ON THE EQUATION $u_{t}=\Delta u+M \exp u / \int \exp u d x$ IN PLANAR DOMAINS

GERSHON WOLANSKY
Department of Mathematics, Technion, Haifa, Israel
E-mail: gershonw@math.technion.ac.il

Abstract

The blow-up of solutions for a parabolic equation with nonlocal exponential nonlinearity is studied.

1. Introduction. Consider the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u+M \frac{V e^{u}}{\int_{D} V e^{u} d x} ; \quad u(x, 0)=u_{0} ;\left.\quad u\right|_{\partial} D=0 \tag{1.1}
\end{equation*}
$$

Here $D \subset R^{2}$ is a bounded domain $\alpha<V=V(x)<\beta$ is a continuous function on D where $0<\alpha \leq \beta<\infty$. The constant $M>0$ plays a significant rule in the global existence theory for this system, as we shall see below.

Equation (1.1) is a limit of some version of the Keller-Segel system [KS]

$$
\begin{gather*}
\varepsilon_{1} \frac{\partial \rho}{\partial t}=\nabla \cdot(-\rho \nabla w+\nabla \rho) \tag{1.2}\\
\varepsilon_{2} \frac{\partial u}{\partial t}=\Delta u+\rho \tag{1.3}
\end{gather*}
$$

where

1. $\rho=\rho(x, t)$ stands for the density of population of amoebae (or other living cells),
2. $w=w(x, t)$ stands for a chemical (sensitivity) attracting these cells,
3. $u(x, t)$ is the part of w which is produced by the cells themselves,
4. $w(x, t)=u(x, t)+\eta(x)$, where η is a fixed (in time) distribution of the chemical,
5. the no-flux boundary condition $\left.(\rho \nabla w+\nabla \rho) \cdot \nu\right|_{\partial D}=0$ where ν is the normal to ∂D, is assumed on (1.2), while the Dirichlet boundary condition $\left.u\right|_{\partial D}=0$ is assumed on (1.3).

Key words and phrases: nonlinear parabolic equation, blow-up of solutions. The paper is in final form and no version of it will be published elsewhere.

The positive parameters ε_{1} and ε_{2} determine the rates of the cell and chemical dynamics, respectively.

The limit $\varepsilon_{2}=0$ is known in the literature and was studied by many authors, see $[\mathrm{S}]$, [BN] and references therein. In this case, equation (1.3) is reduced to a Poisson equation

$$
\begin{equation*}
\Delta u+\rho=0 \quad \Longrightarrow \quad u(x, t)=\int_{D} G(x, y) \rho(y, t) d y \tag{1.4}
\end{equation*}
$$

where $G=\Delta^{-1}$ is the Green function associated with the Laplacian and Dirichlet b.c.
The second limit $\varepsilon_{1}=0$ is less familiar in the literature. In this case, equation (1.2) together with the no-flux boundary conditions yield

$$
-\rho \nabla w+\nabla \rho \equiv 0 \Longrightarrow \rho(x, t)=M \frac{V(x) e^{u(x, t)}}{\int_{D} V e^{u}}
$$

where $V=e^{\eta}$ and M is the total (conserved) mass of the population

$$
M=\int_{D} \rho(x, t) d x=\int_{D} \rho(x, 0) d x
$$

Substituting the above in (1.3) (with $\varepsilon_{2}=1$) we obtain (1.1).
The system (1.2)-(1.3) can be presented as a generalized gradient system. Let the functional

$$
\mathcal{F}(\rho, u)=\frac{1}{2} \int_{D}|\nabla u|^{2}-\int_{D} \rho(\eta+u)+\int_{D} \rho \ln \rho
$$

be defined on the domain $\Lambda_{M} \times \mathbb{H}_{0}^{1}(D)$, where

$$
\Lambda_{M}=\left\{\rho \in \mathbb{L}_{1}(D), \rho \geq 0 ; \quad \int_{D} \rho \ln \rho<\infty, \quad \int_{D} \rho=M\right\}
$$

