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Abstrat. We survey reent results on tratability of multivariate problems. We mainly re-strit ourselves to linear multivariate problems studied in the worst ase setting. Typial exam-ples inlude multivariate integration and funtion approximation for weighted spaes of smoothfuntions.1. Introdution. Multivariate problems for spaes of funtions of d variables our inmany appliations. In this paper we will mainly onsider linear multivariate problemssuh as integration, funtion approximation, and, in general, approximation of linearoperators, see [30℄ for a survey up to 1999. The number d of variables for suh problemsis sometimes in the hundreds or thousands as it is the ase for some problems in �nanialmathematis, see [45℄ and papers ited there.Tratability of linear multivariate problems has been intensively studied in reentyears, see again [30℄. This onept is de�ned, see [58℄, in terms of the minimal number
n(ε, d) of funtion values or information evaluations needed to ompute an ε-approxima-tion in a given setting, ε ∈ (0, 1). In this paper we restrit ourselves only to the worstase setting. Tratability means that n(ε, d) an be bounded by a polynomial in ε−1and d. Strong tratability means that n(ε, d) has a bound whih is independent of d andpolynomially dependent on ε−1.2000 Mathematis Subjet Classi�ation: 65J05, 68Q17, 41A65.The author was partially supported by the National Siene Foundation under Grant DMS-0308713.The paper is in �nal form and no version of it will be published elsewhere.
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408 H. WOŹNIAKOWSKITratability of non-linear multivariate problems has been studied only for a few ases.Examples inlude �xed points of ontration mappings for eonomial problems with dsometimes in the thousands, see [35℄, and quasilinear problems suh as the solution ofpartial di�erential equations with arbitrary large d, see [54, 55℄.We stress that the minimal number n(ε, d) has been thoroughly studied for years inapproximation theory for a �xed d and varying ε. Many sharp estimates on the asymptotibehavior of n(ε, d) are known as ε goes to zero. The essene of tratability is to study
n(ε, d) as a funtion of two variables ε−1 and d. Usually di�erent proof tehniques arerequired to study tratability.The minimal number n(ε, d) is exponential in d for many multivariate problemsde�ned over lassial spaes. The reason is that lassial spaes are isotropi in thesense that all variables play the same role. By this we mean that if a funtion f be-longs to suh a spae then the funtion g obtained from f by permuting variables,
g(x1, x2, . . . , xd) = f(xi1 , xi2 , . . . , xid

) for some permutation of indies (i1, i2, . . . , id), alsobelongs to the spae and has the same norm. The exponential dependene of n(ε, d) in dis often alled the urse of dimensionality, and leads to intratability.The �rst suh an example was given by Bakhvalov in 1959, see [1℄, for multivariateintegration of r times ontinuously di�erentiable funtions. This is also the ase for mul-tivariate integration for tensor produt Sobolev spaes for whih the worst ase errorsorrespond to the L2-disrepany, see [31℄.There are, however, examples for whih we have tratability or even strong tratabilityalthough all variables play the same role. We present two suh examples for multivariateintegration. The �rst example deals with the Sobolev lass of funtions with the L1norm for whih the worst ase errors orrespond to the star disrepany. Then we havetratability as shown in [19℄. The seond example is for the reproduing kernel Hilbertspae whose kernel orresponds to the isotropi Wiener measure. This spae has beenstudied by Ciesielski and Molhan, see [6, 25℄. It turns out that for this spae we havestrong tratability as shown in [20℄.Despite these two examples, we typially have the urse of dimensionality for isotropispaes. To vanquish the urse of dimensionality, we need to treat variables of funtionswith diminishing importane. This leads to weighted spaes of funtions in whih thein�uene of eah variable or a group of variables is moderated by the orrespondingweight.We onsider two types of weights. The �rst type is the produt weights in whihthe jth variable is moderated by a weight γj , see [36℄. We present neessary and suf-�ient onditions on weights to obtain tratability or strong tratability for a numberof linear multivariate problems. Typially, for Hilbert spaes with tensor produt re-produing kernels, strong tratability holds i� ∑∞
j=1 γj < ∞, and tratability holds i�

lim supd→∞

∑d
j=1 γj/ ln, d < ∞. For γj = onstant > 0 we obtain an isotropi spae andwe have intratability sine the tratability ondition is violated.The seond type of weights is �nite-order weights, see [10, 38, 51, 52℄. They appear inmany appliations in whih, although d is huge, funtions an be well approximated bysums of funtions that depend on groups of just a few variables. For �nite-order weights



TRACTABILITY OF MULTIVARIATE PROBLEMS 409we have tratability or even strong tratability of many linear or quasilinear multivariateproblems.Some tratability results are non-onstrutive. That is, we know that there are al-gorithms whih ahieve tratability error bounds but we do not know how to onstrutthem. This is the ase for the two tratable examples of multivariate integration forisotropi spaes whih we mentioned before. It is also the ase for multivariate problemsstudied in many initial papers on tratability.Today, there is an inreasing stream of onstrutive tratability results. In parti-ular, for multivariate integration and funtion approximation tratability bounds anbe ahieved by lattie rules or shifted lattie rules with generators omputed by theomponent-by-omponent algorithm, see [8, 9, 23, 37℄. For �nite-order weights, tratabil-ity bounds for multivariate integration an be ahieved by well-known low disrepanysequenes suh as Halton, Sobol and Niederreiter sequenes, see [38℄. For linear multivari-ate problems, tratability bounds an be ahieved by weighted Smolyak-type algorithms,see [49℄ for produt weights, and [52℄ for �nite-order weights.Tratability of multivariate problems has beome nowadays a popular researh areawith many results and still many open problems. We hope to show the exitement of thisarea by presenting a ouple of tratability results as well as a ouple of open problems.2. Examples of multivariate problems. We �rst illustrate the approah of this paperby a few examples of multivariate problems.
• Multivariate integration. This is probably the most popular omputational multi-variate problem whih ours in many applied �elds inluding mathematial �nane.For d = 1, 2, . . . , let Dd be a Borel measurable set of R

d and ρd be a non-negativeintegrable funtion suh that ∫

Dd
ρd(t) dt = 1. For a lass Fd of real integrable funtionsde�ned over Dd, the multivariate integration problem is de�ned as an approximation ofthe linear funtional INTd : Fd → R withINTd(f) =

∫

Dd

ρd(t)f(t) dt ∀ f ∈ Fd.The lass Fd desribes a priori knowledge about integrands f whih is usually givenby smoothness, onvexity or, in general, by known global properties of integrands. Westress that the number d of variables an be huge. For instane, in mathematial �nane,
d = 360 or more, see [45℄ and papers ited there. For path integration, formally d = ∞,and by a proper disretization we may have an arbitrarily large d, see [24, 32, 48℄.

