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Abstract. We prove that Brownian motion on an abstract Wiener space B generates a locally

equicontinuous semigroup on Cb(B) equipped with the Tt-topology introduced by L. Le Cam.

Hence we obtain a “Laplace operator” as its infinitesimal generator. Using this Laplacian, we

discuss Poisson’s equation and heat equation, and study its properties, especially the difference

from the Gross Laplacian.

1. Introduction. The problem to formulate the calculus on infinite dimensional spaces
has attracted many mathematicians over one century. Even if we restrict our attention
to Laplace operators, we can find many researches. In earlier times, many studied the
theory of mean values on infinite dimensional spaces instead of Lebesgue measures. In this
context, P. Lévy constructed his Laplacian, the so called Lévy Laplacian. This is different
from the one defined by V. Volterra (see [11, 7] for instance). Later, L. Gross formulated
his Laplacian in [2], the so called Gross Laplacian. He defined it as the trace of the second
Fréchet derivative. His Laplacian is a direct extension of that of finite dimensional spaces.
If we regard the Gaussian measure as the background measure, the Dirichlet form and
Laplace-Beltrami operator are defined successfully (see e.g. [10] for details).

In this paper, we define a Laplace operator on abstract Wiener spaces via semigroups.
As is mentioned by Gross ([2, 3]), one natural way to define a Laplace operator is to set

1
2

∆f = lim
t↓0

Pt ∗ f − f
t

on some function space, where Pt is the Wiener measure with variance parameter t.
When X = Rn, this process is successfully done on L2(Rn). However, as is well known,

the Lebesgue measure does not exist unless the spaceX is locally compact, which is almost
equivalent to assuming X ⊂ Rn. Hence, the L2 wonderland is not available when X is
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infinite dimensional. This problem leaves us a fundamental question, “On which function
space should we calculate?”

Our choice in this paper is (Cb(X), Tt), the space of bounded continuous functions
equipped with the topology Tt introduced by L. Le Cam [9]. Needless to say, the space
Cb(X) exists on any topological space, and the continuity is prescribed by that on each
compact sets in many cases (in the case thatX is a k-space). Furthermore, the Tt-topology
is described by the measures on X, and measures have tightness in most cases (such as
Polish spaces), this enables us, with the help of Prohorov’s theorem, to calculate as if X
were locally compact or σ-compact.

In this function space we prove that the semigroup mentioned before (heat semi-
group) is strongly continuous and locally equicontinuous, and define our Laplacian as its
generator. Our Laplacian appears to be similar to, but different from the Gross Laplacian.

We follow the terminology of [1, 2]. In this paper, all positive and signed measures are
assumed to be bounded. We will denote by M(X) the space of signed Borel measures.
A positive Borel measure µ is said to be tight or compact regular if

µ(C) = sup{µ(K) : K compact,K ⊂ C}
for any Borel set C. A signed Borel measure µ is said to be tight if its total variation
measure |µ| is tight. The total variation norm is defined by ‖µ‖ = |µ|(X). A subset
M ⊂ M(X) is said to be uniformly tight if it is bounded in the norm and there exist
compact sets {Kn} satisfying

|µ|(X \Kn) <
1
2n

for all µ ∈M and n ∈ N.
We denote by τw the weak∗ topology σ(M(X), Cb(X)) on M(X). A topological space

X is called a Radon space if every signed Borel measure on X is tight. X is said to be
a Prohorov space if any relatively compact subset in τw is uniformly tight. A Prohorov
space is a Radon space. It is well known that any Polish metric space is a Prohorov space.
X is called a k-space if a set is closed whenever its intersection with each compact set is
closed. Any metric or locally compact Hausdorff space is a k-space.

2. The Tt-topology. In this section we will be concerned with the Tt-topology on
Cb(X). This topology was first introduced by L. Le Cam [9].

Definition 2.1. Let {Kn} denote an increasing sequence of compact sets in X. For each
{Kn}, let

M{Kn} = {µ ∈M(X) : ‖µ‖ ≤ 1, |µ|(X \Kn) ≤ 1/2n}
and set a seminorm | · |{Kn} on Cb(X) by

|f |{Kn} = sup{|〈f, µ〉| : µ ∈M{Kn}},
where 〈f, µ〉 denotes the integration. Tt on Cb(X) is the topology generated by the col-
lection of these seminorms.

In other words, Tt is the topology of uniform convergence on uniformly tight measures.
Let TK denote the topology of uniform convergence on compact sets, and let Tu denote
that of uniform convergence on X, then TK ≤ Tt ≤ Tu. Assume M ⊂ Cb(X) is bounded
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in the norm, then Tt and TK coincide on M . It is known that if X is a k-space, then
(Cb(X), Tt) is complete. If X is a Radon space, then the dual of (Cb(X), Tt) is M(X).
If X is a Prohorov space, then Tt coincides with the Mackey topology τ (Cb(X),M(X)).
See [1, 9] for details.

