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Abstract. A nonlocal model of phase separation in multicomponent systems is presented. It

is derived from conservation principles and minimization of free energy containing a nonlocal

part due to particle interaction. In contrast to the classical Cahn–Hilliard theory with higher

order terms this leads to an evolution system of second order parabolic equations for the particle

densities, coupled by nonlinear and nonlocal drift terms, and state equations which involve both

chemical and interaction potential differences. Applying fixed-point arguments and comparison

principles we prove the existence of variational solutions in standard Hilbert spaces for evolution

systems. Moreover, using some regularity theory for parabolic boundary value problems in Hölder

spaces we get the unique solvability of our problem. We conclude our considerations with the

presentation of simulation results for a ternary system.

1. Introduction. To describe phase separation processes we consider a closed multi-

component system with particles of type k ∈ {0, 1, . . . , n} occupying a spatial domain. In

our model we assume, that the particles jump around on a given microscopically scaled

lattice following a stochastic exchange process (see [8], [16], [17]). On each lattice site

sits exactly one particle (exclusion principle). Two particles of type k and ` change their

sites x and y with probability pk`(x, y) due to diffusion and nonlocal interaction. The

hydrodynamical limit leads to a system of conservation laws for k ∈ {0, 1, . . . , n},
(1) u′k +∇ · jk = 0 in (0, T )× U, ν · jk = 0 on (0, T )× ∂U, uk(0) = gk in U,

for (scaled) particle densities u0, u1, . . . , un, their initial values g0, g1, . . . , gn and current

densities j0, j1, . . . , jn. Here, (0, T ) denotes a time interval and ν is the outer unit normal

on the boundary ∂U of the spatial domain U ⊂ Rm.

2000 Mathematics Subject Classification: Primary 35K45; Secondary 45K05, 47J35, 35D10.

Key words and phrases: nonlocal phase separation models; Cahn–Hilliard equation; initial
boundary value problems; nonlinear evolution equations; regularity theory.

The paper is in final form and no version of it will be published elsewhere.

[153]



154 J. A. GRIEPENTROG

Due to the exclusion principle of the stochastic process we can assume
∑n
k=0 uk = 1,∑n

k=0 gk = 1 and
∑n
k=0 jk = 0, that means, only n of the above n + 1 equations are

independent of each other. Hence, we can drop out one redundant equation in (1), say

the equation for the zero component, and describe the state of the system by n-component

vectors u = (u1, . . . , un). Nevertheless, it is not only comfortable but also necessary to

work with the densities of the zero component. Thus, for given u we will always use the

notation u0
def
= 1−∑n

k=1 uk .

To establish thermodynamical relations between current densities, particle densities

and their conjugated variables we minimize the free energy functional under the con-

straint of particle number conservation. In the field of phase separation models the clas-

sical Cahn–Hilliard theory deals with sharp interface models. Local free energy densities

containing squared gradients of the particle densities are considered to describe sur-

face tension and interface movement. The minimization process leads to fourth order

Cahn–Hilliard equations (see [1]) where no comparison principle is available. There occur

difficulties to ensure the physical requirement 0 ≤ u0, u1, . . . , un ≤ 1 for the solutions

and to prove their uniqueness (see [5]).

In contrast to that it seems reasonable and even more appropriate to consider diffuse

interface models and free energy functionals with nonlocal expressions. As a straight-

forward generalization of the nonlocal phase separation model for binary systems (see

[3], [6], [7], [10]) we choose a free energy functional F = F1 + F2 of the form

F1(u) =

∫

U

f(u(x)) dx, F2(u) =
1

2

n∑

k=0

∫

U

(Ku)k(x)uk(x) dx,(2)

f(u) =
n∑

k=0

uk log(uk), (Ku)k(x) =
n∑

`=0

∫

U

κk`(x, y)u`(y) dy.(3)

The convex function f and the symmetric (n + 1) × (n + 1)-matrix kernel κ define the

chemical part F1 and the nonlocal interaction part F2 of the functional F , respectively.

