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Abstrat. Norm-to-weak* ontinuity of exess demand as a funtion of pries is proved byusing our two-topology variant of Berge's Maximum Theorem. This improves signi�antly uponan earlier result that, with the extremely strong �nite topology on the prie spae, is of limitedinterest, exept as a vehile for proving equilibrium existene. With the norm topology on theprie spae, our demand ontinuity result beomes useful in appliations of equilibrium theory,espeially to problems with ontinuous ommodity spetra. Some auxiliary results are also given,inluding losedness of the total prodution set and additivity of the asymptoti one operation.Both are needed in proving equilibrium existene by the use of the Debreu-Gale-Nikaido Lemma.1. Introdution. Although the properties of demand in in�nite-dimensional ommod-ity and prie spaes have attrated muh interest, hitherto the results on its prie-ontinuity that are needed for establishing equilibrium existene by the diret exess-demand approah have been unsatisfatory. For example, both Aliprantis and Brown[1, p. 204℄, who initiated this line of researh, and Araujo [2℄ report negative �ndings,whilst Florenzano [10, p. 216℄ manages only a ontinuity result with the �nite topologyon the prie spae, obliging her to use �nite-dimensional prie sets.1 These failures led2000 Mathematis Subjet Classi�ation: Primary 91B50; Seondary 46B42, 46E30.Key words and phrases: Berge's Maximum Theorem, demand ontinuity, equilibrium.Finanial support of the ESRC is gratefully aknowledged (grant R000232822).The paper is in �nal form and no version of it will be published elsewhere.

1The diret approah to equilibrium existene onsists in extending the methods developedoriginally for a �nite-dimensional ommodity spae, and ontinuity of demand in pries is neededif the exess-demand method is adopted. For want of a satisfatory result on the demand derivedfrom the optimizing behaviour of individual onsumers and produers, Aliprantis and Brown [1℄take ontinuous demand as a primitive rather than derived onept�exept in [1, Example 4.8,p. 205℄, where they, too, resort to using �nite-dimensional prie sets.
[163]



164 A. HORSLEY AND A. J. WROBELothers to use �nite-dimensional approximations of the ommodity spae as well as ofthe prie spae,2 beause this method does not require demand ontinuity: see, e.g., [5℄,[8℄ or [21℄. The resort to approximation is often pakaged with an interpretation of thein�nite-dimensional ommodity spae as an idealized desription of a �large but �nite�number of ommodities: see, e.g., [21, p. 512℄. Sometimes this may be appropriate, butin problems for whih in�nite-dimensional modelling is tailor-made, and where it hasturned out to be most suessful, the spetra of ommodities are genuinely ontinuous,e.g., the �ows of goods in ontinuous-time priing of publi utilities. In suh ontexts,it is mistaken to hold that all meaningful results an be aptured by the approximationapproah. Disretization rules out tehniques that yield key alulus results, suh as theontinuity of the equilibrium prie density [16℄ and its uses in the marginal valuation ofapital and other �xed inputs in [14℄ and [17℄. It also rules out the sensitivity analysisthat is needed for any implementation of the equilibrium solution: in the ase in point,demand ontinuity properties are essential for deiding whether small deviations fromthe equilibrium prie system will or will not result in large shifts of demand.For demand ontinuity to be of interest in appliations, the topologies used on theprie and ommodity spaes must be kept, respetively, as weak and as strong as possible.If, by ontrast, an extremely strong topology is used on the prie spae as in [10℄, thendemand ontinuity beomes a weak result that has little value exept as a vehile foran equilibrium existene proof. For a more detailed aount of [10℄, as well as of [1℄, seeSetion 6.What we establish is norm-to-weak* ontinuity of demand, whih is the best generalproperty available when the ommodity spae, L, is the Banah dual of a prie spae L′(on whih the demand map is de�ned). It is essential that this result be appliable to pref-erenes that are weakly* upper semiontinuous (w∗-u.s..) but not neessarily weakly*lower semiontinuous (w∗-l.s..), sine even some of the simplest funtional forms forutility are not weakly* ontinuous. For example, an additively separable, stritly on-ave utility funtion on L∞
+ is not w∗-l.s.. (although it is Makey-ontinuous and hene

w∗-u.s..): see [5, Appendix II℄. Lower semiontinuity of preferenes should thereforebe assumed for a topology that is signi�antly stronger than the weak* topology�andthe best hoie is the �nite topology of the ommodity spae, denoted by TFin(L). Thisgives a very large lass of ontinuous preferenes, whih obviously inludes all the norm-ontinuous ones. The TFin-ontinuity ondition is atually no more restritive than itis in the �nite-dimensional ase (so the only truly �in�nite-dimensional� restrition onpreferenes here is that of w∗-u.s. ontinuity).3The ase of a preferene order 4 that is w∗-u.s.. but only TFin-l.s.. requires a variantof Berge's Maximum Theorem with two topologies on the set of ations, whih is here theonsumption set. Suh extensions, given in [18℄, are applied to prove demand ontinuity
2Florenzano [10, Proof of Proposition 3, p. 216℄ works with demand as a map of a �nite-dimensional prie set into the in�nite-dimensional ommodity spae, as do Aliprantis and Brown[1, Example 4.8, p. 205℄ when dealing with derived demand.
3A funtion U : L → R is ontinuous for TFin if (and only if) its restrition to any a�nesubspae of a �nite dimension d is ontinuous for the usual topology of R

d.



DEMAND CONTINUITY AND EQUILIBRIUM 165(Theorem 5) as well as another result used in the diret proof of equilibrium existene(Lemma 7).The main reason for using the weak* topology (w∗) is that it is weak enough to makethe onsumption set ompat. Furthermore, in the ontext of demand ontinuity, theparameter set is the prie spae L′ with the norm topology, and w∗ is also weak enoughto make the budget orrespondene norm-to-w∗ upper hemiontinuous (u.h..). The othertopology on the onsumption set is purely auxiliary in that it enters the assumptions butnot the onlusion�whih is that the exess-demand orrespondene is norm-to-w∗ u.h..The role of this auxiliary topology is only to make the preferenes l.s.. whilst making thebudget orrespondene lower hemiontinuous (l.h..) when the prie spae L′ arries thenorm topology. Sine TFin(L) meets the latter ondition despite its strength�the budgetorrespondene is atually even weak-to-TFin l.h.., as the Proof of Theorem 5 shows�itis the best hoie for the auxiliary topology.In the ontext of demand ontinuity, the prie-spae topology should be kept as weakas possible (i.e., just strong enough to make the budget orrespondene u.h.. with w∗on the onsumption set, and l.h.. with TFin(L) thereon). We ahieve this by using thenorm topology of L′. This is what allows us to improve on the analysis of Florenzano[10, Proof of Proposition 3℄, who establishes demand ontinuity, but only when the priespae arries the �nite topology TFin(L′), whih is even stronger than the strongest vetortopology TSV(L′). As with the two norms, the two �nite topologies (on the prie andommodity spaes) should not be mistaken for eah other: whereas the use of TFin(L′)as in [10℄ severely weakens the demand ontinuity result, our use of TFin(L) an onlystrengthen it (albeit perhaps not signi�antly by omparison with using the norm of Lfor this purpose).The stronger ontinuity property of demand does not, however, strengthen the equi-librium existene result itself (Theorem 8): this does not di�er signi�antly from [10,Propositions 3 and 4℄, exept for minor improvements. Given here mainly for omplete-ness, it establishes the existene of an equilibrium with a prie system p⋆ in the norm-dual
L∗ of L (whih is larger than the predual L′, unless the spae is re�exive). However, forthe ontinuity properties of demand to be relevant for investigating the impat of priedeviations, the exat equilibrium prie p⋆ must be known to belong not just to L∗ butatually to the smaller prie spae L′ (sine demand is de�ned only on L′). Although nosuh prie representation result is given here, under appropriate assumptions it holds forboth (i) the ommodity spae of all essentially bounded funtions L∞, with L′ = L1 (thespae of integrable funtions) and (ii) the ommodity spae of measures M, with L′ = C(the spae of ontinuous funtions on a ompat spae of ommodity harateristis): see[5℄ and [21℄, respetively.4The analysis is omplemented by examples showing that demand may be unde�nedat a p ∈ L∗ \ L′ and, also, that demand an be weak-to-weak* disontinuous (as a mapof L′ into L): see Setion 7.Our own interest in Bewley's model [5℄ omes from our use of it in ontinuous-timepeak-load priing. This has the potential for implementation by publi utilities and om-

4For the ase of L = L∞, see also [15℄. And Rihard's result [28℄ applies to both ases.



