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Abstract. In this paper the equal split-off set is introduced as a new solution concept for

cooperative games. This solution is based on egalitarian considerations and it turns out that

for superadditive games the equal split-off set is a subset of the equal division core. Moreover,

the proposed solution is single valued on the class of convex games and it coincides with the

Dutta-Ray constrained egalitarian solution.

1. Introduction. In this paper we propose a new set valued solution concept for coop-

erative games with transferable utility that we call the equal split-off set. This solution

is based on egalitarian considerations and it is inspired by the Dutta-Ray algorithm for

finding the constrained egalitarian solution for convex games (cf. Dutta and Ray (1989)).

More precisely, we consider a world N of n players, N = {1, . . . , n}, who believe in

equal share cooperation. For each coalition S ⊆ N , let the real number v(S) represent
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what the players in S can get if they cooperate (i.e. v(S) is the worth or the value of

coalition S). We assume that the entire set of players will cooperate and deal with the

question how the whole amount of money v(N) generated by N should be divided among

the players by considering the following step-wise process.

First, one of the coalitions with maximal average worth, say T1, forms and the players

in T1 divide equally the worth v(T1). In step 2 one of the coalitions in N \T1 with maximal

average marginal worth w.r.t. T1, say T2, forms, joins costless T1, and divides equally the

increase in value v(T2∪T1)−v(T1) among its members. The process stops when a partition

of N of the form 〈T1, . . . , TK〉 for some 1 ≤ K ≤ n is reached. This procedure generates

an efficient payoff vector x ∈ Rn which we call an equal split-off allocation. The equal

split-off set is then defined as consisting of all equal split-off allocations.

Notice that the difference between the above procedure and the Dutta-Ray algorithm

for finding the constrained egalitarian solution for convex games is that the corresponding

selected coalitions need not be the largest coalitions with the highest average worth.

The outline of this paper is as follows. After some preliminaries in Section 2, we

introduce the equal split-off set for arbitrary TU-games in Section 3 and exemplify it. We

consider in Section 4 the class of superadditive games and show that, on this class, any

allocation in the equal split-off set belongs to the equal division core of the corresponding

game and, consequently, it is individually rational. In Section 5 we concentrate on the

class of convex games and prove that the equal split-off set of a convex game consists of a

unique allocation which is the constrained egalitarian solution of that game. We conclude

in Section 6 with some final remarks.

2. Preliminaries. A TU-game is a pair (N, v), where N = {1, . . . , n} is a set of players

and v : 2N → R is a characteristic function on N satisfying v(∅) = 0. Often, we will

identify a game (N, v) with its characteristic function v. For any coalition S ⊆ N , v(S)

is the worth of coalition S, i.e. the members of S can obtain a total payoff of v(S) by

agreeing to cooperate.

A game v is called

• superadditive, if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N with S ∩ T = ∅;

• convex, if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N .

An allocation in a game v is a payoff vector x ∈ Rn. An allocation of v(N) such that

this amount is cleared is called efficient, and an allocation x such that xi ≥ v(i) for each

i ∈ N is called individually rational. The imputation set I(v) of a game v is the set of all

efficient and individually rational allocations, i.e.

I(v) =
{

x ∈ Rn
∣

∣

∣

∑

i∈N

xi = v(N) and xi ≥ v(i) for each i ∈ N
}

.

Further, an allocation is called stable if any coalition S ⊆ N receives at least its value

v(S). The core C(v) of a game v is the set of all efficient and stable allocations (Gillies,

1953), i.e. the set

C(v) =
{

x ∈ I(v)
∣

∣

∣

∑

i∈S

xi ≥ v(S) for each S ∈ 2N
}

.
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For each game v we have that C(v) is a subset of the equal division core EDC(v) of

v. The latter concept was introduced by Selten (1972) as the set
{

x ∈ I(v)

∣

∣

∣

∣

∄S ∈ 2N \ {∅} s.t.
v(S)

|S|
> xi for all i ∈ S

}

consisting of all efficient payoff vectors which cannot be improved upon by the equal

division allocation of any subcoalition.