Minimizing F under the constraint of particle number conservation we identify the con-

jugate variables of the densities as grand chemical potential differences

vk =
∂F

∂uk
= µk + wk, k ∈ {1, . . . , n},

where µk and wk are chemical and interaction potential differences, respectively,

µk =
∂F1

∂uk
= log(uk)− log(u0), wk =

∂F2

∂uk
= (Ku)k − (Ku)0, k ∈ {1, . . . , n}.

The hydrodynamical limit process (see [8], [16], [17]) yields current densities

jk = −
n∑

`=1

ak`(u)∇v`, k ∈ {1, . . . , n},

where the mobility has the form a(u) = d(u)(D2f(u))−1 and d(u) denotes the diffusivity.

Hence, we can interpret the above nonlocal phase separation model as a system of drift-

diffusion equations with semilinear diffusion and nonlinear nonlocal drift terms, if we
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rewrite the currents as

jk = −
n∑

`=1

dk`(u)∇u` −
n∑

`=1

ak`(u)∇w`, k ∈ {1, . . . , n}.

For the sake of simplicity we consider the special case dk` = δk` . An elementary compu-

tation of the inverse Hessian matrix (D2f(u))−1 yields the following expressions for the

mobility coefficients:

ak`(u) = δk` uk − u`uk, k, ` ∈ {1, . . . , n}.
In Section 2 we formulate the problem and general assumptions. Applying fixed-point

arguments and comparison principles in Section 3 we prove the existence of variational

solutions in standard Hilbert spaces for evolution systems. Section 4 is dedicated to

the regularity theory for parabolic boundary value problems with nonsmooth data in

Sobolev–Morrey and Hölder spaces (see [11]) which is the main tool for our proof of the

unique solvability given in Section 5. In Section 6 we conclude our considerations with

the presentation of simulation results for a ternary system.

2. General assumptions and formulation of the problem. The following general

assumptions are valid for the whole work. Let (0, T ) be a time interval of finite length

and U ⊂ Rm a bounded Lipschitz domain. For δ > 0 and x ∈ Rm we define the open

ball B(x, δ)
def
= {y ∈ Rm : |x− y| < δ}. Furthermore, let D1f, . . . , Dmf denote the partial

derivatives, ∇f the gradient, and f ′ the time derivative of a function f , respectively.

For the functional analytic formulation of our problem we will use standard Lebesgue

and Sobolev spaces

H
def
= L2(U ;Rn), V

def
= H1(U ;Rn), L∞

def
= L∞(U ;Rn),

respectively, and their generalizations suitable for evolution systems,

H(T )
def
= L2((0, T );H), V(T )

def
= L2((0, T );V ), L∞(T )

def
= L∞((0, T );L∞).

Having in mind u0 = 1−∑n
k=1 uk, we define simplices S ⊂ L∞ and S(T ) ⊂ L∞(T ) by

S
def
= {g ∈ L∞ : 0 ≤ g0, g1, . . . , gn ≤ 1}, S(T )

def
= {u ∈ L∞(T ) : 0 ≤ u0, u1, . . . , un ≤ 1}.

We refer to [9], [15] and [18] for the theory of the space

W(T )
def
= {u ∈ V(T ) : u′ ∈ V(T )∗}.

Definition 1. We define the linear diffusion operator L : V(T )→ V(T )∗ by

(4) 〈Lu, ϕ〉 def
=

n∑

k=1

∫ T

0

∫

U

∇uk · ∇ϕk dx ds, u, ϕ ∈ V(T ),

and the nonlinear drift operator A : L∞(T )× V(T )→ V(T )∗ by

(5) 〈A(u,w), ϕ〉 def
=

n∑

k=1

n∑

`=1

∫ T

0

∫

U

ak`(u)∇w` · ∇ϕk dx ds,

for (u,w) ∈ L∞(T )× V(T ), ϕ ∈ V(T ), with coefficients

(6) ak`(u)
def
= δk` uk − u`uk, k, ` ∈ {1, . . . , n}.
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We assume that the interaction between particles can be described by means of a (possibly

nonlinear and nonlocal) Lipschitz continuous interaction operator P : H(T ) → V(T )

which has a Lipschitz constant L > 0, that means,

(7) ‖Pu− Pû‖V(T ) ≤ L ‖u− û‖H(T ) for all u, û ∈ H(T ).