• Multivariate funtion approximation. Let L2,ρd
(Dd) denote the spae of real squareintegrable funtions de�ned over the domain Dd, i.e., Dd ⊂ R

d and ∫

Dd
ρd(t)f

2(t) dt < ∞.For a lass Fd whih is a subset of L2,ρd
(Dd), the funtion approximation problem isde�ned as an approximation of the linear operator APPd : Fd → L2,ρd

(Dd) withAPPd(f) = f.Hene, APPd is the embedding operator. Again our emphasis is for large d.
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• Solution of partial di�erential equations. Consider the ellipti equation
−∆u + q u = gfor the interior of the domain Dd, with zero Dirihlet or Neumann boundary onditions.Here ∆ is the Laplaian operator, and we are trying to approximate the variationalsolution u in the norm of the spae H1(Dd). The funtion f = (q, g) belongs to somelass Fd. The partial di�erential equation operator is given by PDEd : Fd → H1(Dd)with PDEd(f) = u.We stress that this is a non-linear multivariate problem sine the solution u dependsnonlinearly on q. This problem is studied in [54, 55℄.

• Shrödinger equation. Consider the Shrödinger equation
i ~

∂ u

∂ t
= −∆u + f,for the interior of the domain Dd, with zero boundary and initial onditions. Here, where

i =
√
−1, and ~ is the Plank onstant. As before, f belongs to some lass Fd. TheShrödinger equation operator is given by Schrd(f) : Fd → L2,ρd

(Dd) with
Schrd(f) = u.We illustrate the Shrödinger equation for f being a sum of Coulomb pair potentialsof the form

f(x) =
∑

1≤i<j≤m

1

(‖xi − xj‖2 + α)1/2
,where x = [x1, x2, . . . , xm] with xi ∈ R

3 and d = 3m. Here α > 0 to guarantee that f isa smooth funtion.This is the �rst example where we see that the funtion f has a speial struture.Namely, although f is a funtion of d variables, it is a sum of funtions depending only onsix variables. This orresponds to �nite-order weights. Approximations of suh funtionsan be found in [52℄, whereas the Shrödinger equation is studied in [56℄.3. Tratability. In this setion we de�ne linear multivariate problems and the notionof tratability.For d = 1, 2 . . . , onsider a ontinuous linear operator Sd : Fd → Gd ating betweennormed linear spaes Fd and Gd. We assume that Fd is a spae of real funtions of dvariables, f : Dd → R with Dd ⊂ R
d. Our problem is to approximate elements Sdf byan algorithm An,d that uses at most n information evaluations about f . More preisely,

An,d(f) = φ(L1(f), L2(f), . . . , Ln(f)),where Li are ontinuous linear funtionals, and φ : R
n → Gd is an arbitrary mapping.In many ases, it is reasonable to assume that the funtionals Li are given by funtionvalues, Li(f) = f(xi) for some xi ∈ Dd. The funtionals Li an be taken adaptively,see [44℄. There are many results showing that under some assumptions on the spaes Fdor Gd we may take a linear φ without loss of generality. The reader is referred to a reentpaper [7℄ where this problem is thoroughly disussed.



TRACTABILITY OF MULTIVARIATE PROBLEMS 411The error of the algorithm An,d is de�ned in the worst ase setting as
e(An,d) = sup

f∈Fd, ‖f‖≤1

‖Sdf − An,d(f)‖,where ‖f‖ denotes the norm of the spae Fd, and ‖Sdf − An,d(f)‖ denotes the norm ofthe spae Gd.For n = 0, we do not ompute any information evaluation about f , and A0,d(f) is aonstant element of Gd. Due to linearity of Sd, it is easy to see that the hoie A0,d(f) = 0minimizes the error and
e(0) = ‖Sd‖is the operator norm of Sd. This is alled the initial error and an be ahieved withoutsampling the funtion f .Our goal is to redue the initial error by a fator ε. That is, we would like to �nd analgorithm An,d suh that e(An,d) ≤ ε‖Sd‖. Clearly for ε ≥ 1, this problem is trivial sine

An,d = 0 is the solution. That is why we always assume that ε ∈ (0, 1). Obviously, wewould like to �nd suh an algorithm An,d with the smallest possible n, sine n measuresthe ost of An,d. In fat, if An,d is linear then its ost is proportional to n making theminimization of n even more apparent. Let
n(ε, Sd) = min{n : ∃ An,d suh that e(An,d) ≤ ε ‖Sd‖}be the minimal number1 of information evaluations needed to redue the initial errorby a fator ε. We stress that we minimize over all permissible hoies of funtionals Liand all mappings φ whih form the algorithms An,d. We also adopt the onvention that

n(ε, Sd) = ∞ if the set of algorithms with error at most ε‖Sd‖ is empty.We are ready to de�ne the notion of tratability, see [58℄. We say that the problem
S = {Sd} is tratable if there are non-negative numbers C, p, q suh that

n(ε, Sd) ≤ C ε−p d q ∀ ε ∈ (0, 1) ∀d = 1, 2, . . . .We say that the problem S = {Sd} is strongly tratable if the inequality above holds with
q = 0, i.e,

n(ε, Sd) ≤ C ε−p ∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .The in�mum of p satisfying the last inequality is alled the exponent of strong tratability.The study of the minimal number n(ε, Sd) is equivalent to the study of its inversewhih orresponds to the best error bound that an be ahieved with n information evalu-ations. The latter problem has been intensively studied for many years in approximationtheory. It is impossible to ite all results on the asymptoti behavior of n(ε, Sd) for a�xed d and ε tending to zero. This stream of researh started with the pioneering workof Kolmogorov, Nikolskij, Sard, Bakhvalov and Tikhomirov already in 1950's.As already mentioned in the introdution, the essene of tratability is to study
n(ε, Sd) as a funtion of two variables, ε−1 and d, and verify for whih multivariateproblems we an bound n(ε, Sd) by a polynomial in ε−1 and d. This usually requiresproof tehniques di�erent than those used for the asymptoti behavior of n(ε, d) for a

1Sometimes, n(ε, Sd) is denoted by n(ε, d) as we did in the introdution.



