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Université Catholique de Louvain

Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium

E-mail: Johan.Segers@uclouvain.be

Abstract. Let f be a measurable, real function defined in a neighbourhood of infinity. The

function f is said to be of generalised regular variation if there exist functions h 6≡ 0 and

g > 0 such that f(xt) − f(t) = h(x)g(t) + o(g(t)) as t → ∞ for all x ∈ (0,∞). Zooming in on

the remainder term o(g(t)) eventually leads to the relation f(xt) − f(t) = h1(x)g1(t) + · · · +
hn(x)gn(t) + o(gn(t)), each gi being of smaller order than its predecessor gi−1. The function f

is said to be generalised regularly varying of order n with rate vector g = (g1, . . . , gn)′. Under

general assumptions, g itself must be regularly varying in the sense that g(xt) = xBg(t)+o(gn(t))

for some upper triangular matrix B ∈ Rn×n, and the vector of limit functions h = (h1, . . . , hn)

is of the form h(x) = c
R x

1
uBu−1du for some row vector c ∈ R1×n. The uniform convergence

theorem continues to hold. Based on this, representations of f and g can be derived in terms of

simpler quantities. Moreover, the remainder terms in the asymptotic relations defining higher-

order regular variation admit global, non-asymptotic upper bounds.

1. Introduction. The aim of this paper is to provide an analysis of the asymptotic
relation

f(xt) = f(t) +
n∑
i=1

hi(x)gi(t) + o(|gn(t)|), x ∈ (0,∞), t→∞. (1.1)
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Here f and g1, . . . , gn are real-valued functions defined on a neighbourhood of infinity; the
functions gi are eventually of constant sign and satisfy gi(t) = o(|gi−1(t)|) as t→∞ for
i ∈ {2, . . . , n}; and h1, . . . , hn are real-valued functions defined on (0,∞). The functions
g1, . . . , gn are called the rate functions and the functions h1, . . . , hn are called the limit
functions.

The following observations are immediate. First, equation (1.1) subsumes the same
equation with n replaced by k ∈ {1, . . . , n}: the relation for n can be seen as the one for
n− 1 plus an explicit remainder term. Second, the limit function h1 is determined by f
and g1, and the limit function hi (i ∈ {2, . . . , n}) is determined by f and g1, . . . , gi and
h1, . . . , hi−1.

Equation (1.1) is closely related to a similar looking relation for the auxiliary functions
gi: for each i ∈ {1, . . . , n},

gi(xt) =
n∑
j=i

Aij(x)gj(t) + o(|gn(t)|), x ∈ (0,∞), t→∞. (1.2)

The functions Aij , 1 6 i 6 j 6 n, are real-valued functions on (0,∞). They are uniquely
determined by the functions g1, . . . , gn, and (1.2) implies the same equation for n replaced
by k ∈ {i, . . . , n}.

Equations (1.1) and (1.2) fit into the theory of regular variation in the following way.
Recall that a positive, measurable function F defined in a neighbourhood of infinity is
called regularly varying if for all x ∈ (0,∞) the limit H(x) = limt→∞ F (xt)/F (t) exists
in (0,∞) (Karamata, 1930, 1933). If H ≡ 1, then F is called slowly varying. Setting
f = logF and h = logH yields h(t) = limt→∞{f(xt)− f(t)}, which is the case n = 1 of
(1.1) with g1 ≡ 1. If F is measurable, then necessarily H(x) = xc for some c ∈ R, and
thus h(x) = c log(x). The case n = 1 of (1.1) with general g1 and h(x) = c

∫ x
1
ub−1du was

introduced in de Haan (1970) and is called extended or generalized regular variation, the
symbol Π being usually reserved for the class of functions f for which h(x) = c log(x)
with c 6= 0. When studying the rate of convergence for Π-varying functions, one naturally
arrives at the case n = 2 in (1.1), studied in Omey and Willekens (1988) and de Haan and
Stadtmüller (1996). The next step, n = 3, was the subject of Fraga Alves et al. (2006).
The jump to arbitrary n was made in Wang and Cheng (2005), where the focus is on the
form of the limit functions hi.

A minimal amount of regularity of the function f needs to be presupposed for a rich
enough theory to result. In this paper, we are content to assume f that is Lebesgue
measurable. As in Bingham et al. (1987, Chapter 1), an alternative would have been
to start from the Baire property. According to Bingham and Ostaszewski (2009), truly
minimal conditions can be formulated using infinite combinatorics.

Main references to the theory of regular variation, its extensions and its applications
are the monographs by Seneta (1976), Bingham et al. (1987), and Geluk and de Haan
(1987). In addition to the already cited papers, extensions of regular variation are stud-
ied in particular in de Haan (1974), Bingham and Goldie (1982a,b), and Goldie and
Smith (1987). Regular variation plays an important role in certain areas of probability
theory, more precisely in the theory of domains of attraction of stable and max-stable
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distributions: see Feller (1971), Resnick (1987), and Meerschaert and Scheffler (2001).
Higher-order extensions are relevant for instance to rates of convergence and Edgeworth
expansions related to domains of attractions of max-stable distributions: see de Haan
and Resnick (1996), Cheng and Jiang (2001), Wang and Cheng (2006), and Haeusler and
Segers (2007).

1.1. Contributions. Our study is then centered around the following questions:

• If (1.1) and (1.2) are true for some x ∈ (0,∞), then when do they hold for all
x ∈ (0,∞)?
• What is the relation between (1.1) and (1.2)? When does (1.1) imply (1.2)?
• What do the limit functions hi and Aij look like? How are they related?
• When are (1.1) and (1.2) (locally) uniform in x?
• Do the remainder terms in (1.1) and (1.2) admit global, non-asymptotic upper

bounds?
• Can we represent f in terms of g1, . . . , gn? Can we retrieve g1, . . . , gn from f?

The key to the answers to these questions is a representation in terms of vectors and
matrices. For instance, (1.2) can be written as

g(xt) = A(x)g(t) + o(|gn(t)|), x ∈ (0,∞), t→∞;

here g = (g1, . . . , gn)′ is a column-vector valued function, and A = (Aij)ni,j=1 is an
upper-triangular matrix valued function. The function A necessarily satisfies the matrix
version of the (multiplicative) Cauchy functional equation: A(xy) = A(x)A(y). Under
measurability, this equation can be solved, yielding

A(x) = xB, x ∈ (0,∞),

for some upper triangular matrix B ∈ Rn×n; here xB = exp{(log x)B}, the exponential
function of a matrix being defined by the usual series expansion. The rate vector g will
be called regularly varying with index matrix B; notation g ∈ RVB. The row vector of
limit functions h = (h1, . . . , hn) in (1.1) can then be written as

h(x) = c

∫ x

1

uBu−1du, x ∈ (0,∞),

for some c ∈ R1×n. We say that f is generalized regularly varying with rate vector g and
g-index c; notation f ∈ GRV (g).

Conceptually, the nth order case is strongly similar to the first-order case provided
we are ready to think of the index of regular variation as a matrix. The fact that this
matrix is upper triangular comes from the assumption that gi(t) = o(|gi−1(t)|) and gives
rise to some convenient simplifications. The diagonal elements of B are at the same time
the eigenvalues of B and the indices of regular variation of the functions |gi|, and they
determine the nature of (1.1).

1.2. Outline. The structure of the body of our paper is as follows. In Section 2 we
investigate some basic properties of the limit functions Aij and hi and of the sets of
x-values for which the asymptotic relations 1.1 and 1.2 hold. We do not yet assume that
f or g are measurable. This assumption is added in Section 3, at which point we can
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define regularly varying rate vectors and generalized regular variation of arbitrary order.
Two characterization theorems state the precise form of the limit functions A and h in
terms of an index matrix B and an index vector c.

The fundamental result in any branch of regular variation theory is the uniform con-
vergence theorem. This is provided in Section 4 together with a first application, the
representation of regularly varying rate vectors and of generalized regularly varying func-
tions in terms of integrals of simpler quantities. In the Potter bounds of Section 5, both
the largest and the smallest eigenvalue of the index matrix B play a role.

Finally, two special cases are described in Section 6. First, if all eigenvalues (diagonal
elements) of B are different from zero, then f is essentially just a linear combination of
the rate functions g1, . . . , gn (Section 6.1). Second, if all eigenvalues of B are distinct,
then f is essentially a linear combination of power functions, a logarithm, and the final
rate function gn (Section 6.2). The case where all eigenvalues are equal to zero gives
rise to the theory of Π-regular variation of arbitrary order, see Omey and Segers (2009,
sections 5–6, 8).

1.3. Conventions. A real function is defined in a neighbourhood of infinity if its domain
contains an interval of the form [t0,∞) for some real t0. A real-valued function f defined
in a neighbourhood of infinity is eventually of constant sign if there exists a real t0 such
that either f(t) > 0 for all t > t0 or f(t) < 0 for all t > t0. Measure and measurability
refer to the Lebesgue measure and σ-algebra.

