, Theorem 2.3.2] that every unital Banach
h
⊗-algebra A is represented

as a closed subalgebra of B(H) for some Hilbert space H, i.e., there exists a completely
isometric homomorphism ϕ : A → B(H). Here B(H) is considered as a C∗-algebra with
the standard quantization (see [7, Example 1.3.7]).

If A is a unital closed subalgebra of B(H), then it follows from [8, Corollary 2.4]

that the existence of a diagonal in A
h
⊗A implies that A is (completely) isomorphic to a

finite-dimensional C∗-algebra or, equivalently, to the Cartesian product of finitely many
full matrix C∗-algebras.

From this we get that, for each λ, Aλ = ×nλk=1 Mλ,k (up to a complete isomorphism),
where full matrix algebras Mλ,k are considered as C∗-algebras with the standard quan-
tization.

Consider the semi-norms ‖ ·‖λ,k, k = 1, . . . , nλ (which are easily seen to be quantum),
defined as follows:

‖u‖λ,k = ‖(τλ,kτλ)∞(u)‖,

where u ∈ FA, and τλ,k : Aλ →Mλ,k is the natural projection of Aλ onto the k-th factor
Mλ,k. We shall show that A is the Cartesian product of full matrix algebras Mλ,k chosen
one from each equivalence class of semi-norms ‖ · ‖λ,k.

As mentioned in Section 4, A is completely isomorphic to the subalgebra of ×λAλ
consisting of all compatible families. Any element in Aλ = ×nλk=1 Mλ,k is uniquely deter-
mined by its natural projections on Mλ,k. Consequently, any compatible family {aλ} is
uniquely determined by the collection

{τλ,k(aλ) : λ ∈ Λ, k = 1, . . . , nλ}.
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Therefore the operator taking a compatible family {aλ} to the element

{τλ,k(aλ)} ∈ ×
λ,k

Mλ,k

is injective. Its corestriction to the image is, clearly, an isomorphism of algebras. This
isomorphism is completely continuous, because ‖ · ‖λ,k ≤ ‖ · ‖λ, and its inverse operator
is also completely continuous, because

‖ · ‖λ ≤ max
1≤k≤nλ

{‖ · ‖λ,k}.

Consequently, it is an isomorphism of Arens–Michael
h
⊗-algebras.

For any two equivalent semi-norms ‖ · ‖λ,k and ‖ · ‖µ,`, consider an isomorphism

αµ,`λ,k : Mλ,k →Mµ,`

such that αµ,`λ,kτ
λ,kτλ = τµ,`τµ. It can be constructed as follows: for aλ,k ∈Mλ,k, we put

αµ,`λ,k(aλ,k) = τµ,`τµ(a),

where a is some element of A such that τλ,kτλ(a) = aλ,k. It follows from the equivalence
of the semi-norms ‖ · ‖λ,k and ‖ · ‖µ,` that Ker τλ,kτλ = Ker τµ,`τµ, and so the result
does not depend on the choice of a. It is not hard to check that all αλ,kλ,k are the identity
operators and

αη,mµ,` α
µ,`
λ,k = αη,mλ,k (4)

whenever these isomorphisms are defined.
Consider the set B of all elements {bλ,k} ∈ ×λ,k Mλ,k such that

αµ,`λ,k(bλ,k) = bµ,`

whenever the semi-norms ‖·‖λ,k and ‖·‖µ,` are equivalent. Obviously, {τλ,k(aλ)} ∈ B for
each compatible family {aλ}. Let us show that, for any element {bλ,k} ∈ B, the element
{bλ} ∈ ×λAλ for which

τλ,k(bλ) = bλ,k (λ ∈ Λ, k = 1, . . . , nλ)

is a compatible family.
Let µ ≺ λ, and the homomorphism τµλ : Aλ → Aµ be defined as described in Section 4.

Then, for each ` = 1, . . . , nµ, the kernel of the composition τµ,`τµλ is a two-sided ideal
in Aλ, and hence is equal either to {0} or to the sum of some of Mλ,k. It is easy to see
that the operator

aλ + Ker τµ,`τµλ 7→ τµ,`τµλ (aλ)

provides an isomorphism between the quotient algebra Aλ/(Ker τµ,`τµλ ) and the algebra
Mµ,`. Moreover, Aλ/(Ker τµ,`τµλ ) is isomorphic to the sum of those Mλ,k which do not
lie in Ker τµ,`τµλ . A full matrix algebra Mµ,` cannot be isomorphic to the sum of several
matrix algebras. Therefore τµ,`τµλ is the composition of the natural projection τλ,k onto
one of the factors Mλ,k and an isomorphism between Mλ,k and Mµ,` (a complete one,
because we deal with finite-dimensional spaces). Hence the semi-norms ‖ ·‖λ,k and ‖ ·‖µ,`
are equivalent. For an element bλ of our family {bλ} ∈ ×λAλ

τµ,`τµλ (bλ) = τµ,`τµλ τ
λ(a),
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where a is an element of A for which τλ(a) = bλ, and we have

τµ,`τµλ τ
λ(a) = τµ,`τµ(a) = αµ,`λ,kτ

λ,kτλ(a) =

= αµ,`λ,kτ
λ,k(bλ) = αµ,`λ,k(bλ,k) = bµ,` = τµ,`(bµ).

Consequently, τµλ (bλ) = bµ, and this means that the family {bλ} is compatible.
Thus A is completely isomorphic to the subalgebra B ⊆ ×λ,k Mλ,k. Let us choose one

representative ‖ · ‖λ∗,k∗ from each equivalence class of semi-norms ‖ · ‖λ,k. Clearly, the
natural projection of B onto ×λ∗,k∗ Mλ∗,k∗ is a completely continuous homomorphism of
algebras. Consider the operator taking an element

{aλ∗,k∗} ∈ ×
λ∗,k∗

Mλ∗,k∗

to the element of ×λ,k Mλ,k with coordinates aλ,k = αλ,kλ∗,k∗(aλ∗,k∗), where the semi-norm
‖ · ‖λ∗,k∗ is equivalent to ‖ · ‖λ,k. It is easy to see, using (4), that the elements so defined
belong to B. On the other hand, for any {bλ,k} ∈ B, by virtue of the definition of B,

bλ,k = αλ,kλ∗,k∗(bλ∗,k∗)

if ‖ · ‖λ,k is equivalent to ‖ · ‖λ∗,k∗ . Consequently, our operator is a completely continu-
ous homomorphism of algebras which is an inverse to the natural projection of B onto
×λ∗,k∗ Mλ∗,k∗ . It follows that the algebra B, and hence the initial algebra A, is completely
isomorphic to the Cartesian product ×λ∗,k∗ Mλ∗,k∗ .
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