412 H. WOŹNIAKOWSKI�xed d. That is why tratability studies needed to revisit many lassial problems witha new emphasis on the dependene on d.The notion of strong tratability seems very demanding. It says that the minimalnumber of information evaluations has a bound independent of d. That is, no matterwhether d = 1 or d is huge, it is enough to ompute a polynomial number of informationevaluations in ε−1 to redue the initial error. We may therefore suspet that only trivialproblems an be strongly tratable. As we shall see this is not the ase.We would like to add that the study of tratability was initiated as a way to under-stand very suessful omputations for �nane problems done in 1990's. These omputa-tions were performed for multivariate integrals with d = 360, or even larger, by lassialQMC algorithms using Sobol, Faure and Niederreiter low disrepany points. The om-putational results suggested that the error goes like n−1 independently of d, whih isequivalent to the presene of strong tratability with the exponent p = 1. The theory atthis time ould not explain this phenomenon. The detailed aount may be found in [45℄.4. Curse of dimensionality. In this setion we present examples of linear multivariateproblems that su�er the urse of dimensionality. That is, problems for whih n(ε, Sd)depends exponentially on d.
• Smooth funtions. De�ne Fd = Fd,r = Cr([0, 1]d) as the spae of r times ontinu-ously di�erentiable funtions with the norm

‖f‖ := max
|α|≤r

max
x∈[0,1]d

|Dαf(x)|,where α = [α1, α2, . . . , αd] with non-negative integer αj , |α| =
∑d

j=1 αj , and
Dαf(x) =

∂|α|f

∂α1x1∂α2x2 · · · ∂αdxd
(x).Let Sd be a multivariate integration, funtion approximation or partial di�erential equa-tion operator de�ned as in Setion 2 with Dd = [0, 1]d and ρd = 1. Then for a �xed d wehave

n(ε, Sd) = Θ(ε−d/r) as ε → 0.Here, if r = 0 then n(ε, Sd) = ∞ for small ε.For multivariate integration, this result was proved by Bakhvalov, see [1℄, for non-adaptive hoie of Li(f) = f(xi). Adaption does not help for this problem as proven bySmolyak, see [2℄, for a �xed n, and extended by Novak, see [27℄, for an adaptive hoie of
n. For multivariate funtion approximation, Bakvalov's proof tehnique yields the sameresult for non-adaptive funtion values. For more general information evaluations, theresult follows from the knowledge of the orresponding Gelfand and Kolmogorov widths.Adaption an help at most by a fator of two as proven in [14, 43℄. Details an be foundin [27, 44℄. For the partial di�erential equation problem, this was proved by Wershulz,see [53℄.Hene, as long as the smoothness r is �xed, the minimal number n(ε, Sd) is exponentialin d and therefore we have the urse of dimensionality.



TRACTABILITY OF MULTIVARIATE PROBLEMS 413Suppose now that r = r(d) is a funtion of d. Clearly, as long as d/r(d) is unbounded,the problems remain intratable. Assume then that the sequene {d/r(d)} is bounded,say, by M . Then the minimal number n(ε, Sd) is of order ε−M . Still we annot laimtratability sine the fators in the Theta notation depend on d. In fat, for all d = 1, 2, . . .there are some positive c1,d and c2,d suh that
c1,d ε−d/r(d) ≤ n(ε, Sd) ≤ c2,d ε−d/r(d) ∀ ε ∈ (0, 1).If we hek the proofs of these bounds then we onlude that c1,d is exponentially smallin d whereas c2,d is exponentially large in d. Therefore, even if d/r(d) ≤ M then thelast estimate is too weak to laim tratability or intratability. This also implies that thestudy of tratability requires a di�erent proof tehnique with muh more emphasis onthe dependene of d.This problem for multivariate integration has been studied in the master thesis of J. O.Wojtaszzyk, see [57℄, where it was assumed that r takes the extreme value of in�nity. Thelass Fd,∞ ontains C∞([0, 1])d funtions and its unit ball ontains C∞([0, 1]d) funtionswith all partial derivatives bounded by 1. This seems like a very small lass. Let

e(n, INTd) = inf
An,d

e(An,d)denote the minimal error whih an be ahieved by omputing n funtion values. Clearly,
e(n, INTd) ≤ 1 sine the error of the zero algorithm is 1. The main result of [57℄ is

lim
d→∞

e(n, INTd) = 1 ∀n.This obviously implies that multivariate integration in Fd,∞ is not strongly tratable.Clearly, for all multivariate problems whih are at least as hard as multivariate integra-tion, strong tratability also does not hold. This is, in partiular, the ase for multivariatefuntion approximation.It is an open problem whether multivariate integration in Fd,∞ is tratable. A possibleway to show that it is not tratable would be to prove that
lim

d→∞
e(d q, INTd) = 1 ∀ q = 1, 2, . . . .

• L2-Disrepany. De�ne Fd = W 1,1,...,1
2 ([0, 1]d) as the Sobolev spae of real funtionsde�ned on [0, 1]d whih is the tensor produt of d opies of W 2

1 ([0, 1]), where W 2
1 ([0, 1]) isthe spae of absolutely ontinuous funtions whose �rst derivatives belong to L2([0, 1]).The spae Fd onsists of funtions whih are one di�erentiable with respet to all vari-ables, and the norm is given by

‖f‖2 := f2(1) +
∑

∅6=u⊂{1,2,...,d}

∫

[0,1]|u|

(

∂|u|

∂xu

f(xu, 1)

)2

dxu.Here, u is a non-empty subset of indies from {1, 2, . . . , d} and |u| denotes its ardinality.Therefore the sum above onsists of 2d − 1 terms. For a vetor x ∈ [0, 1]d, by xu we meanthe vetor from [0, 1]|u| ontaining the omponents of x whose indies are in u. By ∂xuand dxu we mean di�erentiation and integration with respet to variables xj for j ∈ u.Finally, by (xu, 1) we mean the vetor from [0, 1]d with all omponents whose indies arenot in u replaed by 1. Similarly, f(1) = f(1, 1 . . . 1).