Unless specified otherwise, limit relations are to be understood as t → ∞. We write
a(t) ∼ b(t) if a(t)/b(t)→ 1.

A column vector g = (g1, . . . , gn)′ of real-valued functions defined in a neighbourhood
of infinity is called a rate vector if each component function is ultimately of constant sign
and, in case n > 2, if gi+1(t) = o(gi(t)) for every i ∈ {1, . . . , n − 1}. Even though the
sign of gi(t) could be eventually negative, for simplicity we will write o(gi(t)) rather than
o(|gi(t)|).

2. Quantifiers and limits. For a rate vector g of length n, let S(g) be the set of all
x ∈ (0,∞) for which there exists A(x) ∈ Rn×n such that

g(xt) = A(x)g(t) + o(gn(t)). (2.1)

For a real-valued function f defined in a neighbourhood of infinity and a rate vector g
of length n, let T (f, g) be the set of all x ∈ (0,∞) for which there exists a row vector
h(x) = (h1(x), . . . , hn(x)) such that

f(xt) = f(t) + h(x)g(t) + o(gn(t)). (2.2)

Whenever clear from the context, we will just write S = S(g) and T = T (f, g).
In this section, we will study properties of and relations between the sets S and T

and the matrix and vector functions A : S → Rn×n and h : T → R1×n. In particular, we
investigate the extent to which (2.1) is implied by (2.2). In §2.1, we study the properties
of A and S, while in §2.2, we study the interplay between A and S on the one hand and h
and T on the other hand. We do not assume that f or g are measurable; this assumption
will be added from the next section onwards.
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Remark 2.1. Let f be a real-valued function defined in a neighbourhood of infinity and
let g be a rate vector.

(a) For x ∈ T , the vector h(x) is uniquely defined by f and g through the recursive
relations

h1(x) = lim
t→∞
{f(tx)− f(t)}/g1(t),

hk(x) = lim
t→∞

{
f(tx)− f(t)−

k−1∑
i=1

hi(x)gi(t)
}/

gk(t), k ∈ {2, . . . , n}.

(b) IfQ is an invertible, upper triangular n×n matrix, thenQg is a rate vector as well
and (2.2) holds true with g(t) and h(x) replaced by Qg(t) and h(x)Q−1, respectively.

(c) Rather than (2.2), one could also study more general relations of the form

f(tx) = xαf(t) + h(x)g(t) + o(gn(t))

for some fixed α ∈ R. However, replacing f(t) by t−αf(t), g(t) by t−αg(t) and h(x) by
x−αh(x) would lead back to (2.2) again.

2.1. Properties of A and S. We study some elementary properties of the set S and the
matrix functionA in (2.1). Most importantly, the matricesA(x) are upper triangular, the
matrix function x 7→ A(x) is multiplicative and the set S is a multiplicative semigroup
(Proposition 2.2). As a consequence, if S contains a set of positive measure and if both
S ∩ (0, 1) and S ∩ (1,∞) are non-empty, then actually S = (0,∞) (Proposition 2.3).

Proposition 2.2. Let g be a rate vector and let S = S(g) and A(x) be as in (2.1).

(a) The matrix A(x) is upper triangular and is uniquely determined by g and x.
(b) If x, y ∈ S then xy ∈ S and A(xy) = A(x)A(y).
(c) For x ∈ S, the matrix A(x) is invertible if and only if x−1 ∈ S; in that case,

A(x)−1 = A(x−1).

Proof. (a) If n = 1, then (2.1) is just g1(xt)/g1(t)→ A11(x), so there is nothing to prove.
Suppose therefore that n > 2. Row number i ∈ {1, . . . , n} in (2.1) reads

gi(xt) =
n∑
j=1

Aij(x)gj(t) + o(gn(t)), x ∈ S.

Since g is a rate vector, we find

gi(xt)/g1(t)→ Ai1(x), x ∈ S.

If i > 2, then also
gi(xt)
g1(t)

=
gi(xt)
g1(xt)

g1(xt)
g1(t)

→ 0 ·A11(x) = 0, x ∈ S.

As a consequence, Ai1(x) = 0 for x ∈ S and i ∈ {2, . . . , n}. Therefore, the vector
(g2, . . . , gn)′, which is a rate vector too, satisfies (2.1) as well but with A(x) replaced by
(Aij(x))ni,j=2, x ∈ S. Proceed by induction to find that A(x) is upper triangular. From

gi(xt) =
n∑
j=i

Aij(x)gj(t) + o(gn(t)), x ∈ S, i ∈ {1, . . . , n},
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and the fact that g is a rate vector, it follows that the component functions Aij can be
retrieved recursively from g via the relations

Aii(x) = lim
t→∞

gi(xt)/gi(t), (2.3)

Aij(x) = lim
t→∞

(
gi(xt)−

j−1∑
k=i

Aik(x)gk(t)
)/

gj(t) (2.4)

for i ∈ {1, . . . , n} and j ∈ {i+ 1, . . . , n}.
(b) For x, y ∈ S, we have

g(xyt) = A(x)g(yt) + o(gn(yt))

= A(x)A(y)g(t) + o(gn(t)) + o(gn(yt)).

Since gn(yt)/gn(t)→ Ann(y), we obtain

g(xyt) = A(x)A(y)g(t) + o(gn(t)),

and thus xy ∈ S. Moreover, A(xy) = A(x)A(y) by uniqueness.
(c) Trivially, 1 ∈ S and A(1) = In, the n × n identity matrix. Therefore, if both x

and x−1 belong to S, then by (b), A(x)A(x−1) = A(xx−1) = A(1) = In. Conversely,
suppose that x ∈ S and that A(x) is invertible. Then

A(x)−1g(xt) = A(x)−1{A(x)g(t) + o(gn(t))}
= g(t) + o(gn(t)).

From the fact that A(x) is upper triangular and invertible, it follows that Ann(x) is
nonzero. But as gn(xt)/gn(t) → Ann(x), we may therefore rewrite the previous display
as

A(x)−1g(xt) = g(x−1(xt)) + o(gn(xt)).

Putting s = xt, we get

g(x−1s) = A(x)−1g(s) + o(gn(s)), s→∞.

As a consequence, x−1 ∈ S. Moreover, by uniqueness, A(x−1) = A(x)−1.

Proposition 2.3. Let g be a rate vector and let S = S(g).

(a) If S ∩ (1,∞) contains a set of positive measure, then (x,∞) ⊂ S for some x ∈
(1,∞).

(b) If S∩ (0, 1) contains a set of positive measure, then (0, x) ⊂ S for some x ∈ (0, 1).
(c) If S contains a set of positive measure and if both S ∩ (0, 1) and S ∩ (1,∞) are

non-empty, then S = (0,∞).

Proof. By Proposition 2.2, S is a multiplicative semigroup. Statements (a) and (b) then
follow directly from Corollary 1.1.5 in Bingham et al. (1987), due to Hille and Phillips
(1974).

To prove (c), proceed as follows. By assumption, S contains a set of positive measure;
hence S ∩ (0, 1) or S ∩ (1,∞) must contain a set of positive measure; assume the latter.
Take y ∈ S ∩ (0, 1), which is non-empty by assumption. By (a), there exists a positive
integer k such that (y−k,∞) ⊂ S. Since y ∈ S and since S is a multiplicative semigroup,
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(a,∞) ⊂ S implies (ay,∞) ⊂ S. By induction, we get that (yl,∞) ⊂ S for every integer
l. Hence (0,∞) ⊂ S.

2.2. Interplay between A, S and h, T . Next we study the interplay between A and
S for g in (2.1) on the one hand and h and T for f in (2.2) on the other hand. In
Proposition 2.4 we describe how properties of S transfer to properties of T and we derive
some functional relations between A and h. Conversely, in Proposition 2.6, we investigate
the extent to which (2.2) implies (2.1); in particular, we express g and A in terms of f
and h.

Proposition 2.4. Let f be a real-valued function defined in a neighbourhood of infinity
and let g be a rate vector. If S = (0,∞), then T is a multiplicative group and for x, y ∈ T ,

h(xy) = h(x)A(y) + h(y), (2.5)

h(x−1) = −h(x)A(x)−1. (2.6)

In particular, if T also contains a set of positive measure, then T = (0,∞).

Proof. Let x, y ∈ T . We have

f(xyt)− f(t) = {f(xyt)− f(yt)}+ {f(yt)− f(t)}
= h(x)g(yt) + o(gn(yt)) + h(y)g(t) + o(gn(t))

= h(x)A(y)g(t) + h(y)g(t) + o(gn(yt)) + o(gn(t))

= {h(x)A(y) + h(y)}g(t) + o(gn(t)),

where in the last step we used the fact that gn(yt)/gn(t) → Ann(y). Hence xy ∈ T , and
(2.5) follows from the uniqueness of h.