Compared with the norm topology Tu, Tt might seem unnatural. However, the dual
of (Cb(X), Tt) is measures, while the dual of (Cb(X), Tu) is finitely additive measures.
Furthermore, (Cb(X), Tt) is something like a C∗-algebra, though it is not a Banach space,
in the sense that the pointwise product is continuous (Theorem2.3). To prove this, we
first prove the following lemma.

Lemma 2.2. | · |{Kn} is equivalent with the seminorm

|f |[Kn] =
∞∑
n=1

1
2n
|f |Kn ,

where we set |f |Kn
= supx∈Kn

|f(x)|.

Proof. For any µ ∈M{Kn} and f ∈ Cb(X), we have∣∣∣∣∫
X

f(x)dµ(x)
∣∣∣∣ ≤ ∫

K1

|f(x)|dµ(x) +
∫
K2\K1

|f(x)|dµ(x)

+ · · ·+
∫
Kn\Kn−1

|f(x)|dµ(x) +
∫
X\Kn

|f(x)|dµ(x)

≤
n∑

m=1

1
2m−1

sup
x∈Km

|f(x)|+ 1
2n
‖f‖

for all n ∈ N. Hence we obtain |f |{Kn} ≤ 2|f |[Kn].
Now we prove the converse inequality. Given f ∈ Cb(X), we can find a sequence {xn}

such that xn ∈ Kn and supx∈Kn
|f(x)| = |f(xn)|. Set

µ =
∞∑
n=1

1
2n
δxn

,

then µ ∈M{Kn}. Hence we obtain |f |{Kn} ≥ |f |[Kn].

Theorem 2.3. The pointwise product on Cb(X) is continuous in the Tt-topology.

Proof. Let {Kn} be given. Set K ′n = K3n, then

|f |K3n+k
≤ |f |K′n+1

≤ 2n|f |[K′n],

where k = 0, 1, 2. The same holds for g, hence we obtain

|fg|[Kn] ≤
∞∑
n=1

2∑
k=0

1
23n+k

|fg|K3n+k
≤
∞∑
n=1

2∑
k=0

1
2n+k

|f |[K′n]|g|[K′n] ≤ |f |[K′n]|g|[K′n],

which shows the continuity.

3. Laplace operators on abstract Wiener spaces

3.1. Definition of Laplacian. Let (H,B, i) be an abstract Wiener space [4]; H is a
real separable Hilbert space, B is the completion of H with respect to some measurable
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norm ‖ · ‖ (hence B is a real separable Banach space), i : H → B is the natural injection.
The measure Pt on B is the Wiener measure on B with variance parameter t > 0. We
set P0 = δ0, the delta measure in origin.

Let pt denote the operator on Cb(B) defined by

(ptf)(x) = (Pt ∗ f)(x) =
∫
B

f(x− y)dPt(y).

Obviously p0 = I, ptps = pt+s. This is the semigroup generated by the Brownian motion
on B.

It is known that {pt}t≥0 form a strongly continuous semigroup on the Banach space
of bounded uniformly continuous functions (see [2, Proposition 6]). However, this space
is small for infinite dimensional analysis. In this section, we prove that {pt}t≥0 form
a strongly continuous locally equicontinuous semigroup on (Cb(B), Tt). As a result, we
obtain the generator, denoted by 1

2∆, which is a densely defined closed operator on
(Cb(B), Tt).

Proposition 3.1. For all s > 0, {pt}0≤t≤s are equicontinuous linear operators.

Proof. Fix ε > 0. Since a real separable Banach space B is a Radon space, we have Ps is
tight. Hence there exists a compact set K such that

Ps(B \K) < ε.

Set K ′ = {tx : x ∈ K, t ∈ [0, 1]}, then K ′ is a compact set with rK ′ ⊂ K ′ for all
0 ≤ r ≤ 1. By the equation pts(E) = pt(s−1/2E) (equation (3) in [2]), we have

Pt(K ′) ≥ Pt(
√
t/sK ′) = Ps(K ′) ≥ Ps(K) ≥ 1− ε.

Therefore, the measures {Pt : 0 ≤ t ≤ s} are uniformly tight. Since

〈ptf, µ〉 = 〈Pt ∗ f, µ〉 = 〈f, Pt ∗ µ〉

for any µ ∈M(B) and f ∈ Cb(B), it follows that

|ptf |{Kn} ≤ |f |{K′n}
for some {K ′n} by the following lemma.

