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Abstract. Given a smooth S1-foliated bundle, A. Connes has shown the existence of an addi-

tive morphism φ from the K-theory group of the foliation C*-algebra to the scalar field, which

factorizes, via the assembly map, the Godbillon-Vey class, which is the first secondary charac-

teristic class, of the classifying space. We prove the invariance of this map under a bilipschitz

homeomorphism, extending a previous result for maps of class C1 by H. Natsume.

1. Introduction. Let (W,F ) be a codimension one smooth foliated manifold, trans-

versely oriented. Although the transverse bundle is trivialisable, it encodes a nontrivial

secondary characteristic class discovered by C. Godbillon and J. Vey in 1970 [GV]. This

class denoted by GV(W,F ) is naturally defined as an element of the de Rham cohomology

groupH3(V,R), and is the first of the secondary characteristic classes of the foliation [CC].

A natural question, often addressed, is the invariance of this class under a foliated

homeomorphism (cf. survey by E. Ghys [G]). This question remains open today, but it

has been proved under various regularity hypotheses on the homeomorphism (cf. end of

section 1 for a discussion).

Moreover, a noncommutative version of this secondary class has been defined and

discussed by A. Connes [C]. The Godbillon-Vey class can be viewed as a cohomology class

of the classifying space BG of the holonomy groupoid G of the foliation. It should be

mentioned that Godbillon-Vey class is also naturally a cohomology class of the classifying

space of the Haefliger groupoid Γ1 of germs of local diffeomorphisms of the line, and that

our class comes naturally via the pull-back of the Godbillon-Vey class in H3(BΓ1,R) by

the classifying map BG→ BΓ1. Thus let GV(W,F ) ∈ H3(BG,R) be the class so defined.
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There is the assembly map µ : K∗(BG) → K∗(C
∗(W,F )), which is predicted, by

Baum-Connes conjecture, to be an isomorphism, at least when there is no leaf with finite

holonomy.

There exists an additive map ρ of the K-theory group of the C*-algebra of the foliation

which factorizes, via µ, the homomorphism defined by GV(W,F ). Precisely, for any z ∈
K∗(BG), the following equality holds true:

〈ch(z),GV(W,F )〉 = ρ ◦ µ(z). (1)

As we do not know if µ is an isomorphism in full generality, ρ appears more general

at this stage. We call it the analytical Godbillon-Vey map. Cyclic cohomology plays an

important role, and this map comes from a cyclic cocycle defined on a suitable Banach

subalgebra of the C*-algebra of the foliation.

Moreover, by the work of A. Connes and H. Moscovici [CM], this class comes from

the Hopf-cyclic cohomology of the universal Hopf algebra H1 which acts transversely

(section 4).

A question very similar to the preceding and as much natural, is the invariance of the

analytical Godbillon-Vey map under a foliated homeomorphism. H. Natsume (1987) has

proved it to be true when the foliated homeomorphism is transversely of C1 class [N] .

The purpose of this work is to give the proof of an affirmative answer when the foliated

homeomorphism is transversely bilipschitz (Theorem 9.1).

For the sake of simplicity, we shall restrict this exposition to foliated circle bundles

(subsection 2.2), and thus we shall consider a discrete group Γ acting by oriented dif-

feomorphisms on the one dimensional torus S1. Then the analytical Godbillon-Vey map

becomes a scalar valued additive map of K0(C(S1)oΓ), and we compare two such maps

coming from two actions conjugated by a homeomorphism.

However, the present method is slightly different from that of [N] and can be viewed

as an alternative proof, as we shall use the auxiliary C*-algebra C(S1) o Γ o R, where

R acts via the modulus of the action of Γ on the Lebesgue measure. The von Neumann

crossed product L∞(S1) o Γ o R is the continuous decomposition of the von Neumann

algebra of the dynamical system, and its center is the flow of weights.

On the way, we obtain the invariance of the measure on the flow of weights coming

from the analytical Godbillon-Vey map (section 10), and (Corollary 10.2) the invariance

of the Duminy measure [G].

This last result was not known even for conjugation of class C1, and seems to be

difficult to prove directly, without using the analytical map.

2. Foliations and the Godbillon-Vey class

2.1. Foliated manifolds. Let W be a smooth manifold of dimension n, and p, q ∈ N
such that p + q = n. A foliation on W of codimension q is given by an atlas of local

charts (Oi, ϕi), i ∈ I where ϕi : Oi → Rq×Rp is a smooth embedding of the open subset

Oi ⊂W , and such that for every i, j ∈ I, ϕi ◦ ϕ−1
j defined on ϕj(Oi ∩Oj) is of the form

(s, x)→ (f(s), g(s, x)) where f, g are smooth.
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The tangent bundle to the foliation is a sub-bundle F ⊂ TW of dimension p of the

vector bundle tangent to W . A classical result is:

Theorem 2.1 (Frobenius). A smooth vector sub-bundle F ⊂ TW is the tangent bundle

of a smooth foliation on W if and only if C∞(W,F ) is a Lie subalgebra of the Lie algebra

of smooth vector fields on W .

Recall that with the Lie bracket (X,Y )→ [X,Y ], C∞(W,TW ) is a Lie algebra.

2.2. Foliated bundles. A large family of foliations comes with the suspension con-

struction of A. Haefliger [CC], which goes as follows:

Let W be a smooth manifold and α be a homomorphism of the fundamental group

π1(W ) to the group of diffeomorphisms of a smooth manifold V , and let W̃ be the

universal covering of W .