Next, let x ∈ T . We have

f(x−1t)− f(t) = −{f(x(x−1t))− f(x−1t)}
= −h(x)g(x−1t) + o(gn(x−1t))

= −h(x)A(x−1)g(t) + o(gn(t)) + o(gn(x−1t))

= −h(x)A(x−1)g(t) + o(gn(t)),

where in the last step we used the fact that gn(x−1t)/gn(t)→ Ann(x−1). Hence x−1 ∈ T ,
and (2.6) follows from the uniqueness of h.

The final statement follows Bingham et al. (1987, Corollary 1.1.4), going back to
Steinhaus (1920).

Remark 2.5. Let f be a real-valued function defined in a neighbourhood of infinity and
let g = (g1, . . . , gn)′ be a rate vector. Put

r = (f, g1, . . . , gn)′,

C(x) =
(

1 h(x)
0 A(x)

)
, x ∈ S ∩ T. (2.7)

By Proposition 2.2(a), C(x) is an (n+ 1)× (n+ 1) upper triangular matrix. Then (2.1)
and (2.2) can be put together as

r(xt) = C(x)r(t) + o(rn+1(t)),
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which is again of the form (2.1). If x, y ∈ S ∩ T , then by going through the proof of
Proposition 2.4 we find that also xy ∈ S ∩ T and that C(xy) = C(x)C(y). Similarly,
for x ∈ S ∩ T , the matrix C(x) is invertible if and only if x−1 ∈ S ∩ T , in which case
C(x−1) = C(x)−1.

However, r is not necessarily a rate vector. Moreover, as we shall be interested in the
interplay between (2.1) and (2.2), we continue to study these equations separately.

Conversely, to go from T and h to S and A, we need to impose that the functions
h1, . . . , hn are linearly independent. For instance, if n = 1 and h1 ≡ 0, then (2.2) reduces
to f(xt)− f(t) = o(g(t)), from which in general nothing can be deduced about the rate
function g; likewise, in case n = 2, linear independence of the functions h1 and h2 is
assumed from the start in de Haan and Stadtmüller (1996). Note that by Remark 2.7
below, unless the functions h1, . . . , hn are all identically zero, it is always possible to
find a non-empty I ⊂ {1, . . . , n} and a rate vector g̃ = (g̃i)′i∈I such that the functions
hi, i ∈ I are linearly independent, g̃i(t)/gi(t) → 1 for all i ∈ I, and f(xt) = f(t) +∑
i∈I hi(x)g̃i(t) + o(gn(t)).

Notation. Let f and h be as in (2.2). For a vector x = (x1, . . . , xn) ∈ Tn, put

h(x) = (h(x1)′, . . . ,h(xn)′)′, (2.8)

that is, h(x) is an n× n-matrix with h(xi) as row number i. Further, for t = (t1, . . . , tn)
such that all ti are in the domain of f , put

f(t) = (f(t1), . . . , f(tn))′.

Finally, put 1 = (1, . . . , 1) ∈ Rn.

Note that the functions h1, . . . , hn are linearly independent if and only if there exists
x ∈ Tn such that the vectors (hi(x1), . . . , hi(xn)), i ∈ {1, . . . , n} are independent (Cheney
and Light, 2000, Chapter 1, Problem 8), i.e., the matrix h(x) is invertible.

Proposition 2.6. Let f be a real-valued function defined in a neighbourhood of infinity
and let g be a rate vector. If T = (0,∞) and if the functions h1, . . . , hn in (2.2) are
linearly independent, then S = (0,∞), and for y ∈ (0,∞) and for any x ∈ (0,∞)n such
that h(x) is invertible,

g(t) = h(x)−1{f(tx)− f(t1)}+ o(gn(t)), (2.9)

A(y) = h(x)−1{h(yx)− h(y1)}. (2.10)

Proof. For x ∈ (0,∞)n and i ∈ {1, . . . , n}, we have

f(xit) = f(t) + h(xi)g(t) + o(gn(t));

in matrix notation, this becomes

f(tx) = f(t1) + h(x)g(t) + o(gn(t)). (2.11)

Now let x ∈ (0,∞)n be such that h(x) is invertible. Then (2.11) clearly implies (2.9).
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For y ∈ (0,∞), we have by (2.9) and (2.11)

g(ty) = h(x)−1{f(tyx)− f(ty1)}+ o(gn(yt))

= h(x)−1{f(tyx)− f(t1)} − h(x)−1{f(ty1)− f(t1)}+ o(gn(yt))

= h(x)−1h(yx)g(t)− h(x)−1h(y1)g(t) + o(gn(t)) + o(gn(yt))

= A(y)g(t) + o(gn(t)) + o(gn(yt)), (2.12)

with A(y) = h(x)−1{h(yx)− h(y1)}. Row i of (2.12) reads

gi(ty) =
n∑
j=1

Aij(y)gj(t) + o(gn(t)) + o(gn(ty)).

In particular, g1(ty) = A11(y)g1(t) + o(g1(t)) + o(g1(ty)) and thus

g1(ty)/g1(t)→ A11(y).

For i ∈ {2, . . . , n}, we find from the two previous displays that

Ai1(y) = lim
t→∞

gi(ty)/g1(t) = 0,

and thus

gi(ty) =
n∑
j=2

Aij(y)gj(t) + o(gn(t)) + o(gn(ty)), i ∈ {2, . . . , n}.

Repeating the same argument inductively yields eventually

gn(ty) = Ann(y)gn(y) + o(gn(t)) + o(gn(ty)),

from which
gn(ty)/gn(t)→ Ann(y).

Hence, on the right-hand side in (2.12), the term o(gn(ty)) can be absorbed by the term
o(gn(t)), yielding g(ty) = A(y)g(t) + o(gn(t)). Hence y ∈ S with A(y) as in (2.10).

Remark 2.7. Let f be a real-valued function defined in a neighbourhood of infinity, let
g be a rate vector, and assume that not all functions h1, . . . , hn in (2.2) are identically
zero. Then by basic linear algebra, there exists a non-empty subset I of {1, . . . , n} such
that the following holds:

(i) the functions hi, i ∈ I, are linearly independent;
(ii) there exists an array of real numbers λij , where i ∈ {1, . . . , n} and j ∈ I∩{1, . . . , i},

such that hi =
∑
j∈I,j6i λijhj (the empty sum being zero by convention).

Then

h(x)g(t) =
n∑
i=1

∑
j∈I,j6i

λijhj(x)gi(t) =
∑
j∈I

hj(x)g̃j(t)

with g̃j(t) =
∑n
i=j λijgi(t). Since λjj = 1 for j ∈ I, we have g̃j(t)/gj(t)→ 1; in particular,

(g̃j)j∈I is a rate vector.

Remark 2.8. Let f be a real-valued function defined in a neighbourhood of infinity, let
g be a rate vector, and assume that there exists x ∈ Tn such that h(x) is invertible. Let

T (x) = {y ∈ T : xiy ∈ T, ∀i}. (2.13)
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By repeating the proof of Proposition 2.6, we see that T (x) ⊂ S. As a consequence,
if T (x) contains a set of positive measure and if both T (x) ∩ (0, 1) and T (x) ∩ (1,∞)
are non-empty, then by Proposition 2.3(c) and Proposition 2.4 actually S = (0,∞) and
T = (0,∞).

3. Regularly varying rate vectors and generalized regular variation. Up to now,
we have studied the asymptotic relations (2.1) and (2.2) without assuming that f or g
are measurable. This assumption is added now. In addition, we require that S = (0,∞)
and T = (0,∞). In that case, the limit functions A and h admit particularly simple
analytic forms in terms of matrix exponential functions. Some preliminaries on matrix
exponentials are collected in Appendix A. In §3.1, we focus on the rate vector g, whereas
in §3.2, we turn to the function f itself.

3.1. Regularly varying rate vectors. For measurable rate vectors g satisfying (3.1)
for all x ∈ (0,∞), the matrix function A can be written as A(x) = xB for some upper
triangular matrix B, the diagonal elements of B being the indices of regular variation of
the component functions |gi| (Propositions 3.1 and 3.2). This motivates the definition of
the class RVB of regularly varying rate vectors with index matrix B. The requirement
that the convergence holds for all x ∈ (0,∞) can be relaxed considerably (Theorem 3.4).

Proposition 3.1. Let g be a measurable rate vector. If there exists A : (0,∞)→ Rn×n
such that

g(xt) = A(x)g(t) + o(gn(t)), x ∈ (0,∞),

then there exists an upper triangular matrix B ∈ Rn×n such that

A(x) = xB, x ∈ (0,∞).

Proof. From (2.3)–(2.4) it follows thatA is measurable. Hence, in view of Proposition 2.2,
A is a measurable group homomorphism from (0,∞) into the group of invertible n × n
matrices. Then necessarily A(x) = xB, x ∈ (0,∞), with

B = lim
x→1

A(x)− I
x− 1

,

see for instance Dunford and Schwartz (1958, Theorem VIII.1.2 and Lemma VIII.1.3).
From the above display, it follows that B is upper triangular.