414 H. WOŹNIAKOWSKILet Sdf = INTdf =
∫

[0,1]d
f(t) dt be the multivariate integration operator. Considera linear algorithm An,d(f) =

∑n
j=1 ajf(xj). Zaremba's identity, see [61℄, says that

Sdf − An,d(f) =
∑

∅6=u⊂{1,2,...,d}

(−1)|u|
∫

[0,1]|u|

dis(xu, 1)
∂|u|

∂xu

f(xu, 1) dxu,where dis is the disrepany whih is de�ned for x = [x1, x2, . . . , xd] ∈ [0, 1]d asdis(x) = x1x2 · · ·xd −
n

∑

j=1

ajχ[0,x)(tj)with the harateristi funtion χ[0,x)(tj) = 1 if tj ∈ [0, x) and χ[0,x)(tj) = 0 if tj /∈ [0, x)for [0, x) = [0, x1) × [0, x2) × · · · × [0, xd).Zaremba's identity implies that the worst ase error of An,d is the same as the L2-disrepany,
e(An,d) = dis2({aj}, {tj}) :=

(

∑

∅6=u⊂{1,2,...,d}

∫

[0,1]|u|

dis2(xu, 1) dxu

)1/2

,and the Koksma-Hlawka inequality says that
|Sdf − An,d(f)| ≤ dis2({aj}, {tj}) ‖f‖ ∀ f ∈ Fd.Let dis2(n, d) = inf

aj ,tj , j=1,2,...,n
dis2({aj}, {tj})denote the minimal disrepany, or equivalently, the minimal worst ase error of linearalgorithms2 that use n funtion values. For any d, there are positive numbers c1,d and

c2,d suh that
c1,d

ln(d−1)/2 n

n
≤ dis2(n, d) ≤ c2,d

ln(d−1)/2 n

n
.The lower bound was proved by Roth in 1954 for aj = n−1, see [33℄, and extended forarbitrary aj by Chen in 1985, see [3, 4℄. The upper bound was proved by Frolov and Rothin 1980 by a non-onstrutive argument, see [13, 34℄, and by Chen and Skriganov in 2002onstrutively, see [5℄.From the last estimate we onlude that for any d,

n(ε, INTd) = Θ

(

1

ε

(

ln
1

ε

)(d−1)/2) as ε → 0.As for the previous example, we do not know muh about sharp estimates of c1,d and c2,dand therefore we annot onlude tratability or intratability of this problem based onthese estimates.Tratability of this problem was studied in [30℄. First of all observe that the initialerror is
‖INTd‖ = dis2(0, d) = (4/3)d/2,

2Non-linear algorithms and adaption do not help for this problem.



TRACTABILITY OF MULTIVARIATE PROBLEMS 415so it is exponentially large in d. This suggests that multivariate integration for this spae isnot properly saled for large d. For the minimal number n(ε, INTd) we have the followingestimates, see [30℄,
1.0463 d(1 + o(1)) ≤ n(ε, INTd) ≤ 1.125 dε−2 as d → ∞.Hene, we have an exponential dependene on d and therefore the urse of dimensionalityfor multivariate integration for W 1,1,...,1

2 ([0, 1]d).
• Linear tensor produt problems. We �rst de�ne a linear tensor produt problem. Let

Fd = F1 ⊗ F1 ⊗ · · · ⊗ F1, d times, be the tensor produt of a separable Hilbert spae F1.Similarly, we assume that the range spae Gd = G1⊗G1⊗· · ·⊗G1 for a separable Hilbertspae G1, and Sd = S1 ⊗ S1 ⊗ · · · ⊗ S1 for a ontinuous linear operator S1 : F1 → G1.We also assume that we an use arbitrary ontinuous linear funtionals as informationevaluations.Let W1 = S∗
1S1 : F1 → F1. We need to assume that the self adjoint non-negativede�nite operator W1 is ompat sine otherwise n(ε, S1) is in�nite for small ε, see e.g.,[44℄. Let {λj} be the sequene of non-inreasing eigenvalues of W1, W1ζj = λjζj fororthonormal ζj from F1. The index j varies from 1 to dim(F1). If dim(F1) < ∞ thenwe formally set λj = 0 for j ≥ dim(F1) + 1. Clearly, the initial error is ‖Sd‖ = λd

1. It isknown, see e.g., [47℄, that the minimal number of information evaluations is
n(ε, Sd) =

∣

∣{[i1, i2, . . . , id] : ij ≥ 1 and λi1λi2 · · ·λid
> ε2λd

1 }
∣

∣and the algorithm
An(ε,Sd),d(f) =

∑

i1,i2,...,id : λi1
λi2

···λid
≤ε2λd

1

〈f, ζi1 ⊗ · · · ⊗ ζid
〉Fd

ζi1 ⊗ · · · ⊗ ζidhas the minimal worst ase error among all algorithms that use n information evaluationsand its error is at most ε‖Sd‖.Observe that for λ2 = 0, the problem Sd is trivial. Indeed, if additionally assume that
λ1 = 0 then Sd = 0 and n(ε, Sd) = 0, and if λ1 > 0 then Sd is a rank one operator and
n(ε, Sd) = 1 for all d.Assume then that λ2 > 0. Then for λ2 = λ1, i.e, when the largest eigenvalue of W1 isat least double, we have the urse of dimensionality sine n(1/2, Sd) ≥ 2d. For λ2 < λ1,we have intratability sine n(

√

λk
2/2, Sd) ≥

(

d
k

) for an arbitrary integer k and d ≥ k,see [47℄.In partiular, if S1f = APP1f and F1 ⊂ G1, we have intratability of multivariatefuntion approximation for an arbitrary Fd with at least two dimensional spaes F1.Hene, for F1 = W 1
2 ([0, 1]) we have intratability for multivariate funtion approximationfor the spaes Fd = W 1,1,...,1