166 A. HORSLEY AND A. J. WROBELpetitive industries: see [14℄, [15℄, [16℄, [17℄ and the referenes therein. In this ontext,however, demand ontinuity would be of even greater interest if it ould be establishedfor the Makey topology on the ommodity spae L∞ (paired with the prie spae L1),but this is an open question. If true, it would mean, for example, that the disequilibriumresulting from a prie deviation whih is small in the L1[0, T ]-norm ould be orretedby rationing users without muh loss of utility or output (on the assumption that theirutility and prodution funtions are Makey ontinuous, but that muh is needed anywayto guarantee that p⋆ ∈ L1). It is also of interest to examine demand ontinuity for thesupremum norm on the ommodity spae L∞[0, T ]: suh a property would mean thatthe extra ost of meeting demand out of equilibrium ould be �absorbed� by the supplier(sine this is the norm that makes his ost funtion ontinuous in peak-load priing).For suh a ontinuity property, the prie spae has to be restrited further, and its normstrengthened to the supremum norm, on a suitable subspae of L1[0, T ] suh as C[0, T ].For this use of the supremum norm to be possible, the equilibrium prie funtion p⋆ mustbe known to be at least bounded; and in [15℄ we identify ases in whih p⋆ is atually in
C[0, T ] when the ommodity spae is L∞[0, T ]. That the usual norm of the prie spae
L1 is not strong enough to make demand a norm-to-norm ontinuous map of L1 into L∞is lear from simple ounterexamples, as well as from a general disontinuity result ofAraujo [2, Theorem 3(b)℄.5However, Araujo's onlusion [2, p. 319℄ that �it is not a good idea to try to provethe existene of equilibria by means of a globally de�ned (i.e., on the whole dual) de-mand funtion� is mistaken, at least in so far as he spei�ally refers to Bewley's model:although the demand map (from L1 to L∞) is norm-to-norm disontinuous, this simplyhas little or no bearing on this approah to equilibrium existene. A su�ient property ofdemand is its norm-to-weak* ontinuity, although genuine tehnial di�ulties do arisein exploiting it. The base ∆∗ of the polar P ∗ of the prodution one is not norm-ompat,nor is the demand map de�ned on the whole of ∆∗ beause this is a subset of L∗ and notof L′, on whih demand is de�ned. And although ∆∗ is weakly* ompat, its interse-tion with L′ is not: the weak* losure of ∆∗ ∩L′ equals the larger prie set ∆∗. There is,nevertheless, a useful extension of the Debreu-Gale-Nikaido Lemma�given by Floren-zano [10℄�that does apply to this setting. Its appliation an prove only the existeneof an equilibrium prie p⋆ in L∗ (and not in L′), but the problem of prie represen-tation is oneptually separate from that of its existene; and in priniple p⋆ an beshown to belong to L′ by an additional argument. Suh an argument is well known forthe ase of L = L∞ with L′ = L1 (and is based on the Hewitt-Yosida deompositionof L∞∗).6Some other tehnial results needed to realize the full potential of the diret approahare also provided. As is reognized in [5, p. 520℄ and [8℄, for the Adequay Assumptionit is best to use the largest one ontained in the total prodution set Y : this helpsboth to weaken the assumption and to limit the range of relevant pries to a ompat

5This exploits the separability of L1 and the nonseparability of L∞ for their respetive norms.By ontrast, L∞ is separable for the weak* topology (when L1 is separable for the norm).
6So far as we know, no orresponding argument exists for L = M with L′ = C.



DEMAND CONTINUITY AND EQUILIBRIUM 167set ∆∗.7 However, if this one is to be used for an equilibrium existene proof based onthe Debreu-Gale-Nikaido Lemma, one needs to know that it is weakly* losed. This isestablished here: Y is shown to be losed (Lemma 2), and it follows that so is the onein question, whih therefore equals the asymptoti one, as Y . One also needs to knowthat it (asY ) is equal to the sum of the asymptoti ones of the individual produtionsets, and this is shown in Lemma 4.82. Model and assumptions. The ommodity spae, L, is taken to be the norm-dual(equal to the order-dual) of a Banah lattie L′; i.e., L = L′∗. The nonnegative one in L′is denoted by L′
+, and the norm of a p ∈ L′ is ‖p‖′. The dual nonnegative one in L is L+.The (dual) norm of an x ∈ L is denoted by ‖x‖. The norm-dual L∗ of L, whih ontains

L′, is used as the prie spae; and 〈p |x〉 denotes the value of a ommodity bundle x ∈ Lat a prie system p ∈ L∗. The weak* topology of L is denoted by w∗ for brevity; the fullnotation is w(L, L′). As for the weak* topology of L∗, this is always denoted by w(L∗, L)for larity. Also, the �nite topology on the ommodity spae L�in whih a set is losed ifand only its intersetion with any a�ne subspae of a �nite dimension d is losed for theusual topology of R
d�is denoted by TFin(L). This is abbreviated to TFin (whih nevermeans TFin(L′)).The (�nite) sets of produers and households (or onsumers) are denoted by Pr and

Ho. The prodution set of produer i ∈ Pr is denoted by Yi, and the onsumption setof household h ∈ Ho is Xh. Consumer preferenes, taken to be omplete and transitive,are given by a total (a.k.a. omplete) weak preorder 4h on Xh, for eah h. The orre-sponding strit preferene is denoted by ≺h. The household's initial endowment is xEn
h ;the household's share in the pro�ts of produer i is ςhi ≥ 0, with ∑

h ςhi = 1 for every
i. (The ranges of running indies in summations, et., are always taken to be the largestpossible with any spei�ed restritions.)The attainable onsumption and prodution sets onsist of those points of Xh or Yithat appear in some feasible alloation. Formally, with xEn :=

∑

h xEn
h denoting the totalinitial endowment, the attainable onsumption and prodution sets are

XAt
h := Xh ∩

(

−
∑

h′: h′ 6=h

Xh′ + xEn +
∑

i

Yi

) (1)
Y At

i := Yi ∩
(

∑

h

Xh − xEn −
∑

i′: i′ 6=i

Yi′

). (2)The omplete list of assumptions follows.
7A similar restrition on the relevant range of pries an be obtained on the onsumptionside by assuming the properness of preferenes: see [26℄ and [8, pp. 2�3℄. However, it is shown in[22, Setion 3℄ that this use of properness is formally equivalent to assuming that the produtionone has a nonempty interior (for the norm topology). A distintive feature of L∞ is that itsnonnegative orthant has a nonempty interior.
8These results are obtained by using the �loalization� of weak* losedness property tobounded parts of onvex sets, known as the Krein-Smulian Theorem. The tehnique is alsoinstrumental in establishing weak* upper semiontinuity of onave funtions: see [13℄.