Now, we can rigorously formulate the concept of a solution of our problem.

Definition 2. For a given initial value g ∈ S we are looking for a solution (u,w) ∈
[W(T ) ∩ S(T )]× V(T ) of the evolution system

(P) u′ + Lu+ A(u,w) = 0, w = Pu, u(0) = g.

3. Existence of solutions. First we will solve a regularized problem with truncated

nonlinearities. To do so, for c ∈ R we define the truncations

c•
def
= −min{c, 0}, c�

def
= min{max{c, 0}, 1},

and we carry over this setting in the usual way to the concept of truncated functions.

Definition 3. We define a regularized drift operator R : H(T )× V(T )→ V(T )∗ by

(8) 〈R(u,w), ϕ〉 def
=

n∑

k=1

n∑

`=1

∫ T

0

∫

U

rk`(u)∇w` · ∇ϕk dx ds,

for (u,w) ∈ H(T )× V(T ), ϕ ∈ V(T ), and suitably truncated coefficients

(9) rk`(u)
def
=

n∑

h=0

δk` u
�
ku
�
h − u�`u�k, k, ` ∈ {1, . . . , n},

and a regularized interaction operator Q : H(T )→ V(T ) by Qu
def
= Pu� for u ∈ H(T ).

Lemma 1 (Solvability of a regularized problem). For every g ∈ S there exists a solution

(u,w) ∈W(T )× V(T ) of the regularized problem

(R) u′ + Lu+ R(u,w) = 0, w = Qu, u(0) = g.

Proof. 1. Our proof is based on the application of Schauder’s fixed-point principle. Let

L > 0 be a Lipschitz constant of P : H(T )→ V(T ) (see (7)) and g ∈ S be a fixed initial

value. For every u ∈ H(T ) we have Qu ∈ V(T ) and R(u,Qu) ∈ V(T )∗. Hence, there exists

a uniquely determined solution Tu ∈W(T ) ⊂ C([0, T ];H) (see [9], [15]) of the evolution

problem

(10) (Tu)′ + LTu = −R(u,Qu), (Tu)(0) = g.

In other words, we have properly defined a fixed-point operator T : H(T ) → H(T ). We

can apply Schauder’s theorem if we are able to prove that T : H(T )→ H(T ) is completely

continuous and T[B] ⊂ B holds true for a closed ball B ⊂ H(T ) with a radius depending

only on the data of the problem.
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2. Let u ∈ H(T ) and Tu ∈ W(T ) be the solution of problem (10). Applying the test

function ϕ = Tu ∈W(T ) to (10) and Young’s inequality to (8) we get the estimate

n∑

k=1

∫ t

0

〈(Tu)′k(s), (Tu)k(s)〉 ds+

n∑

k=1

∫ t

0

∫

U

∇(Tu)k · ∇(Tu)k dx ds

≤ 1

4

n∑

k=1

n∑

`=1

∫ t

0

∫

U

|rk`(u)∇(Qu)`|2 dx ds+

n∑

k=1

∫ t

0

∫

U

|∇(Tu)k|2 dx ds,

for all t ∈ [0, T ]. Using the fact that by (9) we have |rk`| ≤ n for k, ` ∈ {1, . . . , n}, partial

integration yields

1

2

n∑

k=1

∫

U

|(Tu)k(t)|2 dx− 1

2

n∑

k=1

∫

U

|gk|2 dx ≤
n3

4

n∑

`=1

∫ T

0

∫

U

|∇(Qu)`|2 dx ds,

for all t ∈ [0, T ]. Integrating both sides of the inequality over t ∈ (0, T ) we can use the