Proposition 3.2. Let B be the matrix appearing in Proposition 3.1 and put bi = Bii,
i ∈ {1, . . . , n}.

(a) The function |gi| is regularly varying with index bi; in particular, b1 > · · · > bn.
(b) All the eigenvalues of B, except maybe for the smallest one, have geometric mul-

tiplicity equal to one.

Proof. (a) This follows from the fact that

gi(xt)/gi(t)→ Aii(x) = xbi , x ∈ (0,∞), i ∈ {1, . . . , n}.

Since gi(t) = o(gi−1(t)), necessarily bi 6 bi−1.



GENERALISED REGULAR VARIATION 121

(b) Let b be an eigenvalue (diagonal element) of B and let v ∈ R1×n satisfy vB = bv.
Then vxB = xbv for all x > 0. Hence

vg(xt) = vxBg(t) + o(gn(t)) = xbvg(t) + o(gn(t)), x ∈ (0,∞),

and thus
(xt)−bvg(xt) = t−bvg(t) + o(t−bgn(t)), x ∈ (0,∞).

This states that the function t 7→ t−bvg(t) belongs to the class oΠa with a(t) = t−bgn(t).
Now unless b is equal to the smallest eigenvalue, bn, the Representation Theorem for oΠ
(Bingham et al., 1987, Theorem 3.6.1) stipulates the existence of c ∈ R such that

t−bvg(t) = c+ o(t−bgn(t)),

or in other words
vg(t) = ctb + o(gn(t)).

Now let b > bn and suppose that v1,v2 ∈ R1×n both satisfy viB = bvi, for i = 1, 2. Let
c1, c2 ∈ R be such that vig(t) = cit

b + o(gn(t)), for i = 1, 2. Find real numbers λ1 and
λ2, not both zero, such that λ1c1 +λ2c2 = 0. The vector v = λ1v1 +λ2v2 clearly satisfies
vg(t) = o(gn(t)). As g is a rate vector, necessarily v = 0. Hence v1 and v2 are linearly
dependent.

These results motivate the following definition.

Definition 3.3. A matrix B ∈ Rn×n is an index matrix if it is upper triangular, if its
diagonal elements are non-increasing, and if all of its eigenvalues, except maybe for the
smallest one, have geometric multiplicity equal to one.

A rate vector g of length n is regularly varying with index matrix B if g is measurable
and

g(xt) = xBg(t) + o(gn(t)), x ∈ (0,∞). (3.1)

Notation: g ∈ RVB.

Combining Propositions 2.3(c), 3.1, and 3.2, we arrive at our first main result.

Theorem 3.4 (Characterization Theorem for RVB). Let g be a measurable rate vector of
length n and let S be the set of x ∈ (0,∞) for which there exists A(x) ∈ Rn×n such that
g(xt) = A(x)g(t) + o(gn(t)). If S contains a set of positive measure and if both S ∩ (0, 1)
and S ∩ (1,∞) are non-empty, then g ∈ RVB for some index matrix B.

Remark 3.5. Let g ∈ RVB.

(a) If Q ∈ Rn×n is upper triangular and invertible, then Qg is also a rate vector and
Qg ∈ RVQBQ−1 .

(b) For integer 1 6 k 6 l 6 n, the subvector gkl = (gk, . . . , gl)′ is also a rate vector
and gkl ∈ RVBkl

, where Bkl = (Bij)li,j=k.

3.2. Generalized regular variation. Next we resume the study of the relation f(xt) =
f(t) + h(x)g(t) + o(gn(t)), this time for measurable f . In view of Proposition 2.6, there
is not much harm in assuming from the start that g is measurable as well.
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Definition 3.6. A measurable, real-valued function f defined in a neighbourhood of
infinity is generalized regularly varying with rate vector g ∈ RVB and g-index c ∈ R1×n

if
f(xt) = f(t) + h(x)g(t) + o(gn(t)), x ∈ (0,∞), (3.2)

where

h(x) = c

∫ x

1

yBy−1dy, x ∈ (0,∞). (3.3)

Notation: f ∈ GRV (g).

Our second main result asserts that in the relation (3.2), the regular variation property
of g and the form of the limit function h in (3.3) are automatic. The assumption in
Theorem 3.7 that the limit functions h1, . . . , hn are linearly independent is unavoidable;
however, in view of Remark 2.7, unless all hi are identically zero, it is always possible to
switch to a subvector (hi)i∈I of functions that are linearly independent.

Theorem 3.7 (Characterization Theorem for GRV (g)). Let f be a measurable, real-
valued function defined in a neighbourhood of infinity and let g be a measurable rate
vector of length n. Let T be the set of x ∈ (0,∞) for which there exists h(x) ∈ R1×n such
that f(tx) = f(t) + h(x)g(t) + o(gn(t)). Assume that there exists x ∈ Tn such that

(i) the matrix h(x) in (2.8) is invertible;
(ii) the set T (x) in (2.13) contains a set of positive measure and has non-empty inter-

sections with both (0, 1) and (1,∞).

Then g ∈ RVB and f ∈ GRV (g) with h as in (3.3). In addition, all eigenvalues (including
the smallest one) of the index matrix B have geometric multiplicity equal to one.

Proof. By Remark 2.8, necessarily T = (0,∞) and there exists A : (0,∞)→ Rn×n such
that g(tx) = A(x)g(t) + o(gn(t)) for all x ∈ (0,∞). By Theorem 3.4, g ∈ RVB for some
index matrix B ∈ Rn×n.

By Remark 2.5, the matrix function C : (0,∞)→ R(n+1)×(n+1) in (2.7) is a measur-
able group homomorphism. As in the proof of Proposition 3.1, we find thatC(x) = xD for
some upper triangular matrix D ∈ R(n+1)×(n+1). Since C11(x) = 1 and (Cij(x))n+1

i,j=2 =
A(x) = xB, the expression for h in (3.3) follows from Remark A.2.

Let b be an eigenvalue (i.e. a diagonal element) of B and let v ∈ Rn×1 be such that
Bv = bv. For y ∈ (0,∞), we have yBv = ybv. As a consequence, for x ∈ (0,∞),

h(x)v = c

∫ x

1

yBy−1dy v =
∫ x

1

yb−1dy cv.

Now let both v1,v2 ∈ Rn×1 be eigenvectors of B with the same eigenvalue b. There exist
λ1, λ2 ∈ R, not both zero, such that λ1cv1 + λ2cv2 = 0, and thus

h(x)(λ1v1 + λ2v2) =
∫ x

1

yb−1dy (λ1cv1 + λ2cv2) = 0, x ∈ (0,∞).

Since the functions h1, . . . , hn were assumed to be linearly independent, the above identity
implies that λ1v1+λ2v2 = 0, that is, v1 and v2 are linearly dependent. As a consequence,
the dimension of the eigenspace of b cannot be larger than one.
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Remark 3.8. Let f ∈ GRV (g) with g-index c ∈ R1×n. If Q ∈ Rn×n is upper triangular
and invertible, then also f ∈ GRV (Qg) with Qg-index cQ−1.

4. Uniform convergence and representations. The asymptotic relations (3.1) and
(3.2) defining the function classes RVB and GRV (g) respectively hold locally uniformly
in x ∈ (0,∞), see Theorems 4.1 and 4.2. These uniform convergence theorems yield
representations of g ∈ RVB and f ∈ GRV (g) in terms of integrals of simpler quantities,
see Theorems 4.3 and 4.5.

Theorem 4.1 (Uniform convergence theorem for RVB). If g ∈ RVB, then g(tx) =
xBg(t) + o(gn(t)) locally uniformly in x ∈ (0,∞).

Proof. Our proof of Theorem 4.1 is inspired by the one in Delange (1955) for the uniform
convergence theorem for slowly varying functions as presented in Bingham et al. (1987,
Theorem 1.2.1).

We will prove uniform convergence for x ∈ [a−1, a] where a ∈ (1,∞). For v =
(v1, v2, ..., vn) let ‖v‖ = max(|v1|, . . . , |vn|). The corresponding operator norm on Rn×n
will also be denoted by ‖ · ‖. Put b = Bnn and choose ε ∈ (0, log a). For t > 0 sufficiently
large, we define the sets

E(t) = {s ∈ [a−1t, at] : ‖g(s)− (s/t)Bg(t)‖ > ε|gn(t)|},
V (t) = {x ∈ [a−1, a] : ‖g(tx)− xBg(t)‖ > ε|gn(t)|}.

These sets are measurable and E(t) = {tx : x ∈ V (t)} = tV (t). With µ the measure on
(0,∞) defined by µ(dy) = y−1dy, we have µ(E(t)) = µ(V (t)). As g ∈ RVB, it follows that
the indicator function of V (t) converges pointwise to zero. By dominated convergence,
we have µ(V (t)) → 0 and we can find t0 > 0 such that µ(E(t)) = µ(V (t)) 6 ε/2 for all
t > t0.