Then π1(W ) acts properly on the cartesian product V ×W̃ , sending (z, v) to (zγ, γ−1v)

for γ ∈ π1(W ). The resulting quotient manifold Wα is a smooth locally trivial fibration

over W with fiber V . The foliation on V × W̃ the leaves of which are {z} × W̃ descends

on Wα to a foliation F transverse to the fibers of that fibration, and such that each leaf

is a covering of W .

Example 2.2. In the sequel, we will be mainly concerned with the case of suspension

foliation with V = S1, i.e. the one dimensional torus. For instance, take a torsion free

fuchsian cocompact group Γ ⊂ PSL(2,R), and let W be the quotient manifold W =

Γ\PSL(2,R). Then W is the unit tangent bundle to the Riemann surface Γ\H, where

H = PSL(2,R)/SO(2) is the Poincaré disk. The weak instable foliation of the geodesic

flow on SW is topologically (and even C2) conjugate to the suspension foliation coming

from the natural injection π1(W/SO(2)) = Γ into the diffeomorphism group of S1 [MS].

Now suppose that (W,F ) is a smooth manifold with a codimension one foliation. Then

τ = TW/F is a one dimensional real vector bundle, and if we assume, for simplicity, that

τ is oriented, then there is a smooth differential form ω without zero with kerω = F .

By Frobenius theorem, there exists a degree one differential form θ such that dω =

θ ∧ ω. The differential form θ ∧ dθ is closed and its cohomology class in the de Rham

cohomology group H3
DR(W ) is independent of the choice of ω and of θ.

This is the Godbillon-Vey class

GV(W,F ) ∈ H3
DR(W ). (2)

Remark 2.3. The nontriviality of Godbillon-Vey class has been shown by Roussarie [CC].

In the case of the weak unstable foliation on W = Γ\PSL(2,R) as in the example above,

the Godbillon-Vey class in H3
DR(W,R) is proportional to the Euler characteristic of W .

W. Thurston has shown the existence, for any t ∈ R, of a dimension 2 foliation on S3

with Godbillon-Vey class equal to t times the fundamental cohomology class of S3.

A natural question is the topological invariance of the Godbillon-Vey class. Let (Wj , Fj)

for j = 1, 2 be a foliated manifold. A (smooth, continuous) map T : W1 → W2 is said

to be foliated if the image by T of a leaf in W1 is a leaf in W2, and if T is smooth, it is

equivalent to the condition T∗F1 ⊂ F2.
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Such a map T induces a linear map of singular cohomology groups with real coefficients

T ∗ : H∗sing(W2,R) → H∗sing(W1,R). By de Rham’s theorem, singular real cohomology

groups are isomorphic to the de Rham cohomology groups of differential forms.

We get the following issue: if T is a foliated homeomorphism between two smooth

foliated manifolds (W1, F1) and (W2, F2), with Fj of codimension one for j = 1, 2, then is

the image of the Godbillon-Vey class of (W2, F2) in H3(W2) by T ∗ equal to the Godbillon-

Vey class of (W1, F1)?

In 1987, G. Raby and independently E. Ghys and T. Tsuboi proved invariance when

T is of class C1 [G], and in 1991, S. Hurder and A. Katok proved it when T is bilipschitz

and dimW1 = 3 [HK].

In [H], the invariance has been established when T is a foliated continuous map and

is transversely a homeomorphism absolutely continuous together with its inverse.

Recall that a homeomorphism I → J of bounded intervals of R has always bounded

variation, so that its distributional derivative is a measure, and this homeomorphism is

said to be absolutely continuous if that measure is absolutely continuous with respect to,

or dominated by the Lebesgue class of measure.

3. The analytic Godbillon-Vey map. Besides the geometric Godbillon-Vey class,

there is an analytic approach using the K-theory group of the C*-algebra of the foliation,

elaborated by A. Connes [C].

From now on, we consider Γ a discrete at most countable group of oriented dif-

feomorphisms of V = S1. There corresponds a topological groupoid V o Γ, which is

as a set the cartesian product V × Γ, with space of units equal to V , and with map

r(x, γ) = x, s(x, γ) = xγ. Thus (x1, γ1) and (x2, γ2) are composable if x2 = x1γ1 and

then the product is equal to (x1, γ1γ2). The space A0 = Cc(V × Γ) is endowed with the

structure of an involutive algebra given by convolution product and adjoint, given for

f0, f1 ∈ A0:

f0 ∗ f1(x, γ) =
∑
β∈Γ

f0(x, β)f1(xβ, β−1γ), f0(x, γ)∗ = f̄(xγ, γ−1).

We shall denote by C(V )oΓ the reduced crossed product corresponding to this action,

or equivalently the reduced C*-algebra of the groupoid V oΓ [R]. This is the completion of

the involutive algebra A0 = Cc(V ×Γ) for the family of representations πx : A0 → l2(Γ),

x ∈ V :
πx(f)ξ(γ) =

∑
β∈Γ

f(x, β)ξ(β−1γ).

Then there is an additive map ρω : K0(C(V )oΓ)→ C which represents the Godbillon-

Vey cohomology class, and we recall now how this map is defined.

Let VΓ be the homotopy quotient, i.e. the quotient of the space V ×EΓ by the diagonal

action of Γ, where EΓ is the infinite joint space of J. Milnor [MS]. The space EΓ is a

contractible space on which Γ acts freely and properly, and the quotient B = Γ\EΓ is

the classifying space of Γ. Thus VΓ is a locally trivial fibration over BΓ, with fiber V .

From now on, we shall assume the following hypothesis on the action of Γ:

(I) For every open interval U ⊂ V and γ ∈ Γ, if γ|U = IdU then γ = e.
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Then, under this assumption, the classifying space of the groupoid of germs of local

diffeomorphisms induced by the action of Γ is equal to VΓ.