168 A. HORSLEY AND A. J. WROBELSet Closedness: The sets Yi and Xh are w∗-losed (for eah i and h).Set Convexity: The sets Yi and Xh are onvex.Preferene Continuity: For eah h the preorder 4h is:1. w∗-upper semiontinuous, i.e., for every x′ the set {x ∈ Xh : x′ 4h x} is
w∗-losed; and2. TFin-lower semiontinuous, i.e., for every x′ the set {x ∈ Xh : x 4h x′} is
TFin-losed.Preferene Convexity: For eah h, if x ≺h x′, then x ≺h ǫx′ + (1 − ǫ)x for everynumber ǫ with 0 < ǫ ≤ 1.9Nonsatiation: For every h and x ∈ XAt

h there exists x′ ∈ Xh with x ≺h x′.Ination Feasibility: 0 ∈ Yi for every i.Boundedness: For every norm-bounded set B ⊂ L, the set
Yi ∩

(

L+ − B −
∑

i′: i′ 6=i

Yi′

)

is norm-bounded (for eah i); and Xh is ontained in L+ (for eah h).10Adequay: For eah h,
(Xh − xEn

h ) ∩ cor as Y 6= ∅ (3)where Y :=
∑

i Yi, i.e., a feasible trade for the onsumer belongs to the ore (a.k.a.the algebrai interior) of the asymptoti one of the total prodution set.Comments :
• The Adequay Assumption (3) guarantees that feasible alloations exist, i.e., that

XAt
h and Y At

i are nonempty.
• The one asY an be haraterized as the largest one (with vertex at 0) that isontained in Y ; it is further disussed in Setion 4.
• Part of the Adequay Assumption is that cor asY 6= ∅. For a onvex set A, its oreis equal to the interior of A for eah of the following: TFin (the �nite topology), TSV(the strongest vetor topology), and TSLC (the strongest loally onvex topology,a.k.a. the natural or onvex-ore topology): see, e.g., [24, (1.3) and Setion 3: p.108℄. In a Banah spae L, the ore of a onvex, norm-losed set A is also equal tothe norm-interior of A (in L): see, e.g., [12, p. 84℄ or [30, II.7.1℄.
• The (algebrai) polar A◦ of a one A ⊂ L with a nonempty norm-interior is a onein L∗ with a w(L∗, L)-ompat base. This is essential for the �xed-point argumentin the equilibrium existene proof, where suh a base ∆∗ for the prie one P ∗ :=

(asY )◦ \ {0} is spei�ed by (14).
• For demand ontinuity, a signi�antly weaker form of the Adequay Assumption issu�ient (Theorem 5). This is beause, in the ontinuity proof, the assumption is
9This ondition is also known as semi-strit quasi-onvexity. It implies quasi-onvexity (i.e.,the onvexity of {x : x′

4 x}) if 4 is TFin-u.s..: see, e.g., [7, pp. 59�60℄.
10When L = L∞, this Boundedness Assumption is equivalent to that of [5, p. 520℄, sinenorm-boundedness and order-boundedness are the same in this ase.



DEMAND CONTINUITY AND EQUILIBRIUM 169needed only to make the budget orrespondene lower hemiontinuous by guaran-teeing that eah onsumer's inome is (stritly) above the survival minimum at allprie systems from the relevant range, i.e., that
∀p ∈ P ′ ∃xh ∈ Xh 〈p |xh − xEn

h 〉 < 0 (4)where P ′ := P ∗ ∩ L′. This obviously holds if
∃xh ∈ Xh ∀p ∈ P ′ 〈p |xh − xEn

h 〉 < 0, (5)i.e., if a feasible trade is (stritly) negative as a linear funtional on P ′. And (3)implies the stronger property of negativity on P ∗, i.e., it implies that
∃xh ∈ Xh ∀p ∈ P ∗ 〈p |xh − xEn

h 〉 < 0. (6)For a proof, see (12).
• For the ase of Y = −L+ in a Banah lattie L, Condition (3) implies a spei�restrition on the spae itself: corL+ 6= ∅ if and only if L is the spae C(K) of allontinuous real-valued funtions on a ompat K. This is the Kakutani-Krein-KreinTheorem: see, e.g., [30, V.8.5 with V.8.4℄.11 The existene of a y ∈ L that is stritlypositive on L∗

+ \ {0}, as is required for (6), an be a signi�antly weaker onditionthan the nonemptiness of corL+. This is beause, in any Banah lattie L, stritlypositive elements are the same as quasi-interior points of L+;12 and the latter existwhenever L is separable:13 see, e.g., [30, V.7.6℄. Therefore (6) is a useful onditionwhen L = L̺(Ξ,A, µ) for a ̺ < +∞ (where µ is a sigma-�nite measure on aountably generated sigma-algebra A, or on its ompletion).
• The assumption that L has a (Banah) predual an be avoided by replaing L′with some separating subspae of the norm-dual L∗ and using the weak topology

w(L, L′) instead of the weak* topology on L. For example, when L = L1 one an set
L′ = L∗ = L∞, and work with w(L1, L∞) using the Dunford-Pettis CompatnessCriterion.

• The spaeM(K) has generally no element that is stritly positive onM∗
+\{0}. Butit has elements that are stritly positive on C+ \ {0} when K is a metri ompat:any measure that is positive on every open subset of K is an example. So, although(6) annot hold in this ase, Condition (5) an still be useful.

• The Adequay Assumption keeps the value of the initial endowment above theminimum; any pro�t inome plays no part in the argument (exept for being non-negative). For best results, all the produtive fators should be inluded in the listof ommodities, to represent the rents on any �xed fators as endowment rather
11More preisely, L an be equivalently renormed so as to be isomorphi, as a normed lattie,to C(K). For the ase of L∞, note that: (i) renorming is unneessary, (ii) the K in question isextremally disonneted.
12If L is an order-omplete Banah lattie of minimal type (e.g., L1 or L̺ for a ̺ < ∞),then stritly positive elements (or, equivalently, quasi-interior points of L+) are also the sameas weak order units: see, e.g., [30, V.7.7℄.
13More generally, quasi-interior points exist (and are dense in L+) for any separable, om-pletely metrizable and loally onvex spae (a separable Fréhet spae) L ordered by a losedone that generates it (i.e., a one L+ suh that L+ − L+ = L).



170 A. HORSLEY AND A. J. WROBELthan pro�t inome. This an be ahieved by �oni�ation�, whih formally onvertsa tehnology with dereasing returns to sale into one with onstant returns. Thisproedure�detailed in, e.g., [27, Setion 5℄�enlarges the ommodity spae by in-troduing �entrepreneurial� fators, one for eah prodution set Yi that is not aone from the start.14 The added fators are in �xed supply: there is, say, a unitof eah, whih is owned by the onsumers in amounts proportional to their sharesin the �rm. (Eah fator is taken to be of use only for the �rm in question, andso it does not enter onsumer preferenes.) The original prodution set Yi is em-bedded into the enlarged ommodity spae by setting the additional oordinatesof eah input-output vetor at −1 for the i-th entrepreneurial fator (and at 0 forthe others). Finally, the i-th prodution set is rede�ned as the losure of the onegenerated (in the enlarged spae) by the embedded original set.
• Although the lower semiontinuity of preferenes need be (and is) assumed only for
TFin, little would be lost by way of appliations had l.s. ontinuity been assumedfor the norm of L. (By ontrast, in the prie spae L′ the distintion between thenorm topology and TFin(L′) is signi�ant, as is pointed out in the Introdution.)

• Note, however, that TFin is not a vetor topology, unless dim L is ountable (whihis never the ase for an in�nite-dimensional Banah spae L): see, e.g., [24, Setion 3:p. 108℄. When the vetor-spae property, or loal onvexity, is also needed, the bestreplaement is TSV, or TSLC. Even with TSLC on L, every onave utility funtion
U : L → R (de�ned and �nite on the whole ommodity spae) is ontinuous: see,e.g., [3, V.3.3 (d)℄.3. Compatness of attainable setsLemma 1. The attainable sets XAt

h and Y At
i are w(L, L′)-ompat, for eah h and i.Equivalently, the set of all feasible alloations is weakly* ompat.Proof. First onsider the ase of Xh = L+ for eah h. Then:

XAt
h = L+ ∩

(

−L+ + xEn +
∑

i

Yi

)

,

Y At
i = Yi ∩

(

L+ − xEn −
∑

i′: i′ 6=i

Yi′

).So Y At
i is norm-bounded, by the Boundedness Assumption with B = {xEn}. Furthermore,note that

XAt
h = L+ ∩

(

−L+ + xEn +
∑

i

Y At
i

).It follows that this set is also norm-bounded: use [19, 3.2.6 with 3.2.3℄. (This appliesbeause L is a normed lattie, so the one L+ is self-allied for the norm topology. Theresult is also given in [30, V.3.1: Corollary 2℄, where the property of L+ is referred to as�normality�.) It follows a fortiori that the attainable sets are also norm-bounded in the
14MKenzie [27℄ also shows how to weaken the adequay assumption, in another respet, byusing the onept of an irreduible eonomy.