For a−1 6 x 6 a, the intersection [a−1xt, axt] ∩ [a−1t, at] contains at least one of the
intervals [a−1t, t] or [t, at]. This implies that µ([a−1xt, axt] ∩ [a−1t, at]) > log a. On the
other hand, if t > at0 = t1 and x > a−1, then µ(E(tx) ∪E(t)) 6 ε. Now as ε < log a, for
all x ∈ [a−1, a] and t > t1, the set

V (x, t) = ([a−1xt, axt] ∩ [a−1t, at]) \ (E(xt) ∪ E(t))

has positive µ-measure and so is certainly non-empty. Let s = s(x, t) ∈ V (x, t). By
definition of E(t) we have for x ∈ [a−1, a] and t > t1,

‖g(s)− (s/t)Bg(t)‖ < ε|gn(t)|,
‖g(s)− (s/(xt))Bg(xt)‖ < ε|gn(xt)|,

whence, by the triangle inequality,

‖(s/(xt))B{xBg(t)− g(xt)}‖ < 2ε{|gn(t)|+ |gn(xt)|}.

Since the function |gn| is regularly varying with index b, by the Uniform convergence
theorem for regularly varying functions (Bingham et al., 1987, Theorem 1.2.1), there
exists t2 > t1 such that

|gn(tx)| 6 2ab|gn(t)|, x ∈ [a−1, a], t > t2.
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Combine the last two displays to see that

‖(s/(xt))B{xBg(t)− g(xt)}‖ < 2ε(1 + ab)|gn(t)|, x ∈ [a−1, a], t > t2.

Applying the inequality ‖Tv‖ > ‖T−1‖−1‖v‖, valid for invertible T ∈ Rn×n, we get from
the previous display that

‖xBg(t)− g(tx)‖ 6 2ε(1 + ab)|gn(t)| ‖(xt/s)B‖, x ∈ [a−1, a], t > t2.

Now note that for such x and t we have a−2 6 xt/s 6 a2. Since the function 0 < y 7→ yB

is continuous, there is a positive constant C = C(a,B) such that

‖xBg(t)− g(tx)‖ 6 εC|gn(t)|, x ∈ [a−1, a], t > t2.

This proves the result.

Theorem 4.2 (Uniform convergence theorem for GRV (g)). If f ∈ GRV (g), then the
relation f(tx) = f(t) + h(x)g(t) + o(gn(t)) holds locally uniformly in x ∈ (0,∞).

Proof. In view of Remark 2.5, we can recycle the proof of Theorem 4.1. Note that in
that proof we nowhere used the fact that g is a rate vector, but only that g(xt) =
xBg(t)+o(gn(t)) for all x ∈ (0,∞) and some square matrix B as well as regular variation
of |gn|.

Theorem 4.3 (Representation theorem for RVB). Let g be a rate vector of length n and
let B ∈ Rn×n be an index matrix. Then g ∈ RVB if and only there exist a ∈ (0,∞),
v ∈ Rn×1 and measurable functions η,φ : [a,∞) → Rn×1, both o(gn(t)), such that

g(t) = tBv + η(t) + tB
∫ t

a

u−Bφ(u)u−1du, t ∈ [a,∞). (4.1)

Proof. Necessity. Assume that g ∈ RVB. Since the functions |gi| are regularly varying,
they are locally bounded on [a,∞) for some sufficiently large a ∈ (0,∞). Define

v =
∫ ea

a

u−Bg(u)u−1du,

η(t) =
∫ e

1

{g(t)− u−Bg(ut)}u−1du,

φ(t) = e−Bg(et)− g(t).

By Theorem 4.1, the vector valued functions η(t) and φ(t) are both o(gn(t)). The equality
(4.1) can be verified by simple algebra.

Sufficiency. Suppose that the rate vector g admits the representation (4.1) with η(t) and
φ(t) both o(gn(t)). Put b = Bnn. Since B is upper triangular, row n of (4.1) reads

gn(t) = tbvn + ηn(t) + tb
∫ t

a

u−bφn(u)u−1du, t ∈ [a,∞).
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For u ∈ (1,∞) and t ∈ [a,∞), we have

gn(ut)− ubgn(t) = ηn(ut)− ubηn(t) + (ut)b
∫ ut

t

y−b−1φn(y)dy

= ηn(ut)− ubηn(t) + ub
∫ u

1

y−b−1φn(yt)dy. (4.2)

Fix x ∈ (1,∞). We have

sup
u∈[1,x]

|ηn(ut)| = sup
u∈[1,x]

|ηn(ut)|
|gn(ut)|

|gn(ut)|

6 sup
u∈[1,x]

|ηn(ut)|
|gn(ut)|

· sup
u∈[1,x]

|gn(ut)|,

and thus
sup
u∈[1,x]

|ηn(ut)| = o
(

sup
u∈[1,x]

|gn(ut)|
)
.

Similarly for ηn replaced by φn. In view of (4.2), it follows that

sup
u∈[1,x]

|gn(tu)| 6 xb|gn(t)|+ o
(

sup
u∈[1,x]

|gn(ut)|
)
,

and thus
sup
u∈[1,x]

|gn(tu)| = O(gn(t)). (4.3)

Now let us look at the complete rate vector g. As in (4.2), we find, again for x ∈ (1,∞),

g(xt)− xBg(t) = η(xt)− xBη(t) + xB

∫ x

1

u−Bφ(ut)u−1du. (4.4)

From (4.3) and the assumption that both η(t) and φ(t) are o(gn(t)), the above display
implies

g(xt)− xBg(t) = o(gn(t)), x ∈ [1,∞).

Since xB is invertible, the above display and Proposition 2.2 imply that g ∈ RVB.

Remark 4.4. The case n = 1 in Theorem 4.3 seems to be a new representation for
regularly varying functions. The representation is the same as the one for the class oΠg

in Bingham et al. (1987, Theorem 3.6.1), but with the difference that the function g is not
assumed to be of bounded increase. Indeed, the main point in the proof of sufficiency was
precisely to show that the representation actually implies that g is of bounded increase,
see (4.3).

Theorem 4.5 (Representation theorem for GRV (g)). Let g ∈ RVB and let f be a
measurable, real-valued function defined in a neighbourhood of infinity. Then f ∈ GRV (g)
with g-index c ∈ R1×n if and only if there exist constants a ∈ (0,∞) and v ∈ R as well
as measurable functions η, φ : [a,∞)→ R, both o(gn(t)), such that

f(t) = v + η(t) +
∫ t

a

{cg(u) + φ(u)}u−1du, t ∈ [a,∞).
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Proof. Let a ∈ (0,∞) be large enough so that the domain of g includes [a,∞) and put

f̃(t) = c

∫ t

a

g(u)u−1du,

ξ(t) = f(t)− f̃(t),

for t ∈ [a,∞). For x ∈ (0,∞) and t large enough so that t > a and xt > a,

f̃(xt)− f̃(t) = c

∫ xt

t

g(u)u−1du = c

∫ x

1

g(ut)u−1du.

By the Uniform convergence theorem for RVB,

f̃(xt)− f̃(t) = c

∫ x

1

uBu−1dug(t) + o(gn(t)), x ∈ (0,∞),

and thus f̃ ∈ GRV (g) with g-index c. It follows that f ∈ GRV (g) with g-index c if and
only if

ξ(xt)− ξ(t) = o(gn(t)), x ∈ (0,∞),

that is, ξ ∈ oΠ|gn|. The Representation theorem for oΠ|gn| (Bingham et al., 1987, Theo-
rem 3.6.1) says that the above display is equivalent to the existence of a constant v ∈ R
and measurable functions η, φ : [a,∞)→ R, both o(gn(t)), such that

ξ(t) = v + η(t) +
∫ t

a

φ(u)u−1du.

Since f = f̃ + ξ, we arrive at the desired representation.

5. Potter bounds. The representation theorems for RVB and GRV (g) allow us to de-
rive global upper bounds for ‖g(xt)− xBg(t)‖/|gn(t)| and |f(xt)−f(t)−h(x)g(t)|/|gn(t)|.
In analogy to classical regular variation theory, such bounds will be called Potter bounds.

First recall that for any matrix Q ∈ Rn×n and any matrix norm ‖ · ‖,

lim
m→∞

‖Qm‖1/m = max{|λ| : λ is an eigenvalue of Q}.