Let dθ be the Haar measure on the torus V = S1 and δ : V oΓ→ R∗+ be the modulus

of the action with respect to dθ, i.e. the Radon-Nikodym derivative given by δ(x, γ)dθ =

γ∗dθ for γ ∈ Γ, and let l(γ)(x) = log δ(x, γ). Recall the Bott-Thurston cocycle on Γ:

c(g1, g2) =

∫
S1

ω(g1, g2)

where ω(g1, g2) = dl(g1g2)l(g2) − l(g1g2)dl(g2) is a group 2-cocycle on Γ with values in

the space of volume forms on V .

Then from the simplicial structure of VΓ, we deduce from ω a well defined class

GV(V,Γ) in the singular cohomology group H3(VΓ,R) which represents Godbillon-Vey

classes as follows.

Let W be a manifold and f : W → VΓ a continuous map. Then to the composition

of f with the projection VΓ → BΓ corresponds a homomorphism α : π1(W )→ Γ. Let as

before pα : Wα → W be the suspension, with a codimension one foliation Fα. Then the

following equality holds true:

p∗α ◦ f∗(GV(V,Γ)) = GV(Wα, Fα). (3)

There is a cyclic 2-cocycle defined on the algebraic crossed product Cc(S
1 × Γ) given

by the formula, associated with ω:

(f0, f1, f2)→
∑

γ0γ1γ2=e

∫
S1

f0(x, γ0)f1(xγ0, γ1)f2(xγ0γ1, γ2)ω(γ1, γ2).

This 2-cocycle is actually a 2-trace and gives rise to an additive map ρω : K0(C(V )oΓ)

→ C on the K-theory group of the C*-algebra [C].

This additive map is the analytical Godbillon-Vey map and is linked to the geometrical

one via the geometric K-theory group and the assembly map on the K-homology of VΓ:

µ : K1(V,Γ)→ K0(C(V ) o Γ). (4)

For z ∈ K∗(V,Γ), the following equality holds true:

〈ch(z),GV(V,Γ)〉 = ρω(µ(z)). (5)

More precisely, by the Baum-Douglas definition of K-homology, z is represented by a

cycle (W,E, f), where W is a smooth spin manifold, f : W → VΓ is a continuous map,

E →W is a finite rank complex vector bundle. Then, previous equalities (3), (5) read

ρω(µ(z)) = 〈p∗α(Â(W ) ∪ ch(E)) ∪ GV(Wα, Fα), [Wα]〉.
A natural problem is the invariance of this map under topological conjugation, which

means that if T is a homeomorphism conjugating two smooth actions of Γ, then the two

additive maps coming from the analytic Godbillon-Vey maps will correspond under the

map induced by T between the C*-algebras of the actions.

The purpose of this article is to prove the following (theorem 9.1): let αj for j = 1, 2

be a class C∞ action of Γ on S1 and T : S1 → S1 a homeomorphism conjugating these

two actions and ρj the analytical Godbillon-Vey map for αj , j = 1, 2. Then it induces

T ∗ : K0(C(S1) oα2 Γ) → K0(C(S1) oα1 Γ). Then if T is bilipschitz, it preserves the

analytic Godbillon-Vey maps.
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4. Transverse Hopf algebras. An interpretation of this class has been given by

A. Connes and H. Moscovici [CM] using Hopf algebras.

The Hopf algebra H1 is the universal algebra generated by {X,Y, δn;n = 1, 2, · · · }
with the relations:

[Y,X] = X, [Y, δn] = nδn, [X, δn] = δn+1, [δn, δk] = 0,

and the coproduct ∆ : H1 → H1 ⊗H1 determined by the relations:

∆Y = Y ⊗ 1 + 1⊗ Y, ∆X = X ⊗ 1 + 1⊗X + δ1 ⊗ Y,
∆δ1 = δ1 ⊗ 1 + 1⊗ δ1,

and antipode S : H1 → H1 determined by the relations:

S(Y ) = −Y, S(X) = −X + δ1Y, S(δ1) = δ1.

The periodic Hopf cyclic cohomology of this algebra has two generators, and one of

them comes from a class δ1 in the Hopf cyclic cohomology group HC1
Hopf (H1) and is

related to the Godbillon-Vey map, as follows.

The homomorphism δ : V × Γ → R∗+, gives rise to a right action of Γ on V × R∗+ by

(x, λ)γ = (xγ, δ(x, γ)λ).

The K-theory groups of the crossed product C(V ×R∗+)oΓ are isomorphic to K-theory

groups of C(V ) o Γ by the Thom isomorphism:

θ : K0(C(V ) o Γ)→ K1(C(V ×R∗+) o Γ).

There is a subalgebra A ⊂ C(V × R∗+) o Γ stable under holomorphic functional

calculus, containing the algebraic crossed product C∞c (V ×R∗+) o Γ and a morphism:

HC∗(H1)→ HC∗(A).

Now the image of δ1 in HC1(A) defines an additive map Πδ1 of K1(A) and hence of

K1(C(V ×R∗+) o Γ) to the scalar field C.

This latter is the analytical Godbillon-Vey map defined in the last section; thus for

x ∈ K0(C(V ) o Γ):
Πδ1(θ(x)) = ρω(x).

5. Dense subalgebras stable by holomorphic functional calculus. A unital sub-

algebra A ⊂ A of a unital algebra is a full subalgebra if it has the same unit as A and

if every element of A invertible in A is already invertible in A. The intersection of full

subalgebras remains full. If A0 ⊂ A1 is full in A1 and A1 ⊂ A is full, then A0 is full in A.