Lipschitz continuity of P : H(T )→ V(T ) (see (7)) to get

‖Tu‖2H(T ) ≤ T‖g‖2H +
n3T

2
‖Qu‖2V(T )

≤ T‖g‖2H + n3T{‖P0‖2V(T ) + ‖Pu� − P0‖2V(T )}
≤ T‖g‖2H + n3T{‖P0‖2V(T ) + L‖u�‖2H(T )},

that means, we have ‖Tu‖2H(T ) ≤ δ2 for all u ∈ H(T ), if we fix the radius δ > 0 by

δ2 def
= T‖g‖2H + n3T{‖P0‖2V(T ) + nLT |U |}.

Hence, we get T[B] ⊂ B for the closed ball B
def
= {u ∈ H(T ) : ‖u‖H(T ) ≤ δ}.

3. Additionally, let {ui}i∈N ⊂ H(T ) be a sequence such that limi→∞ ‖ui−u‖H(T ) = 0.

For every i ∈ N there exists a uniquely determined solution Tui ∈W(T ) of the problem

(Tui)
′ + LTui = −R(ui,Qui), (Tui)(0) = g.

Because Tu ∈W(T ) is the solution of problem (10), for every i ∈ N it follows

(11) (Tui − Tu)′ + L(Tui − Tu) = R(u,Qu)− R(ui,Qui), (Tui − Tu)(0) = 0.

Applying the test function ϕ = Tui − Tu ∈ W(T ) to (11) Young’s inequality yields the

following estimate:

n∑

k=1

∫ t

0

〈(Tui − Tu)′k(s), (Tui − Tu)k(s)〉 ds+
n∑

k=1

∫ t

0

∫

U

|∇(Tui − Tu)k|2 dx ds

≤ 1

2

n∑

k=1

n∑

`=1

∫ t

0

∫

U

|(rk`(u)− rk`(ui))∇(Qu)`|2 dx ds+
1

2

n∑

k=1

∫ t

0

∫

U

|∇(Tui − Tu)k|2 dx ds

+
1

2

n∑

k=1

n∑

`=1

∫ t

0

∫

U

|rk`(ui)∇(Qui − Qu)`|2 dx ds+
1

2

n∑

k=1

∫ t

0

∫

U

|∇(Tui − Tu)k|2 dx ds,

for all t ∈ [0, T ], i ∈ N. Having in mind that |rk`| ≤ n for k, ` ∈ {1, . . . , n}, and applying
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partial integration for all t ∈ [0, T ] we get

n∑

k=1

∫

U

|(Tui − Tu)k(t)|2 ds ≤
n∑

k=1

n∑

`=1

∫ T

0

∫

U

|(rk`(u)− rk`(ui))∇(Qu)`|2 dx ds

+ n3
n∑

`=1

∫ T

0

∫

U

|∇(Qui − Qu)`|2 dx ds.

The integrands of the first part of the right hand side are bounded by 4n2|∇(Qu)`|2 and in

the limit process i→∞ they tend pointwise to zero, because of the Lipschitz continuity of

u 7−→ rk`(u) and the convergence limi→∞ ‖ui − u‖H(T ) = 0. Hence, applying Lebesgue’s

theorem, the first part tends to zero. On the other hand, we have

lim
i→∞

‖Qui − Qu‖V(T ) = lim
i→∞

‖Pu�i − Pu�‖V(T ) ≤ L lim
i→∞

‖u�i − u�‖H(T ) = 0,

that means, the second part of the right hand side tends to zero, too. Taking the supre-

mum over all t ∈ [0, T ] on the left hand side we arrive at limi→∞ ‖Tui − Tu‖H(T ) = 0, in

other words, T : H(T )→ H(T ) is continuous.

4. Because of T[H(T )] ⊂W(T ) and the completely continuous embedding of W(T ) into

H(T ) (see [15], [18]), the fixed-point map T : H(T ) → H(T ) is completely continuous.