Now let B ∈ Rn×n be an upper triangular matrix whose diagonal elements bi = Bii,
i ∈ {1, . . . , n}, are non-increasing, b1 > · · · > bn. For x ∈ (0,∞), the eigenvalues of xB

and x−B are {xbi} and {x−bi}, respectively. The above display then implies

lim
x→∞

log ‖xB‖
log x

= b1, (5.1)

lim
x→0

log ‖xB‖
log x

= lim
y→∞

log ‖y−B‖
− log y

= bn. (5.2)

Theorem 5.1 (Potter bounds for RVB). Let g ∈ RVB. For every ε > 0, there exists
t(ε) > 0 such that

‖g(xt)− xBg(t)‖
|gn(t)|

6

{
εxb1+ε if t > t(ε) and x > 1;

εxbn−ε if t > t(ε) and t(ε)/t 6 x 6 1.
(5.3)
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Proof. We shall prove the following two statements, which are equivalent to (5.3): for
δ > 0,

lim
t→∞

sup
x>1

‖g(xt)− xBg(t)‖
xb1+δ|gn(t)|

= 0, (5.4)

lim
t→∞

sup
x>1

‖g(t)− x−Bg(xt)‖
x−bn+δ|gn(xt)|

= 0. (5.5)

Let a, η and φ be as in the Representation theorem for RVB (Theorem 4.3).

Proof of (5.4). For all t > a and x > 1,

g(xt)− xBg(t) = η(xt)− xBη(t) + (xt)B

∫ xt

t

u−Bφ(u)u−1du

= η(xt)− xBη(t) + xB

∫ x

1

u−Bφ(ut)u−1du,

and thus, since bn 6 b1,

‖g(xt)− xBg(t)‖
xb1+δ|gn(t)|

6
‖η(xt)‖
|gn(xt)|

|gn(xt)|
xbn+δ|gn(t)|

+
‖xB‖
xb1+δ

‖η(t)‖
|gn(t)|

+
‖xB‖
xb1+δ/2

∫ x

1

‖u−B‖
u−bnxδ/4

‖φ(ut)‖
|gn(ut)|

|gn(ut)|
ubnxδ/4|gn(t)|

u−1du.

As a consequence, for t > a,

sup
x>1

‖g(xt)− xBg(t)‖
xb1+δ|gn(t)|

6 sup
s>t

‖η(s)‖
|gn(s)|

· sup
x>1

|gn(xt)|
xbn+δ|gn(t)|

+ sup
x>1

‖xB‖
xb1+δ

· ‖η(t)‖
|bn(t)|

+ sup
x>1

‖xB‖
xb1+δ/4

· sup
u>1

‖u−B‖
u−bn+δ/4

· sup
s>t

‖φ(s)‖
|gn(s)|

· sup
u>1

|gn(ut)|
ubn+δ/4|gn(t)|

· sup
x>1

log x
xδ/4

.

By Potter’s theorem for RVbn and by (5.1)–(5.2), for every ε > 0,

lim
t→∞

sup
x>1

|gn(xt)|
xbn+ε|gn(t)|

= 1, sup
x>1

‖xB‖
xb1+ε

<∞, sup
x>1

‖x−B‖
x−bn+ε

<∞.

Combine the last two displays and the fact that both ‖η(t)‖ and ‖φ(t)‖ are o(gn(t)) to
arrive at (5.4).

Proof of (5.5). By (4.1), for all t > a and x > 1,

g(t)− x−Bg(xt) = η(t)− x−Bη(xt) + tB
∫ xt

t

u−Bφ(u)u−1du

= η(t)− x−Bη(xt) +
∫ x

1

u−Bφ(ut)u−1du,
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and thus

‖g(t)− x−Bg(xt)‖
x−bn+δ|gn(xt)|

6
‖η(t)‖
|gn(t)|

|gn(t)|
x−bn+δ|gn(xt)|

+
‖x−B‖
x−bn+δ

‖η(xt)‖
|gn(xt)|

+
|gn(t)|

x−bn+δ/2|gn(xt)|

∫ x

1

‖u−B‖
u−bnxδ/4

‖φ(ut)‖
|gn(ut)|

|gn(ut)|
ubnxδ/4|gn(t)|

u−1du.

As a consequence, for t > a,

sup
x>1

‖g(t)− x−Bg(xt)‖
x−bn+δ|gn(xt)|

6
‖η(t)‖
|gn(t)|

· sup
x>1

|gn(t)|
x−bn+δ|gn(xt)|

+ sup
x>1

‖x−B‖
x−bn+δ

· sup
s>t

‖η(s)‖
|gn(s)|

+ sup
x>1

|gn(t)|
x−bn+δ/4|gn(xt)|

· sup
u>1

‖u−B‖
u−bn+δ/4

· sup
s>t

‖φ(s)‖
|gn(s)|

· sup
u>1

|gn(ut)|
ubn+δ/4|gn(t)|

· sup
x>1

log x
xδ/4

.

By Potter’s theorem for RVbn
and by (5.2), for every ε > 0,

lim
t→∞

sup
x>1

|gn(t)|
x−bn+ε|gn(xt)|

= 1, lim
t→∞

sup
x>1

|gn(xt)|
xbn+ε|gn(t)|

= 1, sup
u>1

‖u−B‖
u−bn+ε

<∞.

Combine the last two displays and the fact that both ‖η(t)‖ and ‖φ(t)‖ are o(gn(t)) to
arrive at (5.5).

Remark 5.2. (a) Since

‖g(t)− x−Bg(xt)‖
xδ|gn(t)|

=
|gn(xt)|

xbn+δ/2|gn(t)|
· ‖g(t)− x−Bg(xt)‖
x−bn+δ/2|gn(xt)|

,

equation (5.5) and Potter’s theorem for RVbn
imply

lim
t→∞

sup
x>1

‖g(t)− x−Bg(xt)‖
xδ|gn(t)|

= 0, δ > 0. (5.6)

(b) Equation (5.4) can be used to give a simple proof of a statement which is slightly
weaker than (5.5). For t > a and x > 1,

‖g(t)− x−Bg(xt)‖
xb1−2bn+δ|gn(xt)|

6
‖x−B‖
x−bn+δ/3

· |gn(t)|
x−bn+δ/3|gn(xt)|

· ‖g(xt)− xBg(t)‖
xb1+δ/3|gn(t)|

.

By (5.2) and by Potter’s theorem for RVbn
, for every ε > 0,

sup
x>1

‖x−B‖
x−bn+ε

<∞, lim
t→∞

sup
x>1

|gn(t)|
x−bn+ε|gn(xt)|

= 1.

Combine the last two displays and (5.4) to arrive at

lim
t→∞

sup
x>1

‖g(t)− x−Bg(xt)‖
xb1−2bn+δ|gn(xt)|

= 0, δ > 0.

For a, b ∈ R, write a ∨ b = max(a, b).
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Theorem 5.3 (Potter bounds for GRV (g)). Let g ∈ RVB and let f ∈ GRV (g). For
every ε > 0, there exists t(ε) > 0 such that

|f(xt)− f(t)− h(x)g(t)|
|gn(t)|

6

{
εx(b1+ε)∨0 if t > t(ε) and x > 1;

εx(bn−ε)∧0 if t > t(ε) and t(ε)/t 6 x 6 1.
(5.7)

Proof. We shall prove the following two statements, which are equivalent to (5.7): for
δ > 0,

lim
t→∞

sup
x>1

|f(xt)− f(t)− h(x)g(t)|
x(b1+δ)∨0|gn(t)|

= 0, (5.8)

lim
t→∞

sup
x>1

|f(t)− f(xt)− h(x−1)g(xt)|
x(−bn+δ)∨0|gn(xt)|

= 0. (5.9)

Recall that h(x) = c
∫ x
1
uBu−1du for x ∈ (0,∞), with c ∈ R1×n the g-index of f . Also,

recall the representation of f in Theorem 4.5.

Proof of (5.8). For t > a and x > 1,

f(xt)− f(t)− h(x)g(t)

= c

∫ x

1

{g(ut)− uBg(t)}u−1du+ η(xt)− η(t) +
∫ x

1

φ(ut)u−1du (5.10)

and thus, since bn + δ 6 b1 + δ 6 (b1 + δ) ∨ 0,

|f(xt)− f(t)− h(x)g(t)|
x(b1+δ)∨0|gn(t)|

6
‖c‖

x(b1+δ)∨0

∫ x

1

‖g(ut)− uBg(t)‖
ub1+δ/2|gn(t)|

ub1+δ/2−1du+
|η(xt)|
|gn(xt)|

· |gn(xt)|
xbn+δ|gn(t)|

+
|η(t)|
|gn(t)|

+
1

x(b1+δ)∨0

∫ x

1

|φ(ut)|
|gn(ut)|

|gn(ut)|
ubn+δ/2|gn(t)|

ubn+δ/2−1du.