If A is a Banach algebra, then A is said to be stable by holomorphic functional calculus

if f(a) ∈ A whenever a ∈ A and f is a holomorphic function defined in a neighbourhood

of the spectrum of a. Then a Fréchet subalgebra A ⊂ A is full if and only if it is stable

by holomorphic functional calculus [S, Lemma 1.2].

If A is a subalgebra dense in the Banach algebra A and stable by holomorphic func-

tional calculus, then the natural morphism:

Kj(A)→ Kj(A)

is an isomorphism for j = 0, 1 [B, Theorem A.2.1].

We give now two examples of such algebras.
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5.1. Almost isometric vector bundles. Let Γ be a discrete group acting on a smooth

manifold by diffeomorphism, and let E → W be a Γ-equivariant complex vector bundle

with an hermitian metric not necessarily equivariant. With as before r : V × Γ→ V the

target map of the groupoid, then on E0 = Cc(W × Γ, r∗E), there is an A-valued product

given by:

〈ξ, η〉(x, γ) =
∑
β∈Γ

(ξ(xβ, β−1), η(xβ, β−1γ)).

There is also a right action of A0 = Cc(V × Γ) on E0 given by:

ξ ∗ a(x, γ) =
∑
β∈Γ

ξ(x, β)a(xβ, β−1γ).

It gives E0 the structure of a pre-hilbert module on A; let E be the Hilbert module on

A obtained by completion.

Unless the hermitian metric is Γ-equivariant, there is no left action of A on E . However,

there is a homomorphism λ of A0 into L(E) (the algebra of adjointable morphisms of E),

given by, for a ∈ A0, ξ ∈ E0:

λ(a)ξ(x, γ) =
∑
β∈Γ

a(x, β)ξ(xβ, β−1γ).

This homomorphism is closable and extends to a Banach subalgebra of A. If the

hermitian metric is almost isometric, then the domain of the closure is a full subalgebra

of A [C, Definition 3.3, Proposition 3.4].

5.2. Unbounded derivations. Let A0 be a dense subalgebra of a Banach algebra A, E
a Banach right module over A and λ : A0 → LA(E), a closable left action, i.e. a closable

morphism to the Banach algebra of continuous homomorphisms of E commuting with the

right action, and δ : A0 → E a derivation, so that δ(ab) = λ(a)δ(b) + δ(a)b for a, b ∈ A0.

Lemma 5.1. If the domain of the closure of λ is a full subalgebra of A, and if δ is closable,

then the map π : A0 → LA(E)⊕E given by π(a) = λ(a)⊕ δ(a) is closable and the domain

A of its closure is a full subalgebra of A.

Proof. The map π is closable as λ and δ are, and A, the domain of the closure, is a

subalgebra of A. Let b ∈ A invertible in A and let us show that b−1 ∈ A. As A is

contained in the domain of the closure of λ, which is full by hypothesis, then b−1 belongs

also to that domain. Then for any ε > 0, there exists a ∈ A0 such that ‖a − b−1‖ +

‖λ(a) − λ(b−1)‖ < ε, with the norms of A and LA(E). With v = 1 − ab, and choosing ε

sufficiently small, then max{‖v‖, ‖λ(v)‖} < 1. As v ∈ domδ, we may apply δ to vk and

δvk =
∑
j λ(vj−1)(δv)vk−j . This shows that the series

∑
δvk converges absolutely, and

thus (1− v)−1 ∈ A, from which we deduce that b−1 = (1− v)−1a is in A.

6. The cotangent C*-module. Let as before Γ be a discrete countable group acting

on the right by diffeomorphisms on V = S1, A0 = Cc(V × Γ) and A = C(V ) o Γ the

reduced crossed product. Let l = log δ be the logarithm of the modulus of the action of

Γ with respect to the Lebesgue measure dx, i.e. γ∗dx = δ(x, γ)dx; then l is a continuous
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homomorphism from the groupoid V o Γ to R and R acts on A by

αt(f)(x, γ) = δitf(x, γ).

Besides, we have an action of Γ on W = V ×R given by (x, λ)γ = (xγ, λ+ l(x, γ)) for

(x, λ, γ) ∈ V ×R×Γ. Let B be the crossed product C(V ×R)oΓ of this groupoid 1. The

Fourier transform on R implements an isomorphism of the crossed product (C(V )oΓ)oαR
with B.

On W , there is a Γ-invariant smooth measure µ = exp(λ)dxdλ, where dx and dλ are

the Lebesgue measures on S1 and R. Thus there is a semi-finite trace τ on B characterized

by τ(a∗a) =
∫
W
|a(x, λ, e)|2dµ(x, λ) when a ∈ Cc(W × Γ).

Let L1(B, τ) be the noncommutative L1-space of τ , which is the completion of B0 =

Cc(W × Γ) for the norm ‖a‖1 = τ(|a|). This is a Banach space and a bimodule over B.

On T ∗W , the cotangent bundle, we choose the riemannian metric, for X ∈ T ∗xV and

Λ ∈ T ∗λR:

‖(X,Λ)‖2(x,λ) = exp(−2λ)X2 + Λ2. (6)

This metric is not invariant by Γ, but the action is almost isometric [C, Definition 3.3],

as here γ∗ : T ∗(x,λ)γW → T ∗(x,λ)W is an upper triangular matrix, with diagonal entries

equal to 1.

Recall (subsection 5.1) that we can form a B-Hilbert module E by completion of

E0 = Cc(W × Γ, r∗T ∗W ). We denote the norm on E by:

‖ξ‖E∞ = ‖〈ξ, ξ〉‖
1
2

B .