Having in mind the second step of the proof, Schauder’s fixed-point theorem yields a

solution u ∈W(T )∩B of the equation Tu = u. Setting w = Qu ∈ V(T ), we have found a

solution (u,w) ∈W(T )× V(T ) of the regularized problem (R).

Theorem 2 (Solvability of the original problem). For every g ∈ S there exists a solution

(u,w) ∈ [W(T ) ∩ S(T )]× V(T ) of the evolution system (P).

Proof. 1. Let g ∈ S and (u,w) ∈ W(T ) × V(T ) be a solution of the regularized prob-

lem (R), which exists by Lemma 1.

2. If we choose the test function ϕ = (−u•1, . . . ,−u•n) ∈W(T ), then from (9) it follows

that

n∑

k=1

n∑

`=1

rk`(u)∇w` · ∇ϕk = −
n∑

k=1

n∑

h=0

u�ku
�
h∇wk · ∇u•k +

n∑

k=1

n∑

`=1

u�`u
�
k∇w` · ∇u•k = 0,

since for all k ∈ {1, . . . , n} by definition we have u�k∇u•k = 0. Hence, applying the above

test function ϕ to (R), and having in mind g1, . . . , gn ≥ 0, for all t ∈ [0, T ] partial

integration yields

0 =

n∑

k=1

∫ t

0

〈u′k(s), ϕk(s)〉 ds+

n∑

k=1

∫ t

0

∫

U

∇uk(s) · ∇ϕk(s) dx ds

=

n∑

k=1

∫ t

0

〈(u•k)′(s), u•k(s)〉ds+

n∑

k=1

∫ t

0

∫

U

|∇u•k(s)|2 dx ds ≥ 1

2

n∑

k=1

∫

U

|u•k(t)|2 dx,

that means, we arrive at u1, . . . , un ≥ 0.
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3. Now, we consider ϕ = (−u•0, . . . ,−u•0) ∈W(T ). From (9) and u�0∇u•0 = 0 we deduce

n∑

k=1

n∑

`=1

rk`(u)∇w` · ∇ϕk = −
n∑

`=1

n∑

h=0

u�`u
�
h∇w` · ∇u•0 +

n∑

k=1

n∑

`=1

u�`u
�
k∇w` · ∇u•0

= −
n∑

`=1

u�`u
�
0∇w` · ∇u•0 = 0.

Thus, applying the test function ϕ to (R), and remembering the facts u0 = 1−∑n
k=1 uk

and g0 ≥ 0, for all t ∈ [0, T ] again partial integration yields

0 = −
n∑

k=1

∫ t

0

〈u′k(s), ϕk(s)〉 ds−
n∑

k=1

∫ t

0

∫

U

∇uk(s) · ∇ϕk(s) dx ds

=

∫ t

0

〈(u•0)′(s), u•0(s)t〉ds+

∫ t

0

∫

U

|∇u•0(s)|2 dx ds ≥ 1

2

∫

U

|u•0(t)|2 dx,

in other words, we get the relation u0 ≥ 0, too.

4. It follows from the second and third step of the proof, that for every solution

(u,w) ∈W(T )×V(T ) of the regularized problem (R) in fact u ∈ S(T ) holds true. Hence,

by the definition of truncation we have both Pu = Qu and A(u,w) = R(u,w), that means

(u,w) ∈ [W(T ) ∩ S(T )]× V(T ) is a solution of the original problem (P), too.

Remark 1. If (u,w) ∈ [W(T ) ∩ S(T )]× V(T ) is a solution of the evolution system (P),

then we can apply ϕ = (1, . . . , 1) ∈ W(T ) to (P) which yields the particle number

conservation for every component,
∫

U

uk(t) dx =

∫

U

gk dx for all t ∈ [0, T ], k ∈ {0, 1, . . . , n}.

4. Regularity theory in Sobolev–Morrey and Hölder spaces. The proof of the

uniqueness result presented in this work is based on the Hölder continuity of the difference

of two solutions. Hence, we will assume some natural regularity property of the interaction

operator P : H(T ) → V(T ), which enables us to apply our regularity theory for initial

boundary value problems in Sobolev–Morrey and Hölder spaces. For the theory of the

above function spaces we refer to [2], [4], [11] and [14].