2 ([0, 1]d) onsidered in the previous example.5. Tratability for isotropi spaes. In this setion we provide two examples ofisotropi spaes for whih multivariate integration is tratable or even strongly tratable.
• Star disrepany. We return to multivariate integration of the seond example ofthe previous setion for a spae of funtions whih di�ers from the previous spae by



416 H. WOŹNIAKOWSKIhoosing a di�erent norm. Namely, we swith from the L2 norm to the L1 norm. That is,we now assume that Fd = W 1,1,...,1
1 ([0, 1]d) with the norm

‖f‖ := |f(1)| +
∑

∅6=u⊂{1,2,...,d}

∫

[0,1]|u|

∣

∣

∣

∣

∂|u|

∂xu

f(xu, 1)

∣

∣

∣

∣

dxu.The spae is isotropi sine all variables play the same role, and if f belongs to Fd and
g(x) = f(xi1 , xi2 , . . . , xid

) for some permutation (i1, i2, . . . , id) of indies (1, 2, . . . , d) then
g ∈ Fd and ‖g‖ = ‖f‖.Applying now Hölder's inequality to Zaremba's identity we onlude that the worstase error of the algorithm An,d is now equal to the star disrepany,

e(An,d) = dis∞({aj}, {tj}) := sup
x∈[0,1]d

∣

∣

∣
x1x2 · · ·xd −

n
∑

j=1

ajχ[0,x)(tj)
∣

∣

∣
.Analogously, let dis∞(n, d) = inf

aj ,tj j=1,2,...,n
dis∞({aj}, {tj})denote the minimal star disrepany, or equivalently, the minimal worst ase error oflinear algorithms3 that use n funtion values. Observe that now

‖INTd‖ = dis∞(0, d) = 1 ∀ d = 1, 2, . . . .Hene, unlike the L2 norm ase, the multivariate integration problem is now properlynormalized. It is proved in [19℄ that there is a positive onstant C suh that
n(ε, INTd) ≤ C d ε−2 ∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .The proof of this estimate is non-onstrutive and uses results from theory of empirialproesses and VC dimension.Hene, we have tratability of multivariate integration for W 1,1,...,1

1 ([0, 1]d). Further-more, the dependene on d in the last estimate is sharp. This means that multivariateintegration is not strongly tratable.It is known, see e.g., [11, 26, 42℄, that for a �xed d the asymptoti dependene of theminimal number n(ε, INTd) is
n(ε, INTd) = O

(

(ln ε−1)d−1

ε

) as ε → 0.For d = 1, it is well known that n(ε, INT1) = Θ(ε−1). Therefore, n(ε, INTd) = Ω(ε−1).In fat, from the lower bound for L2-disrepany, it follows that n(ε, INTd) =

Ω(ε−1(ln ε−1)(d−1)/2). Hene, ignoring the logarithmi fators, the minimal number de-pends asymptotially linearly on ε−1. Despite this asymptoti behavior, the authors of[19℄ onjeture that any uniform estimate on n(ε, INTd), i.e., for all ε ∈ (0, 1) and d,whih depends polynomially on d must depend on ε−2, see [59℄ for more details. Lowerbounds on n(ε, INTd) an also be found in [21℄.
3Again non-linear algorithms and adaption do not help.
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• Isotropi Wiener kernel. We now take Fd = H(Kd) as the reproduing kernelHilbert spae with the isotropi Wiener kernel,

Kd(x, y) = 1
2 (‖x‖2 + ‖y‖2 − ‖x − y‖2) ∀x, y ∈ R

dwith the Eulidean norm ‖x‖2 = (
∑d

j=1 x2
j )

1/2. This Hilbert spae was haraterized byMolhan, see [25℄, for odd d, and by Ciesielski, see [6℄, for arbitrary d. The inner produtis given by
〈f, g〉Fd

= ad〈(−∆(d+1)/4f, (−∆)(d+1)/4g〉L2(RD)for f and g whih have �nite support, vanish at zero and are in�nitely many timesdi�erentiable, The onstant ad is known, ∆ is the Laplae operator, and for d + 1 notdivisible by 4, (−∆)(d+1)/4 is understood in the generalized sense, see [41℄.The reproduing kernel Kd orresponds to the isotropi Wiener measure and is alsoalled the Brownian motion in Lévy's sense.Consider multivariate integration with the Gaussian weight,INTd(f) =
1

(2π)d/2

∫

Rd

exp(−‖t‖2/2) f(t) dt ∀ f ∈ Fd.It is proved in [20℄ using a non-onstrutive argument that there is a positive number Csuh that
n(ε, INTd) ≤ C ε−2 ∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .Furthermore, the exponent 2 of ε−1 is sharp due to [46℄. Hene, we have strong tratabilityof multivariate integration with the exponent of strong tratability equal to 2.6. Vanquishing the urse of dimensionality. The urse of dimensionality or in-tratability annot be broken by a more lever hoie of an algorithm sine it is theintrinsi property of the multivariate problem S = {Sd} in the worst ase setting. Theonly way to vanquish the urse of dimensionality or intratability is:

• Swith from the worst ase setting to a setting where the error and/or the ost ofan algorithm is de�ned in a less demanding way. For example, we an swith to:� the average ase setting in whih instead of taking the supremum of ‖Sd −
An,d(f)‖ we take an average of ‖Sd −An,d(f)‖ with respet to some probabilitymeasure on the spae Fd,� the probabilisti setting in whih we demand that ‖Sd − An,d‖ is small only forelements f from a subset of Fd whose measure is large,� the randomized setting in whih we allow randomized algorithms An,d(f, ω) forsome random element ω, and measure their performane by the expeted valuewith respet to ω and then taking the supremum with respet to f . The lassialMonte Carlo algorithm for multivariate integration is probably the most om-monly known randomized algorithm. It is well known that its randomized erroris bounded by ‖f‖L2,ρd

(Dd)/
√

n. Hene, if the L2-norms of funtions from theunit ball of Fd depend polynomially on d then we have tratability of multivari-ate integration in the randomized setting. Furthermore, if they do not depend