We introduce now the analogue of the noncommutative L1-space for E : for ξ ∈ E0,

let:

‖ξ‖E1 = τ(〈ξ, ξ〉 12 ).

Lemma 6.1. For ξ ∈ E0, the following equality holds true:

‖ξ‖E1 = sup{τ(〈η, ξ〉); η ∈ E0, ‖η‖E∞ ≤ 1}.

Proof. Let ξ, η as in the lemma. By a well-known property of Hilbert modules, there is

an inequality: |〈η, ξ〉| ≤ ‖η‖E∞〈ξ, ξ〉
1
2 , which shows that the left hand side of the claimed

equality is less than or equal to the right hand side.

Conversely, let aε = (ε+ 〈ξ, ξ〉 12 )−1 ∈ B. Then, for any α > 0, there exists bε,α ∈ A0

such that ‖bε,α − aε‖B ≤ α. Let ηε,α = ξ ∗ bα, then when α, ε are sufficiently small,

‖ηε,α‖E∞ ≤ 1 and limε,α→0 τ(〈ηε,α, ξ〉) = τ(〈ξ, ξ〉 12 ).

As a consequence of this lemma, we get readily:

Proposition 6.2. The map ξ → ‖ξ‖E1 on E0 is a norm, and the completion of E0, denoted

by L1(E , τ), is a Banach space and a right module over B. Moreover, for ξ ∈ L1(E , τ),

the following equality holds true:

‖ξ‖E1 = sup{τ(〈η, ξ〉); η ∈ E , ‖η‖E ≤ 1}.

1The reduced and maximal crossed products are equal.
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Similarly to proposition 3.4 of [C], the action λ0 of B0 on E0 is closable and the domain

of its closure λ1 is a full Banach subalgebra of B.

Let Eγ : E0 → Cc(W,T
∗W ) be the evaluation map at γ ∈ Γ; thus for ξ ∈ E0,

Eγ(ξ)(x, λ) = ξ(x, λ, γ). Let L1(W,T ∗W ) the Banach space of Lebesgue measurable

sections ξ of T ∗W , such that, with the euclidean norm (6) and the invariant measure

above: ∫
W

‖ξ(z)‖zdµ(z) < +∞.

Lemma 6.3. The linear map Eγ extends to a continuous norm one linear map L1(E , τ)→
L1(W,T ∗W ). Let ψ be a bounded Borel complex valued function on S1. Then the linear

form on E0, ξ →
∫
W
ξ(x, λ, e)ψ(x) ∧ dλ extends to a continuous linear form on L1(E , τ).

Proof. Let γ ∈ Γ, z = (x, λ) ∈W , and η0, η1 ∈ Cc(W ) such that:

|η0(z)|2 exp(−2λ) + |η1(z)|2 ≤ 1

and let η(z, β) ∈ E0 equal to η0(zγ)dx + η1(zγ)dλ if β = γ and equal to 0 if β 6= γ. We

evaluate ‖〈η, η〉‖B (e being the neutral element of Γ):

〈η, η〉(z, β) =

{
|η0(z)|2 exp(−2λ) + |η1(z)|2 if β = e,

0 if β 6= e.

Thus ‖〈η, η〉‖B = supz |η0(z)|2 exp(−2λ) + |η1(z)|2 ≤ 1. For any ξ ∈ E0, 〈η, ξ〉(z, e) =

η0(z) exp(−2λ)ξ0(zγ, γ) + η1(z)ξ1(zγ, γ). Then, as the measure is Γ-invariant, and with

the following supremum taken over all couples (η0, η1) as above, the Cauchy-Schwarz

inequality implies:

‖ sup
η0,η1

τ(〈η, ξ〉)‖ = ‖Eγ(ξ)‖1.

But the left hand side of the last equality is less than or equal to ‖ξ‖E1 , by lemma 6.1.

For the last assertion, let ξ = ξ0dx + ξ1dλ ∈ L1(W,T ∗W ). Then as T ∗W = T ∗V ⊕
T ∗R, we have ‖ξ‖1 =

∫
W
{‖ξ0‖2 + ‖ξ1‖2 exp(2λ)} 1

2 dxdλ, and thus the linear form ξ →∫
W
ψEe(ξ) ∧ dλ is well defined and continuous.

Let S0 be the linear map densely defined on E0 for ξ ∈ C1
c (W ×Γ, r∗T ∗W ) with values

in L1(E , τ) such that Eγ(S0ξ) = dEγ(ξ) (d is exterior derivative on W ).

Proposition 6.4. The map S0 is closable.

Proof. The map from C∞c (W ) → L1(W,T ∗W ), f → df is closable in C0(W ) and the

domain of its closure is an algebra the elements of which are C1-functions on W . Let

ξk ∈ C∞c (W × Γ) be a sequence which tends to zero in B and such that S0ξk converges

in L1(E , τ). For every γ ∈ Γ, Eγ(ξk) converges to 0, and thus ‖S0ξk‖E1 goes to zero too.

7. 1-traces. Let A be a C*-algebra and A0 ⊂ A a dense involutive subalgebra. A cyclic

1-cocycle φ on A0 is a bilinear antisymmetric map and it gives rise to an additive mor-

phism from K1(A0) to C.

A 1-trace on A0 is a cyclic 1-cocycle φ such that there exists a constant C > 0 such

that for f0, f1 ∈ A0, the following inequality holds (where the norm on the right side is
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the C*-norm):

|φ(f0, f1)| ≤ C‖f0‖.

There is then a derivation κ : A0 → A∗, the dual of A, such that:

φ(f0, f1) = 〈f0, κ(f1)〉 = −〈κ(f0), f1〉.