Definition 4. Let t > 0, σ ∈ [0,m + 2] and α ∈ (0, 1]. A function u ∈ H(t) belongs to

the Morrey space L2,σ(t) iff the sum

[u]2L2,σ(t)
def
=

n∑

k=1

sup
(τ,x)∈(0,t)×U, δ>0

{
δ−σ

∫

(0,t)∩(τ−δ2,τ)

∫

U∩B(x,δ)

|uk|2 dy ds
}
,

has a finite value. We define the norm of u ∈ L2,σ(t) by

‖u‖2L2,σ(t)
def
= ‖u‖2H(t) + [u]2L2,σ(t).

Moreover, let Xσ(t) ⊂ V(t) be the Sobolev–Morrey space

Xσ(t)
def
= {u ∈ H(t) : D1u, . . . , Dmu ∈ L2,σ(t)},
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equipped with the norm

‖u‖2Xσ(t)
def
= ‖u‖2H(t) +

m∑

i=1

‖Diu‖2L2,σ(t), u ∈ Xσ(t).

Finally, we introduce C
def
= C(U ;Rn) and the Hölder space Cα(t)

def
= Cα([0, t];C) equipped

with the norm

‖u‖Cα(t)
def
= sup

s∈[0,t]

‖u(s)‖C + sup
s,τ∈[0,t]

‖u(s)− u(τ)‖C
|s− τ |α , u ∈ Cα(t).

Definition 5. Let t > 0 and σ ∈ [0,m + 2]. A functional f ∈ V(t)∗ belongs to the

Sobolev–Morrey space Zσ(t) ⊂ V(t)∗ iff there exist functions z1, . . . , zm ∈ L2,σ(t) and

ζ ∈ L2,σ−2(t) such that f has a representation

(12) 〈f, ϕ〉 =
n∑

k=1

m∑

j=1

∫ t

0

∫

U

zjkDjϕk dx ds+
n∑

k=1

∫ t

0

∫

U

ζk ϕk dx ds,

for ϕ ∈ V(t). We define the norm of f ∈ Zσ(t) by the infimum

‖f‖2Zσ(t)
def
= inf

{ m∑

j=1

‖zj‖2L2,σ(t) + ‖ζ‖2L2,σ−2(t)

}
,

where the infimum is taken over all z1, . . . , zm ∈ L2,σ(t) and ζ ∈ L2,σ−2(t) such that f

can be represented as in (12). Moreover, let Wσ(t) ⊂W(t) be the Sobolev–Morrey space

Wσ(t)
def
= {u ∈ Xσ(t) : u′ ∈ Zσ(t)},

equipped with the norm

‖u‖2Wσ(t)
def
= ‖u‖2Xσ(t) + ‖u′‖2Zσ(t), u ∈Wσ(t).

The main tool for our uniqueness proof is the following regularity result for initial

boundary value problems with nonsmooth data (see [11]).

Theorem 3 (Regularity). Let T > 0. There exists an ω ∈ (m,m + 2) such that for all

σ ∈ (m,ω) we can find constants c1, c2 > 0 such that for all f ∈ Zσ(T ) the solution

u ∈W(T ) of the evolution problem

u′ + Lu = f, u(0) = 0,

belongs to Wσ(T ) ⊂ Cα(T ) for α = σ−m
4 and the following estimates hold true:

‖u‖Cα(t) ≤ c1 ‖u‖Wσ(t) ≤ c2 ‖f‖Zσ(t) for all t ∈ (0, T ].

5. Uniqueness of the solution. Until now we have assumed that the interaction op-

erator P : H(T )→ V(T ) is Lipschitz continuous with Lipschitz constant L > 0 (see (7)).