Then, system (1.2)-(1.3) is rewritten as

$$
\begin{gather*}
\varepsilon_{1} \frac{\partial \rho}{\partial t}=\nabla \cdot\left[\rho \nabla \delta_{\rho} \mathcal{F}\right] \tag{1.5}\\
\varepsilon_{2} \frac{\partial u}{\partial t}=-\delta_{u} \mathcal{F} \tag{1.6}
\end{gather*}
$$

where $\delta_{\rho}\left(\delta_{u}\right)$ stand for the standard first variational derivative with respect to $\rho(u)$. The functional \mathcal{F} is monotone nonincreasing along the solution. Indeed, using integration by parts and the boundary conditions for (1.2):

$$
\begin{align*}
\frac{d}{d t} \mathcal{F}(\rho(\cdot, t), u(\cdot, t)) & =\int_{D} \delta_{\rho} \mathcal{F} \frac{\partial \rho}{\partial t}+\int_{D} \delta_{u} \mathcal{F} \frac{\partial u}{\partial t} \tag{1.7}\\
& =-\varepsilon_{2} \int_{D}\left|\frac{\partial u}{\partial t}\right|^{2}-\frac{1}{\varepsilon_{1}} \int_{D} \rho\left|\nabla \delta_{\rho} \mathcal{F}\right|^{2} \leq 0
\end{align*}
$$

Let us revisit the limit $\varepsilon_{2}=0$. First, note that

$$
\min _{u \in \mathbb{H}_{0}^{1}}\left[\frac{1}{2} \int_{D}|\nabla u|^{2}-\int_{D} \rho u\right]=-\frac{1}{2} \int_{D} \int_{D} \rho(x) G(x, y) \rho(y) d x d y
$$

where G as defined in (1.4). Then define

$$
E(\rho)=\inf _{u \in \mathbb{H}_{0}^{1}} \mathcal{F}(\rho, u) \equiv \int_{D} \rho \ln \rho-\frac{1}{2} \int_{D} \int_{D} \rho(x) G(x, y) \rho(y) d x d y-\int_{D} \rho \eta
$$

An immediate observation shows that the system (1.2) with (1.4) and $\varepsilon_{2}=0, \varepsilon_{1}=1$ is equivalent to

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\nabla \cdot\left[\rho \nabla \delta_{\rho} E\right] \tag{1.8}
\end{equation*}
$$

while

$$
\frac{d}{d t} E(\rho(\cdot, t))=-\int_{D} \rho\left|\nabla \delta_{\rho} E\right|^{2} \leq 0
$$

namely, by replacing \mathcal{F} in (1.5) and (1.7) by E.
A similar observation holds also in the case $\varepsilon_{1}=0$. A first look at (1.7) may suggests that it is a singular limit, since $1 / \varepsilon_{1}$ appears on the RHS. However, we should expect that, for ε_{1} small enough, the density ρ should be close to the minimum of $\mathcal{F}(\cdot, u)$, constrained by the conservation of mass $\int_{D} \rho=M$, which implies that $\delta_{\rho} \mathcal{F}$ is close to a constant $\lambda=\lambda(t)$ (which is, in fact, the Lagrange multiplier associated with the mass constraint). This leads us to define

$$
H(u)=\inf _{\rho \in \Lambda_{M}} \mathcal{F}(\rho, u)
$$

Next, we observe that the minimum above is obtained at

$$
\rho(x, t)=M \frac{V(x) e^{u(x, t)}}{\int_{D} V e^{u}}, \quad V(x)=e^{\eta}
$$

so

$$
\begin{equation*}
H(u)=\frac{1}{2} \int_{D}|\nabla u|^{2}-M \ln \left(\int_{D} V e^{u} d x\right) \tag{1.9}
\end{equation*}
$$