The derivation κ : A0 → A∗ considered as an unbounded operator A→ A∗ is closable

and the domain of its closure is a dense subalgebra of A stable by holomorphic functional

calculus. Thus φ extends to a one cyclic cocycle on A and thus to an additive map

K1(A) ∼= K1(A)→ C.

Remark 7.1. If A1 with A0 ⊂ A1 is also a full Banach subalgebra to which the 1-trace

extends, then the K-theory map determined on K1(A) is the same. Indeed the intersection

A0 ∩ A1 is a full Banach algebra, and has the same K-theory as A,A1 and A.

Here is an important example of a 1-trace. Let Γ be a discrete group acting on a

locally compact metric space W by homeomorphisms. Let γ → µγ be a 1-cocycle on Γ

with values in the space of Radon measures on W . Thus, for γ1, γ2 ∈ Γ:

γ∗2µγ1 − µγ1γ2 + µγ2 = 0

where γ∗2µγ1 is the direct image of µγ1 by the homeomorphism γ−1
2 . Fixing γ1 = e to be

the neutral element shows that µe = 0, and then µγ−1 = −γ∗µγ .

Lemma 7.2. The following formula, for f0, f1 ∈ Cc(W × Γ), defines a 1-cocycle on that

algebra and a 1-trace on the crossed product algebra C(W ) o Γ:

φµ(f0, f1) =
∑
γ∈Γ

∫
W

f0(x, γ)f1(xγ, γ−1)µγ−1(x).

Proof. First φµ is a cyclic cochain. As φµ is clearly bilinear, it suffices to prove that

φµ(f0, f1) = −φµ(f1, f0). But, as µ(e) = 0,

φµ(f1, f0) =
∑
γ

∫
W

f1(x, γ))f0(xγ, γ−1)µγ−1(x)

=
∑
γ

∫
W

f1(xγ−1, γ)f0(x, γ−1)γ∗µγ−1(x)

=
∑
γ

∫
W

−f1(xγ, γ−1)f0(x, γ)µγ(x)

= −φµ(f0, f1).

A similar computation shows that bφµ = 0, so that it is closed.

Then we prove that it is a 1-trace: let f0, f1 ∈ Cc(W × Γ) and let Z ⊂ Γ be a finite

subset which contains be the projection of the support of f1 and such that Z = Z−1;

thus f1(x, γ) = 0 for γ /∈ Z.

Let µ be a measure on W with support equal to W . Then by the bipolar theorem,

there exists for each γ ∈ Z a sequence an(x, γ) of Borel and µ-integrable functions, such

that an(., γ)µ converges weakly to µγ . Let W0 ⊂W be a compact subset which contains

the support of f1(., γ) for every γ ∈ Z and K > 0 be a majorant of
∫
W0
|an(x, γ)|µ(x),
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for n ≥ 0, γ ∈ Z. Then:

|φµ(f0, f1)| =
∣∣ lim
n

∑
γ∈Z

∫
W

f0(x, γ)f1(xγ, γ−1)an(x, γ−1)µ(x)
∣∣

≤ lim
n

∫
W

‖f1‖A
(∑
γ∈Γ

|f0(x, γ)an(x, γ−1)|2
) 1

2µ(x)

≤ lim
n
‖f1‖A

∑
γ∈Z

∫
W

|f0(x, γ)||an(x, γ−1)|µ(x)

≤ ‖f1‖A|Z|K sup
W×Γ

|f0(x, γ)|.

Here |Z| is the cardinal of Z; thus |φµ(f0, f1)| ≤ K1‖f0‖A.

8. A 1-trace which is a coboundary. Let as before V = S1 as a smooth manifold

and Γ be a discrete group of diffeomorphisms acting on the right, A = C(V ) o Γ the

reduced crossed product, δ : V o Γ → R∗+ the modular homomorphism with respect to

the Lebesgue measure, W = V × R and B = C0(W ) o Γ the crossed product.

Let ψ be a bounded Borel function such that γψ − ψ is a Lipschitz function for any

γ ∈ Γ. For f0, f1 ∈ C∞c (W × Γ), let:

φψ(f0, f1) =

∫
W×Γ

f0(x, λ, γ)f1(xγ, λ+ l(x, γ), γ−1)d(γ−1ψ − ψ) ∧ dλ.

This is a 1-trace by lemma 7.2; it is a coboundary of a zero cochain on C∞c (V × Γ),

and we would like to show that it gives the zero map on K-theory. Actually, there is a full

subalgebra on which it is a coboundary, this will be shown in the proof of the following

claim:

Proposition 8.1. The 1-trace φψ implements the null map from K1(B) to C.

Proof. Let δψ be the closable derivation with values in the dual space A∗ associated to

φψ. Let B ⊂ B be the domain of the closure of the map λ⊕ δψ⊕S0 on C1
c (W ×Γ) where

S0 is defined in lemma 6.4. It is a full Banach subalgebra as in lemma 5.1.

As the canonical morphism Kj(B) → Kj(B) is an isomorphism, it suffices to prove

that φψ is the zero map on the K-theory of B. But on B with the graph norm, the

following 0-cocycle is well defined and continuous, by lemma 6.3:

κ(f) =

∫
W

df(x, λ, e)ψ(x)dλ = −
∫
W

f(x, λ, e)dψ ∧ dλ.

Actually, a more precise formulation is κ(f) =
∫
W
Sf(x, λ, e)ψ(x)dλ, where S is the

restriction to B of the closure of the map S0 of lemma 6.4.