418 H. WOŹNIAKOWSKIon d then we have strong tratability. For example, take the �rst example ofSetion 4. Clearly, the L2-norms are now bounded by 1 and strong tratabilityholds. Hene, the urse of dimensionality present in the worst ase setting is eas-ily broken by swithing to the randomized setting and using the lassial MonteCarlo algorithm.� the quantum setting in whih quantum algorithms use vast parallelization. This isa new setting with a very interesting stream of work for disrete and ontinuousproblems inluding multivariate integration and funtion approximation. Thereader interested in this setting is referred to papers of Heinrih, Novak andothers, see e.g., [15, 16, 17, 18, 28, 29℄.
• To rede�ne the multivariate problems Sd : Fd → Gd by shrinking the spae Fd.This an be done still in the worst ase setting by using additional properties offuntions. As we shall see this approah leads to weighted spaes of funtions inwhih suessive variables or, more generally, groups of variables are moderatedby orresponding weights. The major question is to �nd neessary and su�ientonditions on weights to guarantee tratability or strong tratability of multivariateproblems still in the worst ase setting.We restrit ourselves in this paper only to show how tratability an be restored byusing weighted spaes of funtions in the worst ase setting.6.1. Weighted reproduing kernel Hilbert spaes. Before we de�ne weighted reproduingkernel Hilbert spaes, we motivate our approah by the following example.Example (Weighted Sobolev spae). Consider the (unweighted) Sobolev spae Fd =

W 1,1,...,1
2 ([0, 1]d) as in the L2-disrepany example of Setion 4. The spae W 1,1,...,1

2 ([0, 1]d)is the reproduing kernel Hilbert spae with the kernel
Kd(x, y) =

d
∏

j=1

(1 + min(1 − xj , 1 − yj)).This spae is isotropi sine all variables play the same role, and, as we already know,multivariate integration and funtion approximation su�er from the urse of dimension-ality.Suppose that we know additionally that the suessive variables play diminishing role.That is, the �rst variable x1 is more important than x2 whih in turn is more importantthan x3 on so on. This holds, for example, for �nane problems, where funtions dependin a dereasing way on the suessive variables, see [45℄ and papers ited there. This anbe modeled by introduing the sequene of weights {γj}, with γ1 ≥ γ2 ≥ · · · ≥ 0, and byonsidering the weighted Sobolev spae Fd = H(Kd,γ) de�ned as the reproduing kernelHilbert spae with the kernel
Kd,γ(x, y) =

d
∏

j=1

(1 + γj min(1 − xj , 1 − yj)) .Note that for γ = 1, i.e., γj = 1 for all j, we have Kd,1 = Kd, and we return to the(unweighted) Sobolev spae W 1,1,...,1
2 ([0, 1]d).



TRACTABILITY OF MULTIVARIATE PROBLEMS 419The inner produt is now given for f, g ∈ H(Kd,γ) by
〈f, g〉H(Kd,γ) = f(1)g(1) +

∑

∅6=u⊂{1,2,...,d}

1

γu

∫

[0,1]|u|

∂|u|

∂xu

f(xu, 1)
∂|u|

∂xu

g(xu, 1) dxu,where
γu =

∏

j∈u

γj .Observe that f ∈ H(Kd,γ) an be uniquely deomposed as
f(x) =

∑

∅6=u⊂{1,2,...,d}

fu(xu)with fu ∈ H(Kd,u) and Kd,u(xu, yu) =
∏

j∈u
min(1 − xj , 1 − yj). For u = ∅ we have

f(x∅) = f(1).This deomposition is an ANOVA-type deomposition, see [12, 40℄. Its essene is that
f is deomposed as a sum of funtions depending on groups of variables indexed bysubsets u. Furthermore, the importane of eah group of variables is measured by γusine

‖f‖2
H(Kd,γ) =

∑

∅6=u⊂{1,2,...,d}

γ−1
u

‖fu‖2
H(Kd,u)with the onvention that 0/0 := 0. For u 6= ∅, the funtions fu have the properties that

fu(xu) = 0 if at least one omponent of xu is 1, and
‖fu‖2

H(Kd,u) =

∫

[0,1]|u|

(

∂|u|

∂xu

fu(xu)

)2

dxu.If f lies in the unit ball of H(Kd,γ) then ‖fu‖H(Kd,u) ≤ γu. Hene, is γj is small then all
fu with j ∈ u have small norms. In this way, the weights moderate the ontributions of
fu's in the deomposition of f from the unit ball of H(Kd,γ).We now omment on tratability of multivariate integration and funtion approxi-mation for the weighted Sobolev spae H(Kd,γ) It is known that strong tratability ofmultivariate integration and funtion approximation for H(Kd,γ) holds i�

∑

j=1

γj < ∞,and tratability holds i�
lim sup

d→∞

∑d
j=1 γj

ln d
< ∞,see [31, 36℄ for multivariate integration, and [50℄ for multivariate funtion approxima-tion.Based on this motivating example, we are ready to present weighted reproduingkernel Hilbert spaes of funtions of d variables, see [52℄. We start with d = 1. For aLebesgue measurable set D ⊂ R, let ρ : D → R+ be a Lebesgue integrable funtionsuh that ∫

D
ρ(t) dt = 1. Let H(K) be a separable reproduing kernel Hilbert spae ofunivariate funtions de�ned on D with the reproduing kernel K : D × D → R. We



420 H. WOŹNIAKOWSKIassume that the onstant non-zero funtions do not belong to H(K). For simpliity, weassume that
A :=

∫

D2

ρ(x)ρ(y)K(x, y) dx dy > 0,

B :=

∫

D

ρ(x)K(x, x) dx < ∞.The �rst ondition A > 0 implies that the integration problem in H(K) is not trivialsine for INT1(f) =
∫

D
ρ(t)f(t) dt we have ‖INT1‖ = A. The seond ondition B < ∞implies that H(K) is ontinuously embedded into L2,ρ(D) sine ‖f‖L2,ρ(D) ≤ B‖f‖H(K).Obviously, 0 ≤ A ≤ B sine |K(x, y)| ≤