To prove the unique solvability of problem (P) from now on we will additionally as-

sume that P : H(T ) → V(T ) has the Volterra property and that the restriction of P to

L∞(T ) is a Lipschitz continuous operator from L∞(T ) to Xσ(T ) for some σ ∈ (m,ω)

(see Theorem 3), that means, there exists a Lipschitz constant M > 0 such that

(13) ‖Pu− Pû‖Xσ(t) ≤M ‖u− û‖L∞(t) for all u, û ∈ L∞(T ), t ∈ (0, T ].
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Theorem 4 (Uniqueness). For every g ∈ S the solution (u,w) ∈ [W(T ) ∩ S(T )] × V(T )

of the evolution system (P) is uniquely determined.

Proof. 1. Let g ∈ S be a given initial value and (u,w), (û, ŵ) ∈ [W(T )∩ S(T )]× V(T ) be

solutions of (P). Then, the difference u− û ∈W(T ) solves the problem

(14) (u− û)′ + L(u− û) = A(û,Pû)−A(u,Pu), (u− û)(0) = 0.

2. We estimate the right hand side of (14) in the norm of the space Zσ(t) for t ∈ (0, T ].

Using the boundedness and the Lipschitz continuity of u 7−→ ak`(u) and the fact that

L∞(t) is a space of multipliers for L2,σ(t) we can find a constant c0 > 0 such that

‖A(û,Pû)−A(u,Pû)‖Zσ(t) ≤
m∑

j=1

c0 ‖u− û‖2L∞(t) ‖DjPû‖2L2,σ(t)

≤ 2c0 ‖u− û‖2L∞(t){‖P0‖2Xσ(t) + ‖Pû− P0‖2Xσ(t)},
and in the same manner,

‖A(u,Pû)−A(u,Pu)‖Zσ(t) ≤
m∑

j=1

c0 ‖DjPû−DjPu‖2L2,σ(t) ≤ c0 ‖Pû− Pu‖2Xσ(t).

Hence, the Lipschitz continuity of P : L∞(t)→ Xσ(t) (see (13)) yields a constant c1 > 0

such that

(15) ‖A(û,Pû)−A(u,Pu)‖Zσ(t) ≤ c1 ‖u− û‖L∞(t) for all t ∈ (0, T ].

3. Since (u− û)(0) = 0, by Theorem 3 we can find a constant c2 > 0 such that

(16) ‖u− û‖Cα(t) ≤ c2 ‖A(û,Pû)−A(u,Pu)‖Zσ(t) for all t ∈ (0, T ].

4. We choose α = σ−m
4 > 0 and N ∈ N large enough such that 2c1c2 T

α ≤ Nα. We define

points ti = i TN of the interval [0, T ] for i ∈ {0, . . . , N}. Remembering the definition of

the Hölder norm, from (u− û)(0) = 0, (15) and (16) for all s ∈ [0, TN ] it follows that

‖(u− û)(s)‖L∞ ≤ sα ‖u− û‖Cα(t1) ≤ c1c2
(
T
N

)α ‖u− û‖L∞(t1) ≤ 1
2 ‖u− û‖L∞(t1),

that means, ‖u− û‖Cα(t1) = 0, and hence, u
(
T
N

)
− û
(
T
N

)
= 0. Using again (15) and (16)

for all s ∈
[
T
N ,

2T
N

]
we get

‖(u− û)(s)‖L∞ ≤
(
s− T

N

)α ‖u− û‖Cα(t2) ≤ c1c2
(
T
N

)α ‖u− û‖L∞(t2) ≤ 1
2 ‖u− û‖L∞(t2),

which implies ‖u− û‖Cα(t2) = 0. Repeating our arguments after a finite number of steps

we arrive at i = N and ‖u− û‖Cα(T ) = 0, in other words, the solution of problem (P) is

uniquely determined.