Here dψ is a current, the distributional derivative of ψ. We compute bκ(f0, f1) =

κ(f0f1)− κ(f1f0) for f0, f1 ∈ C∞c (W × Γ); then:

−κ(f1f0) =
∑
γ

∫
W

f1(x, λ, γ)df0(xγ, λ+ l(x, γ), γ−1)ψ(x)dλ

+
∑
γ

∫
W

df1(x, λ, γ)f0(xγ, λ+ l(x, γ), γ−1)ψ(x)dλ.
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As it is a finite sum, we may intertwine the summation with the integral, and the first

term of the right hand side reads∑
γ

∫
W

f1(xγ−1, λ, γ)df0(x,−l(x, γ−1) + λ, γ−1)γ−1ψ(x)dλ

=
∑
γ

∫
W

df0(x, λ, γ)f1(xγ, λ+ l(x, γ), γ−1)γ−1ψ(x)dλ

and similarly for the second term. As γψ − ψ is Lipschitz, its distributional derivative is

a bounded Borel function, and we get eventually the following equality:

κ(f0f1)− κ(f1f0) = φψ(f0, f1).

This equality extends by continuity to all of B: for any f j ∈ B, j = 0, 1, there exist a

sequence f jk ∈ C∞c (W × Γ) such that f jk converges to f j in B, λ(f jk) converges to λ(f j)

in LA(L1(E , τ)), Sf jk converges to Sf j in L1(E , τ), and δψf
j
k converges to δψf

j in A∗.

Then, for k, l = 0, 1, limk f
j
kf

l
k = f jf l in B, and κ(f jkf

l
k)→ κ(f jf l) and φψ(f0

k , f
1
k )→

φψ(f0, f1).

We have checked the equality bκ = φψ on all B, and this shows that the map φψ on

the K-theory of B, and hence on that of A, is identically 0.

9. Bilipschitz invariance. Let V1 = V2 = S1, and αj be a smooth action of Γ on Vj
and T : V1 → V2 be a Γ-equivariant map. Let ρj : K0(C(Vj) oαj Γ)→ C be the analytic

Godbillon-Vey map associated to the Bott-Thurston cocycle as in section 3.

Theorem 9.1. With these notations, if T is a bilipschitz homeomorphism, then the

Godbillon-Vey map is preserved by T ∗: for every x ∈ K0(C(V1) oα1
Γ), the equality

ρ2(T ∗x) = ρ1(x) holds true.

In this section we give the proof of it.

9.1. The C*-algebra crossed product associated to a invariant class of mea-

sure. Let L∞(Vj) be the von Neumann algebra of (equivalence classes) of essentially

bounded measurable functions for the Lebesgue class and L∞(Vj) o Γ the reduced C*

crossed product. Then Γ acts on the C*-tensor product L∞(Vj) ⊗ C0(R) by γf(x, λ) =

f(xγ, lj(x, γ) + λ), and let L∞(Vj)⊗ C0(R) o Γ the well defined C* crossed product.

The Thom isomorphism gives, with Wj = Vj × R:

θj : K0(C(Vj) o Γ)→ K1(C0(Wj) o Γ), (7)

θ̄j : K0(L∞(Vj) o Γ)→ K1(L∞(Vj)⊗ C0(R) o Γ). (8)

Let κj : C(Vj)oΓ→ L∞(Vj)oΓ and λj : C(Wj)oΓ→ L∞(Vj)⊗C0(R)oΓ) be the

canonical injections. Then for j = 1, 2:

λj ◦ θj = θ̄j ◦ κj . (9)

For j = 1, 2, γ ∈ Γ→ dlj(x, γ) ∧ dλ is a group 1-cocycle with values in the Γ-module

of differential forms on Wj = Vj × R. Then by lemma 7.2, it is a 1-trace on C0(Wj) o Γ

and determines a scalar valued additive map φj of K1(C0(Wj) o Γ). Then, with ρj the
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additive map of K0(C(Vj)oΓ) given by the Bott-Thurston cocycle, then by [C], the two

maps are related as follows:

φj ◦ θj = ρj . (10)

Viewing volume forms on Wj as Radon measures absolutely continuous with respect to

the Lebesgue class of measure, the cocycle above is also a 1-trace on L∞(Vj)⊗C0(R)oΓ,

by lemma 7.2. Thus an additive map exists φ̄j : K1(L∞(Vj)⊗ C0(R) o Γ)→ C, and the

latter factorizes the former:
φj = φ̄j ◦ λj .

Let µj be the Lebesgue measure on Vj . By Rademacher theorem, there exists a

bounded Borel function ψ such that T ∗µ2 = exp(ψ)µ1. Let T̃ : W1 → W2 be given

by T̃ (x, λ) = (Tx, ψ(x) + λ).

Lemma 9.2. The map T̃ implements T̃ ∗ : C0(W2)oΓ→ L∞(V1)⊗C0(R)oΓ, and again

T̃ ∗ : L∞(V2)⊗ C0(R) o Γ)→ L∞(V1)⊗ C0(R) o Γ.

Proof. The map T̃ implements a continuous homomorphism L∞(V2)⊗C0(R)→ L∞(V1)⊗
C0(R). To see this, recall that L∞(Vj) = C(K) where K is the spectrum of that C*-

algebra. Then ψ is the restriction to V1 of a continuous map ψ̄ on K. Moreover, as T is

absolutely continuous, it extends to a continuous map T̄ of K. Thus we can view T̃ ∗ as the

homomorphism of C(K)⊗C0(R) implemented by (v, λ)→ (T̄ v, λ+ ψ̄(v)). As the action

αj of Γ is smooth, it preserves the Lebesgue class, and thus extends to a continuous action

on L∞(Vj). These remarks allow us to define T̃ ∗ : B̄2 → B̄1 and finally T̃ ∗ : B2 → B̄1 is

obtained by the composition with the canonical injection C(V2)→ L∞(V2).