√

K(x, x)
√

K(y, y).For d ≥ 2, we take Dd = D × D × · · · × D, d times, and ρd(x) =
∏d

j=1 ρ(xj). Let
γ = {γd,u} be a sequene of non-negative numbers, alled weights, indexed by d and uwhih is an arbitrary subset of indies from the set {1, 2, . . . , d}. Thus for eah d we have
2d non-negative weights γd,u. For simpliity, we assume that γd,∅ > 0. Let Ud denote theset of nonempty subsets u with positive γd,u.Consider the weighted reproduing kernel Hilbert spae H(Kd,γ) with the reproduingkernel

Kd,γ(x, y) = γd,∅ +
∑

u∈Ud

γd,u

∏

j∈u

K(xj , yj) ∀x, y ∈ Dd.The spae H(Kd,γ) is a subset of L2,ρd
(Dd) and onsists of funtions de�ned on Dd whihan be uniquely deomposed as

f = f∅ +
∑

u∈Ud

fu = γd,∅f∅ +
∑

u∈Ud

γd,ufd,u,where fu = γd,ufd,u ∈ H(Kd,u) with the reproduing kernel Kd,u(x, y) =
∏

j∈u K(xj , yj),
Kd,∅ = 1. Hene, funtions fu depend only on variables with indies from the subset u.In partiular, f∅ = onstant. For f, g ∈ H(Kd,γ) we have

〈f, g〉H(Kd,γ) = γd,∅fd,∅gd,∅ +
∑

u∈Ud

γd,u 〈fd,u, gd,u〉H(Kd,u) .This is a generalized ANOVA-type deomposition,The weights γ = {γd,u} are alled produt weights if
γd,∅ = 1, γd,u =

∏

j∈u

γj ∀ d, u 6= ∅,for some non-negative numbers γj , see [10, 36℄.The weights γ = {γd,u} are alled �nite-order weights of order q∗ if
γd,u = 0 for all (d, u) with |u| > q∗,where q∗ is the smallest integer with this property, see [10, 38, 52℄.For produt weights, we have

Kd,γ(x, y) =

d
∏

j=1

(1 + γjK(xj , yj)) .



TRACTABILITY OF MULTIVARIATE PROBLEMS 421The importane of the jth variable is moderated by the weight γj , whereas the importaneof the group of variables indexed by u is moderated by ∏

j∈u
γj . As an example, observethat for D = [0, 1], ρ = 1, K(x, y) = min(1−x, 1− y), and for produt weights we obtain

H(Kd,γ) as the weighted Sobolev spae onsidered in the motivating example.For �nite-order weights with order q∗, eah funtion from H(Kd,γ) is a sum of fun-tions whih depend on at most q∗ variables. Furthermore, eah group of at most q∗variables is moderated by the weight γd,u. As we already mentioned, this property holdsfor many multivariate problems in mathematial �nane and in physis.6.2. Linear tensor produts problems for H(Kd,γ). Observe that H(Kd,γ) is a subsetof the spae H(Kd,1) with all weights γd,u = 1. That is why it is enough to de�ne amultivariate problem over H(Kd,1). Sine H(Kd,1) is the tensor produt of d opies of
H(1 + K) we �rst de�ne S1 : H(1 + K) → G1 as a ontinuous linear operator for aseparable Hilbert spae G1. Then for d ≥ 2, we take Sd : H(Kd,1) → Gd as the tensorprodut of S1 with Gd being the tensor produt of G1. In this way we obtain multivariateintegration for S1 = INT1 with G1 = R, and multivariate funtion approximation for
S1 = APP1 with G1 = L2,ρ1

(D).As in the third example of Setion 4, for a general S1 we denote W1 = S∗
1S1 :

H(1 + K) → H(1 + K) and denote its non-inreasing eigenvalues by {λj} with the sameonvention that λj = 0 for j ≥ dim(H(1 + K)) + 1. For an arbitrary non-inreasing andnon-negative sequene η = {ηj}, we say, as in [49℄, that pη is the sum-exponent of η if
pη = inf

{

α ≥ 0 :

∞
∑

j=1

ηα
j < ∞

}

,with pη = ∞ if the set of α's is empty.6.3. Tratability for produt weights. Tratability depends on the lass of permissibleinformation evaluations. Assume �rst that all ontinuous linear funtionals an be usedas information evaluations. Obviously, if λ2 = 0 then Sd is a ontinuous linear funtionaland strong tratability trivially holds sine n(ε, Sd) ∈ {0, 1}. Assume then λ2 > 0. Thefollowing theorem was proven in [49℄:
• Tratability is equivalent to strong tratability.
• Strong tratability holds i� the sum-exponents of λ = {λj} and γ = {γj} are �nite.If this holds then the exponent of strong tratability is

p = 2max(pλ, pγ).Observe that for all γj = 1 we have pγ = ∞ and any linear tensor produt problem isintratable. This holds even if S1 is a rank two operator, i.e., λj = 0 for all j ≥ 3. Hene,to obtain tratability we must have the diminishing importane of suessive variablessuh that pγ < ∞. This means that the weights γj must behave like j−β for some positive
β. Obviously, sine pγ = 1/β the exponent of strong tratability is large for small β.The ondition pλ < ∞ is quite natural. Even for d = 1, the minimal number n(ε, S1)depends polynomially on ε−1 i� the eigenvalues λj behave like j−β for some positive β.Hene, the ompatness of S1 is enough to guarantee that n(ε, S1) is �nite but not enoughto guarantee tratability.