DEMAND CONTINUITY AND EQUILIBRIUM 171general ase of Xh ⊆ L+ (sine they an only be smaller than in the ase of Xh = L+).So XAt
h and Y At

i are weakly* ompat relatively to L (by the Banah-Alaoglu Theorem).That they are atually ompat (or, equivalently, losed) an be shown in two ways: oneonsists in using Lemma 2 (below) to show that the sums of the weakly* losed setsin (1) and (2) are also losed. For an alternative proof, note that the set of all feasiblealloations, A, is ontained in the Cartesian produt of XAt
h and Y At

i (over all h's and
i's); and so A is weakly* ompat relatively to LHo∪Pr. Sine A is also weakly* losedin this spae, it is weakly* ompat. It follows that so are XAt

h and Y At
i , sine they areweakly* ontinuous images of A, viz., its oordinate projetions.4. Total prodution set and its asymptoti one. When the ommodity spae is�nite-dimensional, the Boundedness Assumption is equivalent to positive semi-indepen-dene of the asymptoti ones of the prodution sets together with the one −L+, andit is well known to imply that the total prodution set is losed and, also, that theasymptoti one operation is additive: see, e.g., [7, p. 23℄ and [29, 9.1.1℄. Both results arenext extended to the ase of a dual Banah ommodity spae by using the Krein-SmulianTheorem. The losed-sum result (Lemma 2) is the more important of the two,15 sinethe additivity result an be made super�uous by transforming the prodution sets intoones in the way desribed towards the end of Setion 2.Lemma 2. The set Y :=

∑

i Yi is w∗-losed.Proof. Take any bounded and w∗-losed subset, B, of L. Sine Y is onvex, it su�es toshow that Y ∩B is w∗-losed and apply the Krein-Smulian Theorem: see, e.g., [9, V.7.5℄or [12, 18E℄. For any net (yn) in Y ∩B onvergent weakly* to some y ∈ L, deompose eahof its terms into the sum yn =
∑

i yn

i for some yn

i ∈ Yi. By the Boundedness Assumptionthe net (yn

i ) is bounded; so one an assume that it onverges weakly* to some yi, for eah
i. (If not, replae it with a w∗-onvergent subnet, whih exists by the Banah-AlaogluTheorem.) Sine Yi is w∗-losed, yi ∈ Yi. It follows that y =

∑

i yi ∈
∑

i Yi.A vetor v ∈ L is alled a diretion of reession in a onvex set S ⊆ L, at a point
s ∈ S, if s + αv ∈ S for every α ∈ R+. The reession one recS of S onsists of all thosediretions of reession ommon to every point s ∈ S, i.e., recS = {v : v + S ⊆ S}. Theasymptoti one as S is the reession one of the algebrai losure of S.16 The distintionbetween rec S and asS disappears when S is losed for any vetor topology T on L: the

15For Lemma 2, it su�es to assume that the set Yi ∩ (−B −
∑

i′: i′ 6=i
Yi′) be norm-bounded(for every bounded B). So Lemma 2 extends, to the ase of any (�nite) number of subsets of adual Banah spae L, the w∗-losedness result given in [23℄ for the sum of two sets. In the aseof a Banah spae, the equiontinuity ondition of [23℄ is the same as the above one for two sets,and the hyperompleteness assumption holds by the Krein-Smulian Theorem. The riterion of[20, Proposition 5℄ for the losed sum of two ones is similar: �Property (G)� holds if the onesare allied; and alliedness an be shown to imply the above boundedness ondition by using [19,3.2.5℄.

16This is the same as the losure of S for TSLC or TSV if the ore of S is nonempty: thisfollows from [12, 11A℄, given that cor S is the interior of S for TSLC (when S is onvex).



172 A. HORSLEY AND A. J. WROBELdiretions of reession are then the same at every s ∈ S, i.e.,
asS = recS =

⋂

α>0

1

α
(S − s) for eah s ∈ S.It follows that asS is T -losed and, also, that if 0 ∈ S then asS is the largest oneontained in S: see, e.g., [3, I.3.5℄, [6, p. 1909℄ or [12, (8.5)℄. Furthermore, if (sn) and (ǫn)are nets in S and R+ with ǫn → 0 and ǫnsn → v for T , then v ∈ asS: see, e.g., [11, 1.1℄or [12, 8C: Lemma ()℄.Corollary 3. The one asY := as(

∑

i Yi) is w∗-losed.Lemma 4. as(
∑

i Yi) =
∑

i asYi.Proof. Take any v ∈ as(
∑

i Yi); this means that nv ∈
∑

i Yi for eah n ∈ N (sine 0 ∈ Yi).So
v =

∑

i

yn
i

n
(7)for some yn

i ∈ Yi. By using the Boundedness Assumption as in the proof of Lemma 2,the sequene (yn
i /n) is shown to be bounded; so it an be assumed to onverge weakly*to some vi, for eah i.17 Sine 1/n → 0 (and yn

i /n → vi), vi ∈ asYi. And v =
∑

i vi bypassage to the limit in (7) as n → ∞. This shows that as(
∑

i Yi) ⊆
∑

i asYi; the reverseinlusion holds obviously.5. Norm-to-weak* ontinuity of trunated demand. The trunated onsumptionand prodution sets are de�ned as18
XTr

h := (XAt
h + {x : ‖x‖ ≤ 1}) ∩ Xh (8)

Y Tr
i := (Y At

i + {y : ‖y‖ ≤ 1}) ∩ Yi. (9)Sine XAt
h , Y At

i and the losed unit ball of L are all w∗-ompat, so are the sets XTr
hand Y Tr

i . Also, by onstrution, XAt
h and Y At

i are ontained in the norm-interiors of XTr
hrelative to Xh and of Y Tr

i relative to Yi. For ompleteness, the trunated supply anddemand orrespondenes are next spelt out. At p ∈ L∗ the pro�t of produer i is
ΠTr

i (p) := sup{〈p | y〉 : y ∈ Y Tr
i } (10)and his supply orrespondene (the set of optimal input-output bundles) is

Ŷ Tr
i (p) := {y ∈ Y Tr

i : 〈p | y〉 = ΠTr
i (p)}.Household h's inome and its budget set are (both at the maximum of its pro�t inome)

M̂Tr
h (p) := 〈p |xEn

h 〉 +
∑

i

ςhiΠ
Tr
i (p) (11)

B̂Tr
h (p) := {x ∈ XTr

h : 〈p |x〉 ≤ M̂Tr
h (p)}.

17If it does not onverge, replae it by a onvergent subnet (whih does exist, although aonvergent subsequene need not exist unless L′ is norm-separable).
18Our use of a single trunation, extending the tehnique of [7, pp. 87�88℄ to in�nite-dimensional ommodity spaes, simpli�es the arguments of [10℄ and [31℄, whih use a sequene(or a family) of trunations.