9.2. End of the proof of theorem 9.1. Consider the following diagram:

K0(C(V2) o Γ) K0(C(V1) o Γ)

K1(C(V2 × R∗+) o Γ) K1(C(V1 × R∗+) o Γ)

K1(L∞(V2)⊗ C0(R∗+) o Γ) K1(L∞(V1)⊗ C0(R∗+) o Γ)

C C

-T∗

?

θ2

?

θ1

?

λ2

HHH
HHH

HHH
HHHj

T̃∗

?

λ1

?

φ̄2

-T̄
∗

?

φ̄1

-
=
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It is a commutative diagram. We divide it into an upper trapezoid (above the diagonal

with T̃ ∗) and a lower trapezoid (below the same diagonal).

The commutativity of the upper trapezoid is clear. With ψ the logarithm of the

derivative of T as above, the equality l2(Tx, γ) = l1(x, γ)+γ−1ψ−ψ shows that γ−1ψ−ψ
is a Lipschitz function on V1 for every γ ∈ Γ.

The maps φ̄1 ◦ T̃ ∗ and φ2 on K1(C(V2)oΓ) are implemented by 1-traces which differ

by the 1-trace associated to d(γ−1ψ − ψ). Thus they are equal by proposition 8.1.

The commutativity of the bottom trapezoid follows.

Theorem 9.1 is now a mere consequence of the commutativity of this diagram and of

formula (10).

10. The measure on the flow of weights. Let as before Γ act on S1 by oriented

diffeomorphisms and A = C(S1) o Γ the reduced C*-crossed product and B = C(S1 ×
R) o Γ. Recall that the flow of weights is the center Z of the von Neumman algebra

crossed product B̄ = L∞(S1 × R) o Γ, together with a dual action of R̂ ' R.

Let δ be the derivation coming with the 1-trace φ defined previously. As shown in [C],

the domain of the bitranspose of the derivation δ restricted to the von Neumann crossed

product B̄ contains Z, and, for every z ∈ Z, δ(z) = 0.

In particular, for every z ∈ Z, the map on domδ, (a0, a1) → φ(a0, za1) is a 1-trace

and extends to a map φz : K1(B)→ C.

Thus, by Thom isomorphism θ : K0(A) → K1(B), there is a normal additive map ρ

on Z with values the group of additive maps on K0(A). Let now αj be a smooth action

of Γ on S1 for j = 1, 2, and Zj the center of L∞(S1 × R) oαj Γ. Let T : S1 → S1 be a

bilipschitz homeomorphism of S1 conjugating the two actions. Then, as T preserves the

Lebesgue class of measure, it gives an isomorphism of Z2 with Z1. Let for z ∈ Zj ρj,z be

the additive map of K0(C(S1) oαj Γ) previously defined.

Theorem 10.1. For every z ∈ Z2, the following equality between additive maps of

K0(C(S1) o Γ) holds true:

ρ1,T∗z ◦ T ∗ = ρ2,z.

Proof. Let ψ be a bounded measurable function on S1 such that γψ − ψ is lipschitz for

every γ ∈ Γ and z be a bounded Borel function on S1×R invariant under the action of Γ.

Then the group 1-cocycle zd(γ−1ψ−ψ)∧ dλ implements the null map on K1(C(W )oΓ)

in the same way as in proposition 8.1, and thus the claim follows as in the proof of

theorem 9.1.

10.1. The Duminy measure. Let F be a codimension one oriented smooth foliation

on the dimension three oriented manifold M0. If ω is a transverse 1-form defining F and

θ a degree one form such that dω = θ ∧ ω, then G. Duminy, and later S. Hurder and

J. Heitsch [G, CC], have shown that for every Borel subset saturated by F (i.e. union of

leaves), the integral: ∫
M0

χBθ ∧ dθ
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where χB is the characteristic function of B, does not depend upon the choice of ω, θ.

In particular, the Godbillon-Vey invariant is obtained with B = M0. Thus we have a

σ-additive measure ν on the σ-algebra of Borel saturated subsets of M0.

Let Γ be a discrete group acting on S1 by oriented diffeomorphisms and satisfying

the hypothesis of section 3.

Let α : M → BΓ be a continuous map of the oriented manifold M to the classifying

space of Γ. Then, we get a homomorphism still denoted α : π1(M) → Γ and thus a

foliated bundle (Mα, Fα). The holonomy groupoid of the foliation is Morita equivalent

to S1 o Γ, and the (reduced) C*-algebra of this foliation is Morita equivalent to the

(reduced) crossed product C(S1) oα Γ.

Every Fα-saturated Borel subset Bα corresponds to a Γ-invariant Borel subset B

of S1. Still, B×R is a Γ-invariant Borel subset of W = S1×R, and thus its characteristic

function is an element of Z, the flow of weights of the action of Γ.

With the previous notations, the following equality holds true:∫
Bα

dν = φB×R(1). (11)

Let αj be two smooth actions of Γ on S1, (Mj , Fj) the associated foliated bundles. Let

T̃ : S1 → S1 be an orientation preserving homeomorphism such that T̃α1(γ) : α2(γ)T̃ :

then it defines a foliated homeomorphism T : M1 →M2.

Thus as a consequence of equality (11), we have proven:

Corollary 10.2. Let νj be the Duminy measure on (Mj , Fj). If T̃ is a bilipschitz con-

jugation between α1 and α2, then the following equality holds true:

T∗ν1 = ν2.
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[G] É. Ghys, L’invariant de Godbillon-Vey , Astérisque 177-178 (1989), 155–181.
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