Lemma 3.2. Let M1,M2 ⊂M(B) be uniformly tight, then the set

{µ1 ∗ µ2 : µ1 ∈M1, µ2 ∈M2}

is uniformly tight.

Proof. For any ε > 0, there exist compact sets K1,K2 such that |µ1|(B \K1) < ε for all
µ1 ∈M1 and |µ2|(B \K2) < ε for all µ2 ∈M2. Set

K3 = {x1 + x2 : x1 ∈ K1, x2 ∈ K2}.

K3 is a compact set satisfying

(µ1 ∗ µ2)(B \K3) ≤ (µ1 × µ2) ((B \K1)×B)

+ (µ1 × µ2) (B × (B \K2))

≤ (‖µ1‖+ ‖µ2‖)ε,
where µ1 × µ2 is the direct product.
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It remains to prove that the map t 7→ ptf is strongly continuous.

Lemma 3.3. Fix f ∈ Cb(B), s > 0, and a compact set K, then for any ε > 0, there exists
δ > 0 such that: x, y ∈ K and ‖x− y‖ < δ ⇒ |ptf(x)− ptf(y)| < ε for any 0 ≤ t ≤ s.

Proof. Since {Pt}0≤t≤s is uniformly tight, there exists a compact set K ′ with the property
that

Pt(K ′) > 1− ε

4‖f‖
for all 0 ≤ t ≤ s. Set

K ′′ = {x+ x′ : x ∈ K,x′ ∈ K ′}.

As K ′′ is compact, we can choose δ > 0 so that x, y ∈ K ′′ and ‖x − y‖ < δ ⇒ |f(x) −
f(y)| < ε/2.

Now we obtain

|ptf(x)− ptf(y)| ≤
∫
|f(x− z)− f(y − z)|dPt(z)

=
∫
K′′
|f(x− z)− f(y − z)|dPt(z)

+
∫

(K′′)c

|f(x− z)− f(y − z)|dPt(z)

<
ε

2
+ 2‖f‖ ε

4‖f‖
= ε.

Lemma 3.4. For any ε > 0 and δ > 0, there exists t0 > 0 such that ;

Pt(B0(δ)) > 1− ε

for all 0 ≤ t ≤ t0, where B0(δ) denotes the open ball {x : ‖x− 0‖ < r}, and the overline
stands for the closure.

Proof. This follows immediately from the equation (3) in [2] and the fact that any com-
pact set is bounded.

Proposition 3.5. For any f ∈ Cb(B), the map t 7→ ptf is continuous in Tt-topology.

Proof. Since {ptf}t≥0 is uniformly bounded, we only need to show the continuity in the
topology TK . Fix ε > 0 and t0 > 0. Let K ′ be a compact set satisfying

Pt(K ′) > 1− ε

for all 0 ≤ t ≤ t0, and set

K ′′ = {x+ x′ : x ∈ K,x′ ∈ K ′}.

By Lemma 3.3, there exists δ > 0 such that x, y ∈ K ′′ and ‖x − y‖ < δ ⇒ |ptf(x) −
ptf(y)| < ε.

By Lemma 3.4, we have, for 0 ≤ s < t ≤ t0 with s− t sufficiently small,

Ps−t(K ′′ ∩B0(δ)) > 1− ε.
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Under the conditions stated above, for all x ∈ K, we have

|psf(x)− ptf(x)| ≤
∫
B

| (ptf(x− y)− ptf(x)) |dPs−t(y)

≤
∫
K′′∩B0(δ)

|ptf(x− y)− ptf(x)|dPs−t(y)

+
∫
(K′′∩B0(δ))c

|ptf(x− y)− ptf(x)|dPs−t(y)

≤ ε+ 2‖f‖ε,
which shows the continuity.

Hence, by the Hille-Yosida theorem, we obtain the following theorem.

Theorem 3.6. Let us denote by 1
2∆ the infinitesimal generator of {pt}. This is a densely

defined closed operator on (Cb(B), Tt).

3.2. Properties of Laplacian. Our Laplacian is an extension of the usual finite di-
mensional Laplacian.

Proposition 3.7. Let e1, · · · , en ∈ B∗ be orthonormal as elements of H∗, and let gn :
Rn → R be C2

b functions, then g(x) = gn(pn(x)) ∈ D(∆) and ∆g(x) = ∆gn(pn(x)),
where pn(x) = (〈e1, x〉, · · · , 〈en, x〉).

Proof. Since
(Pt ∗ g)(x) = (Pnt ∗ gn)(pn(x)),

where Pnt is the Gaussian measure on Rn with variance t,

lim
t→0

(Pt ∗ g)(x)− g(x)
t

=
1
2

∆gn(pn(x)) in Tu.