An interesting element of the core C(v) of a convex game v (and, hence, of EDC(v))

is the Dutta-Ray constrained egalitarian solution DR(v). This solution consists of the

unique allocation in C(v) that Lorenz dominates every other core allocation. In their

seminal paper, Dutta and Ray (1989) provide an algorithm for generating DR(v) for

each convex game v. We apply a modified version of the Dutta-Ray algorithm to any

TU-game in order to produce allocations in the equal split-off set of v.

3. The equal split-off set. Let v be an arbitrary TU-game and π = 〈T1, . . . , TK〉 be

an ordered partition of the player set N . We set v1 := v, and for each k ∈ {2, . . . , K} we

define the marginal game

vk : 2N\(∪k−1
s=1 Ts) → R

by

vk(S) := vk−1(Tk−1 ∪ S) − vk−1(Tk−1) = v((∪k−1
s=1Ts) ∪ S) − v(∪k−1

s=1Ts).

We call the partition π = 〈T1, . . . , TK〉 of N a suitable ordered partition with respect

to the game v if Tk ∈ arg max
S∈2N\(∪

k−1
s=1 Ts)\{∅}

vk(S)/|S| for all k ∈ {1, . . . , K}.

Given such a partition π, the equal split-off allocation for v generated by π is the

efficient payoff vector x = (xi)i∈N ∈ Rn, where for all Tk ∈ π and all i ∈ Tk, xi =

vk(Tk)/|Tk|.

Now we define the equal split-off set ESOS(v) of the game v as the set

{x ∈ Rn | ∃π s.t. x is an equal split-off allocation for v generated by π}.

In order to illustrate this solution concept, let us have a look at the following examples:

Example 1 (2-person superadditive games). Let v be a game on the player set N = {1, 2}

satisfying v(1, 2) ≥ v(1) + v(2). Suppose without loss of generality that v(1) ≥ v(2) and

consider the following four cases:

(i) v(1) > 1
2v(1, 2). Then 〈{1}, {2}〉 is the unique suitable ordered partition and ESOS(v)

= {(v(1), v(1, 2) − v(1))};

(ii) v(2) < v(1) = 1
2v(1, 2). In this case ESOS(v) = {( 1

2v(1, 2), 1
2v(1, 2))} corresponding

to the suitable ordered partitions 〈{1}, {2}〉 and 〈{1, 2}〉;

(iii) v(2) = v(1) = 1
2v(1, 2). Also here ESOS(v) = {( 1

2v(1, 2), 1
2v(1, 2))} = {(v(1), v(2))}

corresponding to the three suitable ordered partitions 〈{1}, {2}〉, 〈{2}, {1}〉, and 〈{1, 2}〉;

(iv) v(1) < 1
2v(1, 2). Then 〈{1, 2}〉 is the unique suitable ordered partition and ESOS(v)

= {( 1
2v(1, 2), 1

2v(1, 2))}.

Example 2 (Simple games). In a simple game v on player set N we have that for all

S ⊆ N , v(S) ∈ {0, 1} with v(∅) = 0 and v(N) = 1. A coalition S ⊆ N is called minimal

winning if v(S) = 1 and v(S′) = 0 for all S′ ⊂ S ⊆ N . Given a simple game v, we denote
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the set of all minimal winning coalitions with a smallest cardinality by W s. In the case

of simple games ESOS(v) = {(1/|S|)eS | S ∈ W s} because for any suitable ordered

partition 〈T1, . . . , TK〉 we will have T1 ∈ W s, and all players in T1 will receive 1/|T1|

whereas the players in N \ T1 will receive payoff 0.

Example 3 (Glove games). Let N = L ∪ R, L ∩ R 6= ∅ and the game v be defined by

v(S) = min{|S ∩L|, |R∩ S|} for each S ⊆ N . If |L| = |R|, then ESOS(v) = {( 1
2 , . . . , 1

2 )}

that can be generated by many suitable ordered partitions, where each element Tk of

such a partition has the property that |Tk ∩L| = |Tk ∩R|. In case |L| > |R| each element

x ∈ ESOS(v) satisfies xi = 1
2 for each i ∈ R and for |R| elements of L, and xi = 0 for

the other elements of L. Conversely, all elements of this type belong to ESOS(v).