6. Simulation results for a ternary system. To emphasize the relevance of our

nonlocal phase separation model we present an instructive example for a ternary system

(n = 2) with components of type k ∈ {0, 1, 2} accompanied by simulation results. Here,

we consider the special case, where the nonlocal interaction operator P : H(T ) → V(T )

can be described by means of the inverse of a second order elliptic operator having

appropriate regularity properties.
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Definition 6. Let µ ∈ [0,m]. A function u ∈ H belongs to the Morrey space L2,µ iff

‖u‖2L2,µ

def
= ‖u‖2H +

n∑

k=1

sup
x∈U, δ>0

{
δ−µ

∫

U∩B(x,δ)

|uk|2 dy
}
,

has a finite value. Moreover, let Xµ ⊂ V be the Sobolev–Morrey space

Xµ def
=
{
u ∈ H : D1u, . . . , Dmu ∈ L2,µ

}
,

equipped with the norm ‖u‖2Xµ
def
= ‖u‖2H +

∑m
j=1 ‖Dju‖2L2,µ for u ∈ Xµ.

Let E : H1(U)→ H1(U)∗ be the following elliptic operator:

〈Eh, ψ〉 def
=

1

κ

∫

U

{
δ2∇h · ∇ψ + hψ

}
dx, h, ψ ∈ H1(U),

where δ, κ > 0 are constants representing the effective range and strength of interaction

forces, respectively. If we apply the regularity theory for elliptic boundary value problems

in Sobolev–Morrey spaces (see [11], [12], [13]), we can find constants σ ∈ (m,ω) and c > 0

such that the following estimate holds true:

(17) ‖(E−1u1, E
−1u2)‖Xσ−2 ≤ c ‖u‖L∞ for all u ∈ L∞.

Let κ : U × U → R be Green’s function corresponding to E : H1(U) → H1(U)∗.
Specifying the symmetric (3× 3)-matrix kernel we define

(Ku)(x) =




(Ku)0(x)

(Ku)1(x)

(Ku)2(x)


 def

=

∫

U



−κ(x, y) +κ(x, y) +κ(x, y)

+κ(x, y) −κ(x, y) +κ(x, y)

+κ(x, y) +κ(x, y) −κ(x, y)





u0(y)

u1(y)

u2(y)


 dy,

for u ∈ H, x ∈ U , and the free interaction energy (see (2) and (3)) of the state u ∈ H by

F2(u)
def
=

1

2

2∑

k=0

∫

U

(Ku)k(x)uk(x) dx.

To define the interaction operator P : H → V we calculate the derivatives of F2,

(Pu)1
def
= (Ku)1 − (Ku)0 = E−1(2− 4u1 − 2u2),

(Pu)2
def
= (Ku)2 − (Ku)0 = E−1(2− 2u1 − 4u2).

Hence, we get a Lipschitz continuous Volterra operator P : H(T ) → V(T ) by setting

(Pu)(s)
def
= Pu(s) for s ∈ (0, T ) and u ∈ H(T ). Because of the continuous embedding

of L∞
(
(0, t);Xσ−2

)
into Xσ(t) the above mentioned elliptic regularity theory (see (17))

yields a constant M > 0 such that

‖Pu− Pû‖Xσ(t) ≤M ‖u− û‖L∞(t) for all u, û ∈ L∞(T ), t ∈ (0, T ].

Applying Theorem 4, for every g ∈ S there exists a uniquely determined solution (u,w) ∈
[W(T ) ∩ S(T )]× V(T ) of the evolution system (P).

In our example, from the structure of the symmetric matrix kernel it follows, that
particles of the same type attract and particles of different type repel each other with
the same range and strength of interaction. Figures 1 and 2 show simulation results
of phase separation processes for the case of a unit square U ⊂ R2. Notice that both
initial configurations contain equal numbers of black, white and medium gray particles,
respectively.
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Fig. 1. Phase separation process for an initial value which is constant in the vertical direction.

The stripe pattern is preserved during the whole evolution. The final state is a local minimizer

of the free energy functional F under the constraint of particle number conservation.

Fig. 2. Phase separation process for a mirror-symmetric initial value. There occur metastable

states. Finally, the phases are separated by a straight line and circular arcs. Moreover, the final

state is a global minimizer of the free energy functional F under the constraint of particle number

conservation.
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