DEMAND CONTINUITY AND EQUILIBRIUM 173The household's demand is
X̂Tr

h (p) := {x ∈ B̂Tr
h (p) : ∀x′ ∈ B̂Tr

h (p) x′
4h x}and so the (trunated) exess demand orrespondene is

ÊTr(p) :=
∑

h

(X̂Tr
h (p) − xEn

h ) −
∑

i

Ŷ Tr
i (p).Note that ÊTr(p) an be empty at some p ∈ L∗ \ L′: see Example 9. However, ÊTr ise�etively de�ned on P ′, i.e., ÊTr(p) 6= ∅ for p ∈ P ′: this is part of Theorem 5 below.Reall that the polar one of asY is

(asY )◦ = {p ∈ L∗ : ∀y ∈ asY 〈p | y〉 ≤ 0}and denote for brevity
P ∗ := (asY )◦ \ {0},

P ′ := P ∗ ∩ L′ = ((asY )◦ ∩ L′) \ {0}.Comment : By de�nition, A◦ is the algebrai polar of a one A ⊂ L, i.e., A◦ onsistsof all the linear funtionals that are nonnegative on A. However, A◦ ⊂ L∗ if A has anonempty norm-interior (as is the ase with as Y here). Also, A◦ 6= {0} by a separationargument if: (i) A 6= L, (ii) A is onvex, and (iii) either corA 6= ∅ or A is TSLC-losed (orboth, as is the ase here).For larity, note the distintion between hemiontinuity (of a orrespondene) andsemiontinuity (of an order or a real-valued funtion). This is by now standard in math-ematial eonomis, but usage of these terms has varied, and in [25℄ �semiontinuity�means what we mean by hemiontinuity.Theorem 5. The trunated exess demand, p 7→ ÊTr(p), is a norm-to-weak* upper hemi-ontinuous orrespondene from P ′ into L, with nonempty, onvex and weakly* ompatvalues.Proof. Exept where other topologies are spei�ed, in this proof the spae L′ is topolo-gized by its norm ‖ ·‖′, and L by w∗. The real line R arries its usual topology. Sine Y Tr
iis w∗-ompat (and sine the norm topology of L′ is the topology of uniform onvergeneon w∗-ompat subsets of L), the duality form (y, p) 7→ 〈p | y〉 is (jointly) ontinuous on

Y Tr
i ×L′ (for ‖ · ‖′×w∗). An appliation of Berge's Maximum Theorem [4, p. 115℄ showsthat Ŷ Tr

i : P ′ ։ Y Tr
i is norm-to-w∗ u.h.. (with nonempty, onvex and ompat values),and that ΠTr

i : P ′ → R is norm-ontinuous.To prove that X̂Tr
h is norm-to-w∗ u.h.., note �rst that the budget orrespondenede�ned by
(p, M) 7→ Bh(p, M) := {x ∈ XTr

h : 〈p |x〉 ≤ M}for p ∈ L′ and M ∈ R is u.h.. (Sine XTr
h is ompat, this is equivalent to the losednessof the graph of Bh in L′ × R × XTr

h �see, e.g., [25, 7.1.16℄�and this holds beause theduality form is ontinuous on XTr
h × L′.)Next, note that the �strit� budget orrespondene de�ned by

BS
h(p, M) := {x ∈ XTr

h : 〈p |x〉 < M}



174 A. HORSLEY AND A. J. WROBELis w(L′, L)-to-TFin l.h.. What is more, it is w(L∗, L)-l.h.. on L∗ with any topologywhatsoever on XTr
h , sine it has w(L∗, L)-open setions (i.e., {(p, M) : x ∈ BS

h(p, M)} isan open set).It follows that Bh is w(L∗, L)-to-TFin l.h.. at every point (p, M) ∈ L∗ × R with
BS

h(p, M) 6= ∅. To see this, take any x′ ∈ BS
h(p, M); then, as ǫ → 0+, the sequene

xǫ := ǫx′+(1−ǫ)x onverges to x for TFin; and this shows that the TFin-losure ofBS
h(p, M)ontains Bh(p, M). Sine Bh(p, M) is w∗-losed, it equals the losure of BS

h(p, M) for anytopology between w∗ and TFin. To omplete the proof that Bh is l.h.. (w(L∗, L)-to-TFin,at every (p, M) with BS
h(p, M) 6= ∅), reall that the orrespondene whose values are thelosures of an l.h.. orrespondene is also l.h..: see, e.g., [25, 7.3.3℄.Sine M̂Tr

h (p) is a norm-ontinuous funtion of p ∈ L′ (beause ΠTr
i is), it follows thatthe omposition

p 7→ Bh(p, M̂Tr
h (p)) =: B̂Tr

h (p)is ‖ · ‖′-to-w∗ u.h.. on P ′. To prove that it is w(L∗, L)-to-TFin l.h.. on P ∗, use theAdequay Assumption to selet any xS
h ∈ Xh and yS

h ∈ cor asY with xS
h = xEn

h +yS
h. Notethat xS

h ∈ XAt
h ⊆ XTr

h and that
〈p |xS

h〉 < 〈p |xEn
h 〉 ≤ M̂Tr

h (p) (12)for every p ∈ P ∗; so xS
h ∈ BS

h(p, M̂Tr
h (p)) 6= ∅. Given the l.h.. result for Bh, it followsthat B̂Tr

h is w(L∗, L)-to-TFin l.h.. on P ∗. A fortiori , it is ‖ · ‖′-to-TFin l.h.. on P ′.The strit inequality of (12) is given in, e.g., [10, Proposition 2℄, but it is also provedhere for ompleteness: when A ⊂ L is a one and p ∈ A◦ \ {0}, hoose any v ∈ L with
〈p | v〉 6= 0. If yS ∈ cor A, then yS + ǫv ∈ A and yS − ǫv ∈ A for some ǫ > 0. Therefore
〈p | yS ± ǫv〉 ≤ 0, and so 〈p | yS〉 ≤ −ǫ |〈p | v〉| < 0, as required.Given the hemiontinuity properties of B̂Tr

h , a two-topology version of Berge's Max-imum Theorem [18, Corollary 2.6℄ shows that X̂Tr
h is ‖ · ‖′-to-w∗ u.h.. with nonemptyand ompat values. (In this appliation, the ation set is XTr

h , ordered by 4h and twietopologized by TFin and w∗, whilst the onstraint orrespondene is B̂Tr
h restrited to theparameter spae P ′, topologized by ‖ · ‖′.) It follows that ÊTr is also u.h.. (being thesum of ompat-valued u.h.. terms): see, e.g., [25, 7.3.15℄.6. Equilibrium existene by diret exess-demand approah. In this setion,we prove the existene of an equilibrium (with a prie system in L∗) by using demandontinuity and Florenzano's [10℄ suessful extension of the Debreu-Gale-Nikaido Lemma(quoted here in the Appendix), whih applies to a demand map de�ned just on the predualprie spae L′, provided that it is norm-to-weak* ontinuous (or even just TFin(L′)-to-weak* ontinuous). It therefore applies to the demand map derived from preferenemaximization: if the prie system belongs to L′, then the budget set is w∗-ompat onethe onsumption set has been trunated to make it bounded. So the demand derivedfrom w∗-u.s.. preferenes is de�ned e�etively on L′.19

19The literature on this topi also ontains several other extensions of the Debreu-Gale-Nikaido Lemma that do not apply to the demand map derived from the optimizing behaviour.This is beause those extensions impose one or both of the following onditions: (i) that the



DEMAND CONTINUITY AND EQUILIBRIUM 175The idea of working with a demand map de�ned on the intersetion of L′
+ with aweakly* ompat base of the one L∗