Example 4 (A 2-person non-superadditive game). Let v be a game on the player set

N = {1, 2} satisfying v(∅) = v(1, 2) = 0, v(1) = 3, and v(2) = 2. Then 〈{1}, {2}〉 is the

unique suitable ordered partition and ESOS(v) = {(3,−3)}.

One can easily check that the suitable ordered partitions generating equal split-off

allocations in Examples 1-4 satisfy a monotonicity property w.r.t. average worth as stated

in

Proposition 1. Let v be an arbitrary TU-game and let 〈T1, . . . , TK〉 be a suitable or-

dered partition of N w.r.t. v. Then

max
S∈2N\(∪

k−1
s=1 Ts)\{∅}

vk(S)

|S|
≥ max

S∈2N\(∪k
s=1Ts)\{∅}

vk+1(S)

|S|

for all k ∈ {1, . . . , K − 1}.

Proof. By definition of Tk we have

v(∪k
s=1Ts) − v(∪k−1

s=1Ts)

|Tk|
≥

v(∪k+1
s=1Ts) − v(∪k−1

s=1Ts)

|Tk| + |Tk+1|
.

Moreover,

v(∪k+1
s=1Ts) − v(∪k−1

s=1Ts)

|Tk| + |Tk+1|
=

v(∪k+1
s=1Ts) − v(∪k

s=1Ts) + v(∪k
s=1Ts) − v(∪k−1

s=1Ts)

|Tk| + |Tk+1|
,

implying that

v(∪k
s=1Ts) − v(∪k−1

s=1Ts)

|Tk|
≥

v(∪k+1
s=1Ts) − v(∪k

s=1Ts) + v(∪k
s=1Ts) − v(∪k−1

s=1Ts)

|Tk| + |Tk+1|
.

This inequality is equivalent to

(v(∪k
s=1Ts) − v(∪k−1

s=1Ts))|Tk| + (v(∪k
s=1Ts) − v(∪k−1

s=1Ts))|Tk+1|

≥ (v(∪k+1
s=1Ts) − v(∪k

s=1Ts))|Tk| + (v(∪k
s=1Ts) − v(∪k−1

s=1Ts))|Tk|,

which is in turn equivalent to

(v(∪k
s=1Ts) − v(∪k−1

s=1Ts))|Tk+1| ≥ (v(∪k+1
s=1Ts) − v(∪k

s=1Ts))|Tk|.

We refer the reader to Yanovskaya (2005) for an axiomatic characterization of the

equal split-off set on the class of arbitrary TU-games that uses a consistency property à

la Hart-Mas-Colell (cf. Hart and Mas-Colell (1989)).
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4. The equal split-off set for superadditive games. We consider now an interesting

additional property of our solution concept on the class of superadditive games. As it turns

out, the equal split-off set of a superadditive game is a refinement of the equal division

core of that game.

Theorem 1. Let v be a superadditive game. Then ESOS(v) ⊆ EDC(v).

Proof. Let x ∈ ESOS(v) be generated by the suitable ordered partition 〈T1, . . . , TK〉.

Take S ∈ 2N \ {∅}. We have to prove that there is i ∈ S such that xi ≥ v(S)/|S|.

Let m ∈ {1, . . . , K} be the smallest number such that Tm ∩ S 6= ∅. Then

v(S)

|S|
≤

v((∪m−1
s=1 Ts) ∪ S) − v(∪m−1

s=1 Ts)

|S|

≤
v(∪m

s=1Ts) − v(∪m−1
s=1 Ts)

|Tm|

=
vm(Tm)

|Tm|
= max

T∈2N\(∪
m−1
s=1 Ts)\{∅}

vm(T )

|T |
,

where the first inequality follows from the superadditivity of v and the second inequality

from the definition of Tm. Note that

xi = max
T∈2N\(∪

m−1
s=1 Ts)\{∅}

vm(T )

|T |
≥

v(S)

|S|

for each i ∈ Tm ∩ S. So, x ∈ EDC(v) implying that ESOS(v) ⊆ EDC(v).

The next example provides a game for which the equal split-off set is a strict subset

of the equal division core.

Example 5. Let N = {1, 2, 3} and v be a glove game with L = {1, 2} and R = {3}.