and the limit $\varepsilon_{1}=0, \varepsilon_{2}=1$ takes the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\delta_{u} H(u) \tag{1.10}
\end{equation*}
$$

while

$$
\begin{equation*}
\frac{d}{d t} H(u)=-\int_{D}\left|\frac{\partial u}{\partial t}\right|^{2} \tag{1.11}
\end{equation*}
$$

that is, by replacing \mathcal{F} in (1.6) and (1.7) by H.
2. Global existence and blow-up. It is known that, in the limit $\varepsilon_{2}=0$, a global strong solution exists under reasonable regularity conditions on the data $\rho_{0}=\rho(x, 0)$, provided $\int_{D} \rho_{0}=M<8 \pi$. In the case $M>8 \pi$ and D is starlike, there exist initial data for which the solution blows up in a finite time $T<\infty$. See $[\mathrm{S}]$, $[\mathrm{BN}]$.

However, almost nothing has been written on the second limit $\varepsilon_{1}=0$ of equation (1.10) or (1.1). It is easy to obtain local existence by standard theory of parabolic equations, cf. [LSU]. Global existence for $M<8 \pi$ is also not difficult due to the Moser-Trudinger inequality

$$
\frac{1}{2} \int_{D}|\nabla u|^{2} d x-8 \pi \ln \left(\frac{\int_{D} e^{u}}{|D|}\right) \geq 0 \quad \forall u \in \mathbb{H}_{0}^{1}(D)
$$

For references on this inequality, see $[\mathrm{B}],[\mathrm{CSW}]$ as well as $[\mathrm{T}],[\mathrm{ST}]$ and references therein.
The question of blow-up for the case $M>8 \pi$ is much harder. A partial result in this direction was obtained in [W1]. I shall review this result below:

THEOREM 1. If $M>8 \pi$ is not an integer multiple of 8π, then there exists a solution of (1.1) such that

$$
\lim _{t \rightarrow T} \int_{D} e^{u(x, t)} d x=\infty
$$

where $T \leq \infty$ is the maximal time of existence of the local solution of (1.1).
Proof (sketch). It was proved in [W1] (Lemma 7), using results of [BM] and [L,S] that, for each bounded $D \subset R^{2}, V \in C^{1}(\bar{D})$ and $8 k \pi \neq M>8 \pi, k \in \mathbb{N}$, there exists a constant $C=C(D, M)$ such that for any solution ϕ of the stationary problem

$$
\Delta \phi+M \frac{V e^{\phi}}{\int_{D} V e^{\phi}}=0 ;\left.\quad \phi\right|_{\partial D}=0
$$

the inequality

$$
H(\phi)>-C
$$

is satisfied. Now, for $M>8 \pi$ the functional H is unbounded from below (sharpness of the Moser-Trudinger inequality). Let $u_{0} \in \mathbb{H}_{0}^{1}$ for which $H\left(u_{0}\right)<-C$. By the monotonity of H (1.11) we have $H(u(\cdot, t)) \leq H\left(u_{0}\right)<-C$ for any $t \in[0, T)$. On the other hand, if $\lim \sup _{t \rightarrow T} \int_{D} e^{u}<\infty$ then there is a uniform control over the \mathbb{H}_{1} norm of $u(\cdot, t)$ for $t \in[0 . T)$. By the local existence theorem (see [W1]), this is enough to guarantee the extension of the solution to time $T+\varepsilon$ for some $\varepsilon>0$. This implies that $T=\infty$. Then

$$
H(u(\cdot, T))-H\left(u_{0}\right)=-\int_{0}^{T} \int_{D}\left|\delta_{u} H(u(\cdot, t))\right|^{2} d x d t
$$

by (1.11), so

$$
\int_{0}^{\infty} \int_{D} \mid \delta_{u} H\left(\left.u(\cdot, t)\right|^{2} d x d t<\infty\right.
$$

This, together with the assumed bound on the \mathbb{H}_{1} norm of $u(, t)$, is enough to guarantee the existence of a sequence $u\left(, t_{n}\right), t_{n} \rightarrow \infty$, which converges to a critical point ϕ of H which is a steady state. By lower semicontinuity of H we obtain $H(\phi)<-C$, a contradiction.