+ is ontained in the setup of Aliprantis and Brown[1, p. 195℄ beause their Density Condition holds for any Banah lattie L with a predual
L′. However, their analysis takes the demand map as a primitive onept for the mostpart, and they themselves point out [1, p. 204℄ that their Continuity Condition fails forthe derived demand (in Bewley's model). In other words, in ontrast to the norm-to-
w∗ ontinuity established here (Theorem 5), onsumer demand an be w(L′, L)-to-w∗disontinuous on P ′, as is also shown by Example 10 below. And this is beause�unlikethe norm topology we use�the weak topology of the prie spae is too weak for thepurpose: the budget orrespondene is not losed for w(L∗, L)×w(L, L′). Beause of thedisontinuity, Aliprantis and Brown [1, Example 4.8℄ resort to using �nite-dimensionalprie simplies in the ase of L = L∞. Their arguments are developed by Florenzano[10, Lemma 1 and Proof of Proposition 3℄, who states that derived demand is upperhemiontinuous for the �nite topology TFin(L′) on the prie spae (with w∗ on L).20 Shealso extends the Debreu-Gale-Nikaido Lemma in a ompatible way, i.e., with the �nitetopology on L′. This gives a foundation for the diret approah using the demand map.However, the extreme strength of the �nite topology�whih is stritly stronger thanevery vetor topology, unless dim L′ is �nite�weakens her ontinuity result, and keepsher analysis lose to the �nite-dimensional approximation approah.Definition 6. A ompetitive equilibrium onsists of a prie system, p⋆ ∈ L∗, and analloation, x⋆

h ∈ Xh and y⋆
i ∈ Yi for eah household h and produer i, that meet theonditions:1. ∑

h(x⋆
h − xEn

h ) =
∑

i y⋆
i .2. 〈p⋆ | y⋆

i 〉 = supy{〈p
⋆ | y〉 : y ∈ Yi} =: Πi(p

⋆).3. 〈p⋆ |x⋆
h〉 = 〈p⋆ |xEn

h +
∑

i ςhiy
⋆
i 〉 =: M̂h(p⋆).4. For every x ∈ Xh, if 〈p⋆ |x〉 ≤ 〈p⋆ |x⋆

h〉 then x 4h x⋆
h.One demand ontinuity has been established, the main tehnial di�ulty in using itfor a diret proof of equilibrium existene is that the duality form is not jointly ontinuousfor the two weak* topologies�viz., w(L∗, L) and w(L, L′)�that have to be put, for the�xed-point argument, on the prie set ∆∗ and on a onsumption set XTr (or a produtionset Y Tr). This is why even Florenzano's version of the Debreu-Gale-Nikaido Lemmaannot yield equilibrium existene without additional arguments. These are made simplerand more transparent by using a two-topology variant of Berge's Maximum Theorem thatapplies even to a non-losed onstraint orrespondene (the budget here). This is set outnext, with XTr

h abbreviated to XTr, et. (sine h is �xed here).domain of de�nition for the demand map be the norm-dual L∗ of the ommodity spae, and/or(ii) that the demand map be w(P, L)-to-w∗ ontinuous, where the prie spae P is either L∗ or
L′. Neither ondition is met by the derived demand: see Examples 9 and 10. With regard to thedemand's domain, a prie system that belongs to L∗ but not to L′ an make the (trunated)budget set w∗-nonompat�with the result that there may be no optimum for a onsumer with
w∗-u.s.. preferenes (Example 9).

20The proof in [10, p. 216℄ ontains a gap whih an be �lled by using the two-topologyversion of Berge's Maximum Theorem.



176 A. HORSLEY AND A. J. WROBELLemma 7. Assume that (p, x) is in the w(L∗, L) × w(L, L′)-losure of the graph gr X̂Trin P ∗ × XTr, and that x ∈ XAt. Then:1. 〈p |x〉 ≥ M̂Tr(p).2. x ∈ X̂Tr(p) if (and only if) 〈p |x〉 = M̂Tr(p).Proof. Sine x ∈ XAt, there is an x′ ∈ X with x′ ≻ x (by Nonsatiation). De�ne xǫ

:= ǫx′ +(1− ǫ)x. Then xǫ ∈ XTr for small enough ǫ > 0, sine the (norm) interior of XTrrelative to X ontains XAt by onstrution (8). Also, xǫ ≻ x by Preferene Convexity.By assumption, there is a net (pn, xn)n∈N in gr X̂Tr with pn → p for w(L∗, L) and
xn → x for w∗ := w(L, L′). By the weak* u.s. ontinuity of preferenes, xǫ ≻ xn for every
n far enough in the direted set N (i.e., from some n′ on). So

〈pn |xǫ〉 > M̂Tr(pn). (13)Furthermore, M̂Tr is an w(L∗, L)-l.s.. funtion on L∗, sine eah ΠTr
i is by de�nition thesupremum (10) of a family of w(L∗, L)-ontinuous funtions. Therefore (13) implies, bypassage to the limit in n, that

〈p |xǫ〉 ≥ M̂Tr(p).By passage to the limit as ǫ → 0+, this gives that 〈p |x〉 ≥ M̂Tr(p), as is required forPart 1.Part 2 follows diretly from an appliation of another two-topology version of Berge'sMaximum Theorem [18, Theorem 2.1℄, given that B̂Tr
h is w(L∗, L)-to-TFin l.h.. on P ∗(as is shown in the proof of Theorem 5). In this ase�as distint from the Proof ofTheorem 5�the parameter spae is P ∗ topologized by w(L∗, L), and this is taken as thedomain of the onstraint orrespondene B̂Tr

h . The ation set is again XTr, ordered by
4h and topologized by TFin and w∗ as before.Theorem 8. On the assumptions of Setion 2, a ompetitive equilibrium with a priesystem p⋆ ∈ L∗ exists.Proof. Fix any yS ∈ cor asY = intL,‖·‖ asY , and de�ne

∆∗ := {p ∈ (asY )◦ : 〈p | yS〉 = −1}. (14)This is a onvex and w(L∗, L)-ompat base for the one (asY )◦: see, e.g., [19, 3.8.6℄ or[10, Proposition 2℄. Set
∆′ := ∆∗ ∩ L′.By Theorem 5, ÊTr is a ‖ · ‖′-to-w∗ u.h.. orrespondene from ∆′ into the w∗-ompatset ∑

h(XTr
h − xEn

h ) −
∑

i Y Tr
i . For every p ∈ ∆′, the set ÊTr(p) is w∗-losed, onvexand nonempty; also, 〈p | e〉 ≤ 0 for every e ∈ ÊTr(p). Furthermore, asY is w∗-losed byCorollary 3. Therefore, an appliation of Florenzano's [10, Lemma 1℄ extension of theDebreu-Gale-Nikaido Lemma21 shows that, on some direted set N, there exist two nets,

(pn)n∈N in ∆′ and (en)n∈N with en ∈ ÊTr(pn), that onverge weakly* to some p⋆ ∈ ∆∗and v⋆ ∈ as Y , i.e., pn → p⋆ for w(L∗, L) and en → v⋆ for w(L, L′). (Note that p⋆ need
21Sine the extension applies to an exess demand that is merely TFin(L′)-to-w∗ u.h.., itapplies a fortiori to a demand that is norm-to-weak* u.h..



DEMAND CONTINUITY AND EQUILIBRIUM 177not belong to L′, so at this stage it is not lear that ÊTr(p⋆) 6= ∅: even this part of theequilibrium result is yet to be established.)By Lemma 4,
v⋆ =

∑

i

v⋆
i (15)for some v⋆

i ∈ asYi. Also, for every n, the exess demand at pn an be deomposed intothe sum
en =