Then EDC(v) = {x ∈ I(v) | x3 ≥ 1
2} and ESOS(v) = {( 1

2 , 0, 1
2 ), (0, 1

2 , 1
2 )}.

Remark 1. Clearly, by Theorem 1, each equal split-off allocation for a superadditive

game is individually rational. As illustrated in Example 4, this need not be the case for

non-superadditive games.

5. The equal split-off set for convex games. We show in this section that the equal

split-off set of a convex game consists of a single allocation which is the Dutta-Ray

egalitarian solution of that game.

Let 〈D1, . . . , DP 〉 be the ordered partition of N according to the Dutta-Ray algorithm

for finding the constrained egalitarian solution DR(v) of a convex game v. In each step

p ∈ {1, . . . , P} of the Dutta-Ray algorithm, the coalition Dp is the largest element in the

set

Mp := arg max
S∈2N\∪

p−1
i=1

Di\{∅}

v(S ∪ (∪p−1
i=1 Di)) − v(∪p−1

i=1 Di)

|S|
.

We recall that for each p ∈ {1, . . . , P} the set Mp has a lattice structure w.r.t. the

partial ordering of inclusion. So,

Dp = ∪{D | D ∈ Mp}.
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For further use, we let

dp :=
v(Dp ∪ (∪p−1

r=1Dr)) − v(∪p−1
r=1Dr)

|Dp|
for each p ∈ {1, . . . , P}.

Suppose now that we are given a convex game v, its ordered partition 〈D1, . . . , DP 〉

according to the Dutta-Ray algorithm, and an allocation x = (xi)i∈N in the equal split-off

set ESOS(v) of v that is generated by the suitable ordered partition 〈T1, . . . , TK〉. Then

we have the following

Lemma 1. Let v1(T1)/|T1| = a1 and k1 ∈ {1, . . . , K} be the largest number for which

vk1
(Tk1

)/|Tk1
| = a1. Then a1 = d1 and D1 = ∪k1

j=1Tj .

Proof. Since T1 ∈ M1 and D1 = ∪{D | D ∈ M1}, we have T1 ⊆ D1 and a1 =

v1(T1)/|T1| = v(T1)/|T1| = d1.

Next we show that ∪k1
j=1Tj ⊆ D1 by proving by induction that ∪k′

j=1Tj ⊆ D1 for each

k′ ∈ {1, . . . , k1}.

For k′ = 1 the inclusion is correct.

Suppose that for some k′ ∈ {1, . . . , k1 − 1} we have ∪k′

j=1Tj ⊆ D1. We show that

∪k′+1
j=1 Tj ⊆ D1. We have

d1|Tk′+1| = vk′+1(Tk′+1) = v1(∪
k′+1
j=1 Tj) − v1(∪

k′

j=1Tj)

= v1(∪
k′+1
j=1 Tj) − d1| ∪

k′

j=1 Tj |,

i.e.,

d1| ∪
k′+1
j=1 Tj | = v1(∪

k′+1
j=1 Tj),

implying that ∪k′+1
j=1 Tj ⊆ D1. Hence, ∪k1

j=1Tj ⊆ D1.

Next we prove that ∪k1
j=1Tj = D1. Suppose that we have V = D1 \ ∪

k1
j=1Tj 6= ∅. First,

from the selection of k1 and Proposition 1 it follows that

vk1+1(S)

|S|
< a1 = d1 for each S ∈ 2N\∪

k1
j=1Tj \ {∅},

implying
vk1+1(V )

|V |
< d1. (1)

On the other hand,

vk1+1(V )

|V |
=

v1(D1) − v1(∪
k1
j=1Tj)

|V |

=
d1|D1| − d1|(∪

k1
j=1Tj)|

|V |
=

d1|V |

|V |

= d1

which contradicts (1). Hence, we have proved that ∪k1
j=1Tj = D1.

Theorem 2. Let v be a convex game. Then ESOS(v) = {DR(v)}.

Proof. Let 〈D1, . . . , DP 〉 be the ordered partition of N according to the Dutta-Ray algo-

rithm for finding the constrained egalitarian solution DR(v) = (DRi(v))i∈N of v.
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Take an arbitrary allocation x = (xi)i∈N in the equal split-off set ESOS(v) of v, and

let it be generated by the suitable ordered partition 〈T1, . . . , TK〉.