422 H. WOŹNIAKOWSKIWe now brie�y disuss the lass of information evaluations given by funtion values.In this ase, there are a number of di�erent results depending on ertain assumptionson the operator S1. We only mention that a typial result whih holds, in partiular, formultivariate integration and funtion approximation is that strong tratability holds i�
pλ < ∞ and

∞
∑

j=1

γj < ∞,whereas tratability is, in general, not equivalent to strong tratability, and holds i�
pλ < ∞ and

lim sup
d→∞

∑d
j=1 γj

ln d
< ∞.The reader interested in more spei� results, in the estimates on the exponents of ε−1and d, as well as in onstrutive algorithms for whih tratability bounds hold is referredto a survey [30℄ and papers ited there.6.4. Tratability for �nite-order weights. Finite-order weights usually imply tratabilityor even strong tratability of linear multivariate problems, and the role of the number

d of variables is replaed by the order q∗ of �nite-order weights in tratability bounds.We illustrate this point for multivariate integration for whih an expliit estimate on
n(ε, INTd) may be found in [52℄,

n(ε, INTd) ≤
(

B

A
b

)q∗

1

ε2
∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .Here, A and B are de�ned as in Subsetion 6.1. Hene, we have strong tratability ofmultivariate integration.We stress that this estimate holds for arbitrary �nite-order weights of order q∗. Fur-thermore, the exponential dependene on q∗ present in this estimate is sharp for some�nite-order weights of order q∗.For some Hilbert spaes H(K) it may happen that A = 0 and the last estimate annotbe applied. This holds, in partiular for the Korobov spae H(1 + K) with K(x, y) =

B2(|x−y|), for x, y ∈ [0, 1], where B2(t) = t2− t+ 1
6 is the Bernoulli polynomial of degree

2. The inner produt in this ase is 〈f, g〉 =
∫ 1

0
f(t)g(t) dt +

∫ 2

0
f ′(t)g′(t) dt. For A = 0,instead of strong tratability, we have tratability of multivariate integration, see [52℄.Similar bounds on n(ε, Sd) hold for multivariate funtion approximation and otherlinear multivariate problems. Roughly speaking, we always have tratability and underertain assumptions on �nite-order weights we have strong tratability, see again [52℄.Tratability for �nite-order weights has been also studied for quasilinear problemssuh as partial di�erential equations in [54, 55, 56℄. The essene of these results is that�nite-order weights imply tratability of these non-linear problems.The tratability results for �nite-order weights whih we mentioned so far are obtainedby non-onstrutive arguments. There are also results with �semi-onstrutive� and fullyonstrutive proofs. We now indiate a ouple of suh results.



TRACTABILITY OF MULTIVARIATE PROBLEMS 423We �rst indiate a �semi-onstrutive� proof for tratability of multivariate integrationwith Dd = [0, 1]d, ρd = 1 and for the weighted Sobolev spae H(Kd,γ) with �nite-orderweights of order q∗ and with the univariate kernel K(x, y) = min(1−x, 1− y). As in [38℄,we onsider a shifted lattie rule
An,d(f) =

1

n

n−1
∑

j=0

f

({

k

n
z + ∆

})

,where z ∈ {1, 2, . . . , n − 1}d is an integer vetor with d omponents omputed by theCBC (omponent-by-omponent) algorithm, and ∆ ∈ [0, 1)d is a shift vetor. Then forsome ∆, the shifted lattie rule has error at most ε‖INTd‖ with
n ≤ Ca ε2/a d q∗(1−1/a) ∀ a ∈ [1, 2),see [38℄. Here, Ca is a positive number independent of ε and d.This is a �semi-onstrutive� proof sine we know how to onstrut the generatingvetor z of the lattie rule, but we do not know how to onstrut the shift ∆. We alsostress that z as well as ∆ depend on �nite-order weights.Note that for a lose to 2, the exponent of ε−1 is almost 1 whih is optimal, and theexponent of d is almost q∗/2. This implies tratability. On the other hand, if we take a = 1then the dependene on d disappears and the exponent of ε−1 is 2. This implies strongtratability. Hene, we have an interesting trade-o� sine we an improve the dependeneon d at the expense of the dependene on ε−1.We now turn to a fully onstrutive proof for the same problem with �nite-orderweights of order q∗. As an algorithm we now take a QMC algorithm

An,d(f) =
1

n

n
∑

j=1

f(tj)with {tj} given as one of the lassial low disrepany sequenes suh as Halton, Nieder-reiter or Sobol, see [11, 26, 42℄. For example, take the Niederreiter sequene in base b,Then the algorithm An,d has error at most ε‖INTd‖ with
n ≤ Cδ ε−(1+δ) (d ln (d + b))

q∗(1+δ) ∀ δ > 0,see [38℄. Here, Cδ is a positive number independent of ε and d. Hene, modulo δ, wehave the best dependene on ε−1. We also stress that the Niederreiter sample points tjdo not depend on �nite-order weights. This estimate implies tratability but not strongtratability.Finally, we would like to mention onstrutive proofs for general linear multivariateproblems presented in [52℄. The algorithms studied in these papers are WTP (weightedtensor produt) algorithms whih are modi�ations of Smolyak's algorithm, see [39℄, forweighted spaes of funtions. The WTP algorithms depends on �nite-order weights, andthe basi idea behind them is to use a proper tensor produt of known algorithms for theunivariate ase. Assume that the univariate problem an be solved with O(ε−p) funtionvalues or arbitrary information evaluations for some positive p. Then for arbitrary d ≥ 2,the WTP algorithm has error at most ε‖Sd‖ and uses n funtion values or arbitraryinformation evaluations suh that
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n ≤ C ε−p d q∗

(ln(d/ε))q∗(p+1),for some positive C independent of ε and d. This implies tratability. In [52℄, thereare presented onditions on �nite-order weights for whih the WTP algorithm solves theproblem using n information evaluations polynomially dependent on ε−1 and independentof d. This implies strong tratability.6.5. Conlusion. We onlude this setion by the following points regarding tratabilityonditions on weights:
• For linear multivariate problems de�ned over unweighted spaes, γd,u = 1, we usu-ally have intratability or even the urse of dimensionality in the worst ase setting.
• We may restore tratability or even strong tratability by onsidering linear multi-variate problems over weighted spaes in whih we an moderate the importane ofsuessive variables or groups of variables.
• For produt weights, γj moderates the behavior of the jth variable. Typially, if onlyfuntion values are used, strong tratability holds i� ∑∞

j=1 γj < ∞, and tratabilityi� ∑d
j=1 γj is of order ln d. If we an use arbitrary ontinuous linear funtionals,then strong tratability is equivalent to tratability and holds i� ∑∞

j=1 γα
j < ∞ forsome positive α.

• For arbitrary �nite-order weights, we usually have tratability of linear multivariateproblems with an exponential dependene on the order of �nite-order weights.Aknowledgments. I am grateful for valuable omments from Marek Kwas and OnufryWojtaszzyk.
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