∑

h

(xn

h − xEn
h ) −

∑

i

yn

i (16)for some xn

h ∈ X̂Tr
h (pn) and yn

i ∈ Ŷ Tr
h (pn). Sine XTr

h and Y Tr
i are w∗-ompat, it anbe assumed (by passage to subnets if neessary) that the nets (xn

h) and (yn
i ) onvergeweakly* to some x⋆

h ∈ XTr
h and y⋆

i ∈ Y Tr
i with

∑

i

v⋆
i =

∑

h

(x⋆
h − xEn

h ) −
∑

i

y⋆
i (17)from (16) and (15). It remains to show that p⋆ supports the alloation (y⋆

i + v⋆
i )i∈Pr and

(x⋆
h)h∈Ho as an equilibrium.Sine x⋆

h ∈ XAt
h by (17), Part 1 of Lemma 7 gives that

〈p⋆ |x⋆
h〉 ≥ M̂Tr

h (p⋆)and summation over h gives, with the de�nitions (11) and (10), that
∑

h

〈p⋆ |x⋆
h − xEn

h 〉 ≥
∑

i

ΠTr
i (p⋆) ≥

∑

i

〈p⋆ | y⋆
i 〉. (18)On the other hand, 〈p⋆ | v⋆

i 〉 ≤ 0 for eah i beause v⋆
i ∈ asYi and p⋆ ∈ (asY )◦ =

(
∑

i asYi)
◦ =

⋂

i(asYi)
◦. So

∑

i

〈p⋆ | y⋆
i 〉 ≥

∑

i

〈p⋆ | v⋆
i + y⋆

i 〉 =
∑

h

〈p⋆ |x⋆
h − xEn

h 〉 (19)where the equality follows from (17). Therefore (18) and (19) atually hold as equalities,and so do all the inequalities whih have added up to (18) and (19). That is, for eah hand i,
〈p⋆ |x⋆

h〉 = M̂Tr
h (p⋆), (20)

ΠTr
i (p⋆) = 〈p⋆ | y⋆

i 〉, (21)
〈p⋆ | v⋆

i 〉 = 0. (22)What (21) means is that 〈p⋆ | y⋆
i 〉 ≥ 〈p⋆ | y〉 for every y ∈ Y Tr

i . To show that this holdsalso for every y ∈ Yi, introdue yǫ := ǫy+(1− ǫ)y⋆
i ; then yǫ ∈ Y Tr

i for small enough ǫ > 0(sine y⋆
i ∈ Y At

i , whih lies in the norm-interior of Y Tr
i relative to Yi, by (9)). Therefore

〈p⋆ | y⋆
i 〉 ≥ 〈p⋆ | yǫ〉; substitute for yǫ, anel out the terms with the oe�ient 1 − ǫ anddivide by ǫ. This shows that y⋆

i maximizes pro�t (at p⋆, on Yi); and so does y⋆
i + v⋆

i inview of (22).It remains only to verify the preferene maximization ondition of De�nition 6. Given(20), Part 2 of Lemma 7 shows that x⋆
h ∈ X̂Tr

h (p⋆), i.e., that for x ∈ XTr
h

〈p⋆ |x〉 ≤ 〈p⋆ |x⋆
h〉 ⇒ x 4h x⋆

h.



178 A. HORSLEY AND A. J. WROBELTo show that this holds also for every x ∈ Xh, introdue xǫ := ǫx + (1 − ǫ)x⋆
h. Supposethat x ≻h x⋆

h; then also xǫ ≻h x⋆
h for ǫ ∈ (0, 1] by Preferene Convexity. Also, xǫ ∈ XTr

hfor small enough ǫ > 0 (sine x⋆
h ∈ XAt

h , whih lies in the norm-interior of XTr
h relativeto Xh, by (8)). So 〈p⋆ |xǫ〉 > 〈p⋆ |x⋆

h〉; substitute for xǫ, anel out the terms with theoe�ient 1 − ǫ and divide by ǫ to obtain that 〈p⋆ |x〉 > 〈p⋆ |x⋆
h〉, as required.Comments :

• As has been pointed out, the duality form is not jointly ontinuous for the two weak*topologies�viz., w(L∗, L) and w(L, L′)�for whih pn and (yn

i , xn

h) onverge. (It isneither u.s.. nor l.s..) This is why, although yn

i maximizes pro�t on Y Tr
i at pn, thesame property for their limits y⋆

i and p⋆ does not follow by ontinuity. Similarly(20) does not follow diretly from the orresponding property of (pn, xn

h); anotherobstale here is that M̂Tr
h is only l.s.. for the weak* topology of L∗. (For the normof L′, it is ontinuous.) In other words, the topologies that must be put on the prieset and the onsumption set for the �xed-point argument are too weak to make thebudget onstraint losed.

• The equilibrium prie system p⋆ ∈ ∆∗ is obtained in the proof of Theorem 8 as thelimit of a net of prie systems (pn) in ∆′. Suh an approah is impliitly based onthe weak* denseness of ∆′ in ∆∗, whih indeed follows from the w∗-losedness of
Y and hene of asY . In preise terms, if yS ∈ A ⊂ L, A is a w∗-losed one (withthe algebrai polar A◦), and

∆∗ = {p ∈ A◦ ∩ L∗ : 〈p | yS〉 = −1} and ∆′ = ∆∗ ∩ L′then ∆′ is w(L∗, L)-dense in ∆∗.22 This exludes, e.g., the ase of a Y equal to thehalf-spae with a normal vetor p ∈ L∗ \ L′ (so that ∆′ = ∅).Proof. It is shown �rst that A◦ ∩ L′ is dense in A◦ ∩ L∗. Suppose it is not. Thena point p0 ∈ A◦ ∩ L∗ an be stritly separated from A◦ ∩ L′ by a z0 ∈ L, i.e.,
〈p0 | z0〉 > sup{〈p | z0〉 : p ∈ A◦ ∩ L′}: see, e.g., [12, 11.F: Corollary℄ or [30, II.9.2℄.Sine A◦ ∩ L′ is a one, it follows that the supremum equals zero, and so

〈p0 | z0〉 > 0 ≥ 〈p | z0〉 for every p ∈ A◦ ∩ L′. (23)It only remains to dedue from the right-hand inequality that z0 ∈ A: given that
p0 ∈ A◦, this will ontradit the left-hand inequality. So suppose that z0 /∈ A.Sine A is w∗-losed, another separation argument shows that there exist a p ∈ L′with 〈p | z0〉 > sup{〈p | y〉 : y ∈ A}. Sine A is a one, this implies that 〈p | z0〉 >

0 ≥ 〈p | y〉 for eah y ∈ A, and so p ∈ A◦ ∩ L′. This ontradits the right-handinequality of (23), thus ompleting the proof that A◦ ∩ L′ is w(L∗, L)-dense in
A◦ ∩ L∗. Therefore, for eah p ∈ ∆∗ there exists a net (pn)n∈N in ∆′ with pn → pfor w(L∗, L). In partiular 〈pn | yS〉 → 〈p | yS〉 = −1, and so (1/〈pn | yS〉)pn is a netin ∆′ that onverges weakly* to p.

22The same holds with L∗ replaed by the algebrai dual of L, though this adds nothingwhen A◦ ⊂ L∗ (as is the ase for A = as Y here).



DEMAND CONTINUITY AND EQUILIBRIUM 1797. Counterexamples. The following are ounterexamples to weak-to-weak* ontinuityof onsumer demand, and to its very existene on ∆∗ \ ∆′.23 In both examples, there isone di�erentiated good in addition to a homogeneous numeraire ommodity, and (p, 1)and (x, m) play the roles of the p and x of the �abstrat� model. So the ommodityspae is L = L∞[0, T ]× R with L′ = L1[0, T ]× R. The onsumer's inome omes whollyfrom an initial endowment mEn of the numeraire. The onsumption set is taken to be
L∞

+ × R+, but it an be trunated to a w∗-ompat without hanging the results. Theutility funtion has the additively separable form with a onstant marginal utility of thenumeraire, i.e.,
U(x, m) := m +