Even though ptf is defined by “global” calculation, this Laplacian has “locality” in
the following sense.

Proposition 3.8. Let f ∈ D(∆), then supp∆f ⊂ suppf .

Proof. It suffices to show ∆f(x) = 0 for x /∈ suppf . Since there exists δ > 0 such that
f = 0 on Bx(δ), by [2, Remark 2.3.],

ptf(x) =
∫
Bx(δ)c

f(x− y)dPt(y) ≤ ‖f‖o(t).

Hence (ptf(x)− f(x)) /t→ 0 as t→ 0.

Remark 3.9. We used the fact f is bounded, which is, in a way, global information.

3.3. Potentials. Now we will study the Poisson’s equation
1
2

∆u = −f,

for given f ∈ Cb(B). (Problems such as the Dirichlet problem will be studied in [6])
Following Gross, we assume suppf has the following property ([2, Remark 3.5]): for some
e1, e2, e3 ∈ B∗ which are orthonormal as elements of H∗, each ej (j = 1, 2, 3) is bounded
on suppf , that is, |〈ej , x〉| ≤ ∃M for all x ∈ suppf . Note that we have not assumed that
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suppf is bounded (which often means f = 0 in infinite dimensional spaces). Of course,
the solution is not unique (add constant).

Theorem 3.10. The Poisson’s equation has a solution under the condition stated above.

Proof. Set us ∈ Cb(B) by

us =
∫ s

0

ptfdt,

for s > 0. Obviously, us ∈ D(∆) and
1
2

∆us = psf − f.

Furthermore, by the assumption on suppf , it follows that

‖pT f‖ ≤ t−3/2C

for some C > 0, hence pT f → 0 and uT → u uniformly as T → ∞. Since ∆ is closed, u
is a solution.

Remark 3.11. This theorem shows our Laplacian is different form the Gross Laplacian,
the trace of the second Fréchet derivative. Gross [2, Theorem 2] showed that there exists
a bounded uniformly continuous function f on B with bounded support which is zero in
the neighborhood of the origin and such that the second Fréchet derivative of u, defined
in the same way as above, is not trace class at the origin. This shows that trace class is
too strict a condition to deal with potentials. As Gross mentioned [2, Remark 4.4], there
is some underlying summability method in this generator.

Remark 3.12. Here we used the generator defined on (Cb(B), Tt) as Laplacian. The same
proof is possible for the generator defined on the Banach space of bounded uniformly
continuous functions.

Remark 3.13. The regularity of the potential is a difficult problem. The potential is
something like C1 [2, Lemma 2.1], but it is not true that the potential is something like
C2 in general, because it is not true even in the case of R2.

3.4. Heat equations. Since we defined the Laplacian as the generator of the heat
semigroup, it is natural to think that u(t, x) = ptf(x) is the solution of the following
equation (initial value problem of heat equation):

∂

∂t
u(t, x) =

1
2

∆u(t, x),

u(0, x) = f(x).

However, unlike in finite dimensional cases, it does not directly follow that ptf ∈ D(∆).
This is because ∆Pt is not a bounded measure.

Theorem 3.14. The map f 7→ ∆ptf defined for f ∈ D(∆) cannot be extended to a
continuous operator on (Cb(B), Tt).

Proof. Assume there exists such an extension, then there exists a bounded measure µ
such that ∫

f(x)dµ(x) =
1
2

(pt∆f)(0).
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for f ∈ D(∆). By Proposition 3.7,∫
gn(pn(x))dµ(x) =

∫
gn(y)d(

1
2

∆Pnt )(y)

for gn ∈ C2
b (Rn). Since ‖∆Pnt ‖ → ∞ as n→∞, µ is not a bounded measure.

Remark 3.15. A similar result is obtained [5] in the settings of heat semigroups in
Hilbert spaces (see e.g. [13]).

Regularity of the heat equation is interesting. For example, if it is analytic in some
sense, it would give an approach to the Feynman’s path integral. However, the theorem
above means that the heat semigroup is not so much regular, if we are working on
(Cb(B), Tt). It seems that we need to use the regularity of initial condition f , or to find
a better topology such that the unbounded measure ∆Pt is something like dual.

Remark 3.16. If f ∈ D(∆), then it is easy to see u is the solution. Gross [2, Theorem 3]
proved that if f is Lip 1, then (∂u/∂t) exists in the sense of uniform convergence. Hence
ptf ∈ D(∆) in this case. The author is not sure whether ptf ∈ D(∆) for all f ∈ Cb(B)
and t > 0. In other words, whether the continuity of f (that is a regularity) is enough or
not.
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