We show by induction on p∈{1, . . . , P} that there exist k∗
1 , . . . , k∗

p, . . . , k∗
P ∈{1, . . . , K}

with 1 ≤ k∗
1 < . . . < k∗

p < . . . < k∗
P ≤ K such that for each p ∈ {1, . . . , P} and each

j ∈ {k∗
p−1 + 1, . . . , k∗

p} we have

∪
k∗

p

j=k∗
p−1+1Tj = Dp and

vj(Tj)

|Tj |
= dp. (2)

For p = 1 let k∗
1 = k1, where k1 ∈ {1, . . . , K} is the largest number for which

vk1
(Tk1

)/|Tk1
| = a1 = v1(T1)/|T1|. By Lemma 1 we have ∪k1

j=1Tj = D1 and vj(Tj)/|Tj | =

d1 for each j ∈ {1, . . . , k∗
1}.

Suppose that for some p ∈ {1, . . . , P − 1} there exists k∗
p such that k∗

p−1 < k∗
p < K

for which (2) holds. We show that there exists k∗
p+1, such that k∗

p < k∗
p+1 ≤ K, for which

∪
k∗

p+1

j=k∗
p+1Tj = Dp+1 and vj(Tj)/|Tj | = dp+1 for each j ∈ {k∗

p + 1, . . . , k∗
p+1}.

Notice that ∪
k∗

p

j=1Tj = ∪p
l=1Dl implying that the game vk∗

p+1 : 2N\∪
k∗

p

j=1Tj → R defined

by

vk∗
p+1(S) := v((∪

k∗
p

j=1Tj) ∪ S) − v(∪
k∗

p

j=1Tj),

and the game vp+1 : 2N\∪p

l=1Dl → R defined by

vp+1(S) := v((∪p
l=1Dl) ∪ S) − v(∪p

l=1Dl)

coincide.

Let ak∗
p+1 = vk∗

p+1(Tk∗
p+1)/|Tk∗

p+1| and kp+1 ∈ {k∗
p + 1, . . . , K} be the largest number

for which vkp+1
(Tkp+1

)/|Tkp+1
| = ak∗

p+1. Take k∗
p+1 = kp+1. Given the coincidence of the

games vk∗
p+1 and vp+1 and their convexity (cf. Dutta and Ray (1991)), we can apply the

same argument as in Lemma 1 to conclude that (2) holds also for p + 1.

It follows then that the suitable ordered partition 〈T1, . . . , TK〉 is a refinement of

〈D1, . . . , DP 〉 of the form

〈〈T1, . . . , Tk∗
1
〉, 〈Tk∗

1+1, . . . , Tk∗
2
〉, . . . , 〈Tk∗

P−1+1, . . . , Tk∗
P
〉〉

with Tk∗
P

= TK , and for each partition 〈Tk∗
p−1+1, . . . , Tk∗

p
〉 of Dp, p ∈ {1, . . . , P}, the

members of each element Tk, k ∈ {k∗
p−1 + 1, . . . , k∗

p} with k∗
0 = 0, receive the same payoff

dp. Thus, we have x = DR(v) implying that ESOS(v) = {DR(v)} for a convex game v.

6. Concluding remarks. In this paper the equal split-off set has been introduced for

arbitrary TU-games as a new set valued solution concept based on egalitarian consider-

ations. We have proved that for any superadditive game the new solution concept is a

refinement of the equal division core. Moreover, we have shown that for each convex game

the equal split-off set consists of a single allocation which is the Dutta-Ray constrained

egalitarian solution for that game. Recently, an axiomatic characterization of this solu-

tion on the class of arbitrary TU-games has been provided by Yanovskaya (2005). Further

investigations could be done for clarifying possible relations between the equal split-off

set and existing egalitarianism-based solution concepts for arbitrary TU-games such as

the strong-constrained egalitarian allocations (cf. Dutta and Ray (1991)), the egalitarian
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set, the preegalitarian set and the stable egalitarian set (cf. Arin and Inarra (2002)) and

for balanced games like the Lorenz solution (cf. Hougaard et al. (2001)), the Lorenz stable

set and the egalitarian core (cf. Arin and Inarra (2001)).
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