∫ T

0

u(x(t)) dtfor x ∈ L∞
+ [0, T ] and m ∈ R+, where u (known as the feliity funtion) is inreasing anddi�erentiable on R+, with u(0) = 0. For simpliity, to ensure that onsumer demand isuniquely determined (i.e., is a single-valued map), assume also that u is stritly onave,i.e., that its derivative du/dx is a (stritly) dereasing, ontinuous funtion on R+. Atsu�iently high inome levels, this form of utility results in a ross-prie independentdemand for the di�erentiated good, with no inome e�et on it. Given a prie funtion

p ∈ L1, the demand x̂(p)(t) an be determined from the marginal ondition
du

dx
(x̂(t)) = p(t) (24)at eah t ∈ [0, T ], with

m̂ = mEn −

∫ T

0

p(t)x̂(t) dt (25)as the demand for the numeraire.Our �rst example shows that nonexistene of a onsumer optimum an result from thepresene of a nonzero purely �nitely additive term in the Hewitt-Yosida deomposition ofa p ∈ L∞∗[0, T ]. Reall that every suh p an be identi�ed with an additive set funtion(vanishing on Lebesgue-null sets) whih has the deomposition p = pCA + pFA, where
pCA is the ountably additive part (identi�ed with its density by the Radon-NikodymTheorem), whilst pFA is the purely �nitely additive (a.k.a. �singular�) part: see [5℄ or [32℄for details.Example 9 (Nonexistene of onsumer optimum when pFA 6= 0). Fix any number x >

0, denote p := (du/dx)(x) for brevity, and onsider the prie system (p, 1) with a onstant
pCA(t) := p for every t and with any nonzero pFA ≥ 0 that is onentrated on [t, T ] foreah t < T . Assume that mEn > T xp. If (x, m) is a onsumer optimum at p, then it isalso a onsumer optimum at pCA: see [15, Lemma 5℄. At pCA = p1[0,T ], the demand is

x̂(pCA)(t) = xfor (almost) every t, with
m̂(pCA) = mEn − T xp.

23That is why the equilibrium existene proof uses a net of approximate equilibrium pries
pn ∈ ∆′.



180 A. HORSLEY AND A. J. WROBELAt p, however, this bundle is not in the budget set beause it osts
mEn − T xp + x

∫ T

0

pCA(t) dt + xpFA[0, T ] = mEn + x‖pFA‖
∗
∞ > mEn.This shows that there is no onsumer optimum at p. Finally, note that, without hangingthe demand at p or pCA, the onsumption set an be made w∗-ompat by trunating itto

{(x, m) ≥ 0 : x ≤ x + 1[0,T ], m ≤ mEn + 1}.Comment : A utility level arbitrarily lose to that of (x̂, m̂)(pCA), in Example 9, anbe attained within the budget onstraint at p: take a sequene tn ր T , and xn := x
′1[0,tn]with mn := mEn − tnx

′
p
′. As n → ∞,

U(xn, mn) ր mEn − T x
′
p
′ + Tu(x′) = U(x̂(pCA), m̂(pCA)).But the point is that this utility limit, the supremum of U on the budget set, is notattained. Sine U is Makey-ontinuous and hene w∗-u.s..�see, e.g., [5, Appendix II℄or [13, Setion 3℄�this shows that the budget set is not w∗-ompat. The example anbe interpreted in the ontext of onsumption over time: the onsumer should �swith o��just before the extremely onentrated harge pFA around T�and there is no best timeto swith o�: the loser to T , the better.Our seond example shows that onsumer demand an be w(L1, L∞)-to-w(L∞, L1)disontinuous.Example 10 (Weak-to-weak* disontinuity of demand). Fix any onstant x

′ > 0, anddenote p
′ := (du/dx)(x′) for brevity. There is a number δ > 0 with p := p

′ + δ <

(du/dx)(0) and p := p
′ − δ > limx→∞(du/dx)(x). One an assume that δ = 1. Use theRademaher funtion sequene

rn(t) := sgn sin(2nπt)to de�ne a sequene of prie systems (pn, 1) ∈ L1 × R by
pn(t) = p

′ + rn(t)for every t ∈ [0, T ] and n ∈ N. As n → ∞, the pn onverges for w(L1, L∞) to the onstant
p
′ (i.e., rn → 0 weakly). As in Example 9, mEn is assumed to be high enough for thedemand, x̂(pn) and m̂(pn), to be determined by (24)�(25). Then x̂(pn) onverges for

w(L∞, L1) as n → ∞ to the onstant
x
′′ :=

x + x

2where
x :=

(

du

dx

)−1

(p) :=

(

du

dx

)−1

(p′ + 1),

x :=

(

du

dx

)−1

(p) :=

(

du

dx

)−1

(p′ − 1).In general x
′′ 6= x

′ (unless du/dx, the demand urve, is linear in the relevant region). Forexample, if du/dx is stritly onvex (and dereasing), then x
′′ > x

′. In suh a ase, the



DEMAND CONTINUITY AND EQUILIBRIUM 181demand for the di�erentiated good is weak-to-weak* disontinuous, sine x̂(p′) = x
′ but

x̂(pn) → x
′′ (or, put formally, x̂(p′1[0,T ]) = x

′1[0,T ] but x̂(pn) → x
′′1[0,T ] as n → ∞).Comments :

• If x
′′ = x

′ in Example 10, then it is the demand for the numeraire that is dison-tinuous. To see this, note �rst that in either ase (whether x
′′ equals x

′ or not) thevalue of the limit bundle x
′′ at the limit prie p

′ is greater than the value of x̂n at
pn, whih is atually independent of n. That is,

p
′
x
′′ =

(p + p)(x + x)

4
>

px + px

2
=

1

T

∫ T

0

pn(t)x̂(pn)(t) dt. (26)This means that the limit bundle (x′′, mEn − T (px + px)/2) is outside the budgetset at the limit prie (p′, 1). (By Part 2 of Lemma 7, this must be the ase if thedemand map is to be disontinuous along a prie sequene for whih the demandsonverge.) When x
′ = x

′′, substitution for x
′′ in (26) gives that

mEn − Tp
′
x
′ < mEn −

T

2
(px + px),i.e., that the demand for the numeraire is less at p

′ than at pn (at whih it is thesame for eah n). So it is disontinuous.
• When demand is multi-valued (at some pries), its upper hemiontinuity estab-lished in Theorem 5 does not have the same impliations as the ordinary ontinuity(of a single-valued map): for example, it is easy to exhibit a onvergent sequene ofprie systems for whih the demands do not onverge. Like Examples 9 and 10, thefollowing example uses a u independent of t, but additionally the prie systems andthe demand bundles are onstant on [0, T ]: essentially there are just two ommodi-ties. Take du/dx to be (stritly) dereasing on R+ exept for being onstant on aninterval [x, x] with x < x. Take any two sequenes x

n ր x with x
n < x and x

n ց xwith x
n > x, and set pn := (du/dx)(xn) for odd n and pn := (du/dx)(xn) for even

n. Then pn (a sequene of onstants) onverges to p := (du/dx)(x) = (du/dx)(x),but the orresponding sequene of demands diverges (sine it alternates between
x
n and x

n). This does not ontradit Theorem 5, of ourse: at the limit p demandequals [x, x], and it is a u.h.. orrespondene.Appendix A. Florenzano's extension of the Debreu-Gale-Nikaido LemmaLemma 11. Let L be a linear spae arrying a vetor topology T and a loally onvextopology W that is weaker than T . Assume that A ⊂ L is a onvex one with a point ySin its T -interior, so that the polar one A◦�whih is a nonempty, proper subset of the
T -ontinuous dual spae (L, T )∗�has a w((L, T )∗, L)-ompat base

∆T := {p ∈ A◦ : 〈p | yS〉 = −1}.Assume also that A is W-losed, so that the onvex set
∆W := ∆T ∩ (L,W)∗



182 A. HORSLEY AND A. J. WROBELis w((L, T )∗, L)-dense in ∆T .24 Furthermore, assume that E is a TFin((L,W)∗)-to-Wupper hemiontinuous orrespondene from ∆W into a W-ompat subset of L, withnonempty, onvex and W-losed values. If also 〈p | e〉 ≤ 0 for every e ∈ E(p) and p ∈ ∆W ,then ∆T × A intersets the w((L, T )∗, L) ×W-losure, in ∆T × L, of the graph of E.Comment : In the proof of Theorem 8, Lemma 11 is applied with A = asY , W equalto w∗ = w(L, L′) and T given by ‖ · ‖, so that ∆T = ∆∗ ⊂ L∗ and ∆W = ∆′ ⊂ L′.
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