We obtain that, for t > a,

sup
x>1

|f(xt)− f(t)− h(x)g(t)|
x(b1+δ)∨0|gn(t)|

6 sup
u>1

‖g(ut)− uBg(t)‖
ub1+δ/2|gn(t)|

· sup
x>1

‖c‖
x(b1+δ)∨0

∫ x

1

ub1+δ/2−1du

+ sup
s>1

|η(s)|
|gn(s)|

· sup
x>1

|gn(xt)|
xbn+δ|gn(t)|

+
|η(t)|
|gn(t)|

+ sup
s>1

|φ(s)|
|gn(s)|

· sup
u>1

|gn(ut)|
ubn+δ/2|gn(t)|

· sup
x>1

1
x(b1+δ)∨0

∫ x

1

ubn+δ/2−1du.

In view of Potter’s theorem for RVbn and for RVB (Theorem 5.1), it suffices to note that∫ x
1
ub1+δ/2−1du = O(x(b1+δ)∨0) as x→∞.
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Proof of (5.9). By (2.6), h(x−1) = −h(x)x−B and thus

h(x−1)g(xt) = −h(x)x−Bg(xt)

= −c
∫ x

1

uBu−1dux−Bg(xt) = −c
∫ x

1

(x/u)−Bg(xt)u−1du

for x > 1 and t > a. We obtain that for such x and t,

f(t)− f(xt)− h(x−1)g(xt)

= η(t)− η(xt)−
∫ x

1

φ(ut)u−1du− c
∫ x

1

{g(ut)− (x/u)−Bg(xt)}u−1du,

whence

|f(t)− f(xt)− h(x−1)g(xt)|
x(−bn+δ)∨0|gn(xt)|

6
|η(t)|
|gn(t)|

· |gn(t)|
x−bn+δ|gn(xt)|

+
|η(xt)|
|gn(xt)|

+
1

x{(−bn+δ)∨0}+bn−δ/2
·
∫ x

1

|φ(ut)|
|gn(ut)|

|gn(ut)|
(x/u)−bn+δ/2|gn(xt)|

ubn−δ/2−1du

+
‖c‖

x{(−bn+δ)∨0}+bn−δ/2

·
∫ x

1

‖g(ut)− (x/u)−Bg(xt)‖
(x/u)δ/4|gn(ut)|

|gn(ut)|
(x/u)−bn+δ/4|gn(xt)|

ubn−δ/2−1du.

Since {(−bn + δ) ∨ 0}+ bn − δ/2 = (bn − δ/2) ∨ (δ/2), we find, for t > a,

sup
x>1

|f(t)− f(xt)− h(x−1)g(xt)|
x(−bn+δ)∨0|gn(xt)|

6
|η(t)|
|gn(t)|

· sup
x>1

|gn(t)|
x−bn+δ|gn(xt)|

+ sup
s>1

|η(s)|
|gn(s)|

+ sup
s>1

|φ(s)|
|gn(s)|

· sup
s>t

sup
y>1

|gn(s)|
y−bn+δ/2|gn(ys)|

· 1
x(bn−δ/2)∨(δ/2)

∫ x

1

ubn−δ/2−1du

+ sup
s>1

sup
y>1

‖g(s)− y−Bg(ys)‖
yδ/4|gn(s)|

· sup
s>1

sup
y>1

|gn(s)
y−bn+δ/4|gn(ys)|

· 1
x(bn−δ/2)∨(δ/2)

∫ x

1

ubn−δ/2−1du.

Now apply the following elements:

(a) the assumption that both η(t) and φ(t) are o(gn(t)) (Theorem 4.5);
(b) Potter’s theorem for RVbn

;
(c) Potter’s theorem for RVB [equation (5.6) in Remark 5.2];
(d) the fact that for a ∈ R and ε > 0,

∫ x
1
ua−1du = O(xa∨ε) as x→∞;

to arrive at (5.9).

6. Special cases. For g ∈ RVB, the diagonal elements of B are the indices of regular
variation of the component functions |gi|. The form and behaviour of g ∈ RVB and
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f ∈ GRV (g) depend strongly on the values of these indices. In this section, we consider
two special cases: first the case where all indices are different from zero, §6.1, and second
the case where all indices are distinct, §6.2.

The special case where all indices are equal to zero gives rise to functions f that
are Π-regularly varying of order n, generalizing the function class Π in de Haan (1970)
(n = 1) and the function class Π with remainder in Omey and Willekens (1988) (n = 2).
The theory for this class is worked out in Omey and Segers (2009, sections 5–6). This case
turns out to be rather diverse, including for instance the Lambert W function and the
inverse of the reciprocal of the complementary error function (Omey and Segers, 2009,
section 8).

6.1. All indices different from zero. Let g ∈ RVB. If none of the diagonal elements
of B are zero, that is, if none of the rate functions gi are slowly varying, then the class
GRV (g) essentially consists of linear combinations of the rate functions and the constant
function.

Theorem 6.1. Let B ∈ Rn×n be upper triangular and invertible, i.e. without zeros on
the diagonal. Let g ∈ RVB. Then f ∈ GRV (g) with g-index c if and only if there exists
a constant C such that

f(t) = C + cB−1g(t) + o(gn(t)). (6.1)

Proof. Necessity. Suppose f ∈ GRV (g) with g-index c. Define ξ(t) = f(t) − cB−1g(t).
Then for x ∈ (0,∞), in view of (A.5),

ξ(xt) = f(xt)− cB−1g(xt)

= f(t) + cB−1(xB − I)g(t)− cB−1xBg(t) + o(gn(t))

= f(t)− cB−1g(t) + o(gn(t))

= ξ(t) + o(gn(t)).

Equation (6.1) now follows from the representation theorem for oΠg for auxiliary func-
tions which are regularly varying but not slowly varying (Bingham et al., 1987, Theo-
rems 3.6.1±, pp. 152–153). Note that in case bn > 0, the constant C can be absorbed in
the o(gn(t)) remainder term.

Sufficiency. For f as in (6.1), we have

f(xt)− f(t) = cB−1(xB − I)g(t) + o(gn(t))

so that, by (A.5), indeed f ∈ GRV (g) with g-index c.

Example 6.2 (Power series). Suppose that f(x) =
∑∞
k=0 akx

−kα where α > 0 and∑∞
k=0 akz

k is a power series which is convergent in a neighbourhood of z = 0. Then for
x > 0 and integer n > 1,

f(xt)− f(t) =
n∑
k=1

ak(x−kα − 1)t−kα + o(t−nα).

The rate vector g(t) = (t−α, t−2α, . . . , t−nα)′ is regularly varying with index matrix

B = diag(−α,−2α, . . . ,−nα).

By the first display, the function f belongs to GRV (g) with g-index c = (−kakα)nk=1.
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6.2. All indices distinct. In case all the diagonal elements of the index matrix B are
distinct, rate vectors g in the class RVB are essentially given by linear combinations of
power functions and gn. This representation can be extended to the class GRV (g) with
g ∈ RVB. In addition, the Potter bounds for RVB and GRV (g) can be sharpened.

For a square matrix A, let diag(A) be the diagonal matrix of the same dimension
containing the diagonal elements of A.

Theorem 6.3. Let B ∈ Rn×n (n > 2) be upper triangular with distinct diagonal elements
B11 > · · · > Bnn. Put bi = Bii and D = diag(B) ∈ Rn×n. Then a rate vector g belongs
to RVB if and only if |gn| ∈ RVbn

and there exists an upper triangular and invertible
matrix Q ∈ Rn×n such that Qnn = 1, B = QDQ−1 and

gi(t) =
n−1∑
j=i

Qijt
bj +Qingn(t) + o(gn(t)), i ∈ {1, . . . , n− 1}. (6.2)

Proof. Necessity. Suppose that g ∈ RVB. By Lemma 6.6 below, there exists an invertible,
upper triangular matrix P such that B = PDP−1 and with Pii = 1 for all i. Then g̃ :=
P−1g is a rate vector as well and is regularly varying with index matrix P−1BP = D,
see Remark 3.5(a). For x ∈ (0,∞), the matrix xD is diagonal and with diagonal elements
xb1 , . . . , xbn . Fix i ∈ {1, . . . , n − 1}. Row i of the relation g̃(xt) = xDg̃(t) + o(gn(t)) is
just

g̃i(xt) = xbi g̃i(t) + o(gn(t)).

Writing Li(t) = t−bi g̃i(t), we find

Li(xt) = Li(t) + o(t−bign(t)).

Since the function t−bi |gn(t)| is regularly varying with negative index bn − bi, the rep-
resentation theorem for oΠg for auxiliary functions g with positive increase (Bingham
et al., 1987, Theorem 3.6.1−, p. 152) implies that there exists Ci ∈ R such that

Li(t) = Ci + o(t−bign(t)),

and thus
g̃i(t) = Cit

bi + o(gn(t)).

Since g̃ is a rate vector, Ci must be nonzero. Write C = (C1, . . . , Cn−1, 1). Since g = P g̃,
we find

g(t) = PC(tb1 , . . . , tbn−1 , gn(t))′ + o(gn(t)),

which is (6.2) in matrix notation and with Q = PC. Finally, since diagonal matrices
commute, QDQ−1 = PCDC−1P−1 = PDP−1 = B.