Finally, assume $\liminf _{t \rightarrow T} \int_{D} e^{u(x, t)} d x<\infty$. A similar argument, based on the bound from above of $u(., t)$ for $t \in[0, T)$ and local existence theorem implies that $T=\infty$. In this case one can, again, isolate a subsequence $t_{n} \rightarrow \infty$ for which $u\left(\cdot, t_{n}\right)$ is uniformly bounded in \mathbb{H}^{1} and converge weakly to a steady state ϕ. One can complete the argument as before.

Another result in [W1] shows a conditional blow-up.
Theorem 2. If the solution of (1.1) blows up in a finite time $T<\infty$, then there exists $x_{0} \in D$ and $\gamma \geq 4 \pi$ such that the measure

$$
\mu=\gamma \delta_{x_{0}}+\mu_{0}
$$

where μ_{0} is nonatomic, is in the limit set $\lim _{t \rightarrow T} M \frac{V e^{u(, t)}}{\int_{D} V e^{u(, t)}}$.

The proof of Theorem 2 is based on a result in [W2], generalizing an elliptic estimate for the equation $\Delta u+f=0, f \in \mathbb{L}_{1}$ of $[\mathrm{BM}]$, into a parabolic one:

$$
\int_{D} e^{\beta u(x, t)} d x<\frac{C}{4 \pi-\beta\|f(, t)\|_{1}} \quad ; \quad t>0
$$

where $u(x, t)$ is a solution to the linear equation

$$
u_{t}=\Delta u+f ;(x, t) \in D \times \mathbb{R}^{+} ;\left.u(x, t)\right|_{\partial D}=0 ; u(x, 0)=0 ; f \in \mathbb{L}_{\infty}\left(\mathbb{R}^{+}, \mathbb{L}_{1}(D)\right)
$$

The main argument utilizes this estimate to show that, unless the limit set contains an atomic measure $\gamma \delta_{x_{0}}$ for some $x_{0} \in D$, there is a uniform control on the \mathbb{L}_{p} norm of $V e^{u(, t)} / \int_{D} V e^{u(x, t)} d x$ for some $p>1$ as $t \rightarrow T$. This, in turn, implies $T=\infty$ due to local (in time) existence, as in Theorem 1.

References

[B] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math. 128 (1993), 213-242.
[BM] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=$ $V(x) e^{u}$ in two dimensions, Comm. P.D.E. 16 (1991), 1223-1253.
[BN] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Nonlinear Analysis Th., Meth. Appl. 30 (1997), 5343-5350.
[KS] E. F. Keller and L. A. Segel, Travelling bands for chemotactic bacteria, a theoretical analysis, J. Theor. Biol. 80 (1971), 235-248.
[CSW] M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems, J. Diff. Eq. 140 (1997), 59-105.
[LSU] O. A. Ladyzenskaja, V. A. Solonnikov and N.N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Trans. of Math. Monographs, 23, AMS, 1968.
[LS] Y. Y. Li and I. Shafrir, Blow up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270.
[S] T. Suzuki and T. Senba, Applied Analysis, Mathematical Methods in Applied Science, World Scientific.
[ST] M. Struwe and G. Tarantello, On multivortex solutions in the Chern-Simons gauge theory, Boll. UMI 8 1-B (1998), 109-121.
[T] G. Tarantello, Multiple condensates solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), 3769-3796.
[W1] G. Wolansky, A critical parabolic estimate and application to nonlocal equations arising in chemotaxis, Applicable Analysis 66 (1997), 291-321.
[W2] G. Wolansky, A concentration theorem for the heat equation, Monatsh. Math. 132 (2001), 255-261.