Sufficiency. The rate vector ĝ(t) = (tb1 , . . . , tbn−1 , gn(t))′ is regularly varying with index
matrix D. By Remark 3.5(a), g = Qĝ is regularly varying with index matrix QDQ−1 =
B.

Theorem 6.4. Let B ∈ Rn×n (n > 2) be upper triangular with distinct diagonal elements
B11 > · · · > Bnn. Put bi = Bii. Then f ∈ GRV (g) for some g ∈ RVB if and only if
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there exist a, a0, . . . , an ∈ R such that

f(t) = a0 +
n−1∑
i=1

ai

∫ t

1

ubi−1du+
∫ t

a

{an + o(1)}gn(u)u−1du+ o(gn(t)). (6.3)

Proof. Let ĝ(t) = (tb1 , . . . , tbn−1 , gn(t))′. By Theorem 6.3, g(t) = Qĝ(t) + o(gn(t)) for
some invertible, upper triangular matrix Q satisfying Qnn = 1 and Qdiag(B)Q−1 = B.

Necessity. Suppose that f ∈ GRV (g) with g-index c ∈ R1×n. By the representation
theorem for GRV (g) (Theorem 4.5), we have

f(t) = v + o(gn(t)) +
∫ t

a

{cg(u) + o(gn(u))}u−1du.

Putting a = cQ, we find cg(t) = aĝ(t) + o(gn(t)) and thus

f(t) = v +
n−1∑
i=1

ai

∫ t

a

ubi−1du+
∫ t

a

{an + o(1)}gn(u)u−1du+ o(gn(t)).

Put a0 = v −
∑n−1
i=1 ai

∫ a
1
ubi−1du to arrive at (6.3).

Sufficiency. Put c = (a1, . . . , an)Q−1, do the steps of the previous paragraph in reverse,
and apply the representation theorem for GRV (g) (Theorem 6.4).

In case Bnn 6= 0, the representation in (6.3) can be even further simplified to

f(t) = a0 +
n−1∑
i=1

ai

∫ t

1

ubi−1du+ angn(t) + o(gn(t))

(where a0 and an have been redefined). Note also that for those i ∈ {1, . . . , n − 1} for
which bi is nonzero (which has to occur for all but at most one i), the integral

∫ t
1
ubi−1du

can be replaced by tbi (after redefining ai and a0).

Theorem 6.5 (Improved Potter bounds for RVB and GRV (g)). Let B ∈ Rn×n with all
diagonal elements distinct. Put bn = Bnn.

(a) If g ∈ RVB, then for every ε > 0, there exists t(ε) > 0 such that

‖g(xt)− xBg(t)‖
|gn(t)|

6 εxbn max(xε, x−ε), t > t(ε), x > t(ε)/t. (6.4)

(b) If g ∈ RVB and f ∈ GRV (g) with limit functions h, then for every ε > 0, there
exists t(ε) > 0 such that

|f(xt)− f(t)− h(x)g(t)|
|gn(t)|

6 εmax(1, xbn+ε, xbn−ε) t > t(ε), x > t(ε)/t. (6.5)

Proof. (a) Put bi = Bii and D = diag(B). By Theorem 6.3, there exists an invertible,
upper triangular matrix Q ∈ Rn×n so that B = QDQ−1 and g = Qĝ where ĝ(t) =
(tb1 , . . . , tbn−1 , gn(t))′. Since xD is diagonal with diagonal elements xb1 , . . . , xbn , we have

ĝ(xt)− xDĝ(t) =
(
0, . . . , 0, gn(xt)− xbngn(t)

)′
, x ∈ (0,∞).
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As a consequence, since xB = QxDQ−1,

‖g(xt)− xBg(t)‖ = ‖Qĝ(xt)−QxDQ−1Qĝ(t)‖
6 ‖Q‖ ‖ĝ(xt)− xDĝ(t)‖
= ‖Q‖ |gn(xt)− xbngn(t)|.

[here we implicitly assumed, without loss of generality, that the norm of (0, . . . , 0, 1) is
equal to unity]. Now apply Potter’s theorem for RVbn

(Theorem 5.1).
(b) For x 6 1, this is just the general Potter bound (5.7). For x > 1, start again from

(5.10) and use (6.4) rather than the general Potter bound for RVB.

Lemma 6.6. Let B ∈ Rn×n be upper triangular and with n distinct diagonal elements.
Let D = diag(B) ∈ Rn×n. Then for any vector q ∈ Rn with nonzero elements there exists
a unique upper triangular matrix Q ∈ Rn×n with diagonal q and such that B = QDQ−1.

Proof. The proof is by induction on n and is omitted for brevity.

A. Matrix exponentials. For a square matrix B, recall the matrix exponential func-
tions

exp(B) =
∞∑
k=0

1
k!
Bk, xB = exp{(log x)B},

for x ∈ (0,∞). By convention, B0 = I, the identity matrix. If B is upper triangular, the
entries of xB can be computed recursively.

Proposition A.1. Let B ∈ Rn×n be upper triangular and put A(x) = xB, x ∈ (0,∞).
Then Aii(x) = xbi with bi = Bii, i ∈ {1, . . . , n}, while for i ∈ {1, . . . , n− 1},

(Ai,i+1(x), . . . , Ai,n(x)) = xbi(Bi,i+1, . . . , Bi,n)
∫ x

1

Ai+1,n(y)y−bi−1dy, (A.1)

where Akl(x) = (Aij(x))li,j=k. In particular, if all diagonal elements of B are zero, then
for integer i and k such that 1 6 i < i+ k 6 n and for x ∈ (0,∞),

Ai,i+k(x) =
k∑
l=1

(log x)l

l!

∑
i=j0<···<jl=i+k

l∏
m=1

Bjm−1,jm , (A.2)

the inner sum being over all (l + 1)-tuples of positive integers (j0, . . . , jl) satisfying the
stated (in)equalities.

Proof. The starting point is the relation A(xy) = A(x)A(y), from which it follows that
A(xy)−A(x) = {A(y)− I}A(x). We obtain

A(xy)−A(x)
y − 1

=
A(y)− In
y − 1

A(x), x, y ∈ (0,∞).

Taking limits as y → 1, we find that xȦ(x) = BA(x), and therefore, since B and A(x)
are upper triangular,

Ȧij(x) = x−1

j∑
k=i

BikAkj(x), x ∈ (0,∞), 1 6 i 6 j 6 n. (A.3)
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This system of differential equations can be solved as follows. If i = j, equation (A.3)
becomes

Ȧii(x) = x−1biAii(x), x ∈ (0,∞).

In combination with the initial condition Aii(1) = 1, this implies Aii(x) = xbi .
Next assume 1 6 i < j 6 n. Rewrite (A.3) as

Ȧij(x)− x−1biAij(x) = x−1

j∑
k=i+1

BikAkj(x), x ∈ (0,∞).

Looking for solutions of the form Aij(x) = Cij(x)xbi , we find that Cij(x) should satisfy

Ċij(x) = x−bi−1

j∑
k=i+1

BikAkj(x), x ∈ (0,∞).

Since Cij(1) = 0, we obtain

Cij(x) =
j∑

k=i+1

Bik

∫ x

1

Akj(y)y−bi−1dy, x ∈ (0,∞)

and consequently

Aij(x) = xbi

j∑
k=i+1

Bik

∫ x

1

Akj(y)y−bi−1dy, x ∈ (0,∞),

which is (A.1).
Next suppose that all diagonal elements of B are zero. Then all diagonal elements of

A(x) are equal to unity, and by (A.1),

Ai,i+k(x) =
i+k∑
j=i+1

Bij

∫ x

1

Aj,i+k(u)u−1du

=
i+k−1∑
j=i+1

Bij

∫ x

1

Aj,i+k(u)u−1du+Bi,i+k log x.

We proceed by induction on k. If k = 1, then the above display tells us that Ai,i+1(x) =
Bi,i+1 log x, which is (A.2). If k > 2, then use of the induction hypothesis and the previous
display again leads, after some algebra, to the desired equality.

Remark A.2. (a) Let B ∈ Rn×n and write H(x) =
∫ x
1
uBu−1du. Term-by-term inte-

gration of the series expansion uB =
∑∞
k=0(log u)kBk/k! yields the convenient formula

BH(x) = H(x)B = xB − I, x ∈ (0,∞). (A.4)

If B is invertible, then

H(x) = B−1(xB − I) = (xB − I)B−1. (A.5)

(b) Suppose that D ∈ R(n+1)×(n+1) is given by

D =
(

0 c

0 B

)
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where c ∈ R1×n and where B ∈ Rn×n is upper triangular. Then D is upper triangular
as well, and by Proposition A.1, for x ∈ (0,∞),

xD =
(

1 h(x)
0 xB

)
,

where h(x) ∈ R1×n is given by

h(x) = c

∫ x

1

yBy−1dy.
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