
NONCOMMUTATIVE HARMONIC ANALYSIS

WITH APPLICATIONS TO PROBABILITY II

BANACH CENTER PUBLICATIONS, VOLUME 89

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2010

POISSON BOUNDARIES
OF DISCRETE QUANTUM GROUPS

REIJI TOMATSU

Department of Mathematics

Faculty of Science Technology, Tokyo University of Science

Yamazaki 2641, Noda, Chiba, Japan

E-mail: tomatsu reiji@ma.noda.tus.ac.jp

Abstract. This is a survey article about a theory of a Poisson boundary associated with a

discrete quantum group. The main problem of the theory, that is, the identification problem is

explained and solved for some examples.

1. Introduction. In [7], M. Izumi initiates the theory of a Poisson boundary for a
random walk on a discrete quantum group. The main problem is the identification, that
is, to find a more concrete realization as a von Neumann algebra. For example, the
SUq(n) case is studied in [7, 8], and their main result shows the identification of the
Poisson boundary with the quantum flag manifold T\SUq(n). This result is generalized
to a co-amenable compact quantum group with commutative fusion rules by the author
in [18]. Starting from basics of compact or discrete quantum groups, we explain the idea
of its proof.

In this article, another new problem is also presented in §4.2. More precisely, our
conjecture is the following:

Conjecture 1. Let G be a compact quantum group and µ a generating probability mea-
sure. Then the following equality holds:

H∞(Ĝ, Pµ)class = Z(H∞(Ĝ, Pµ)).

HereH∞(Ĝ, Pµ)class means the classical Poisson boundary on the center of the discrete
quantum group, and Z(H∞(Ĝ, Pµ)) is the center of the Poisson boundary. In the final
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part of this article, we will verify this conjecture for SUq(2). We do not know if that
holds for other q-deformations of classical compact Lie groups, but it does for some
non-amenable examples such as Ao(F ) and Au(F ) [19, 20].

2. Quantum groups. Throughout this survey, we will mainly treat quantum groups
of compact or discrete type. Our standard references are [5, 11, 22]. We denote by ⊗
minimal tensor products or spatial tensor products for C∗-algebras or von Neumann
algebras, respectively.

2.1. Compact quantum groups. The following definition of a compact quantum
group has been introduced by S. L. Woronowicz [22]:

Definition 2.1 (Woronowicz). A compact quantum group (c.q.g.) G is a pair (C(G), δ)
that satisfies the following conditions:

1. C(G) is a separable unital C∗-algebra;
2. (Coproduct) The map δ : C(G) → C(G)⊗ C(G) is a coproduct, i.e. it is a faithful

unital ∗-homomorphism satisfying the co-associativity condition,

(δ ⊗ id) ◦ δ = (id⊗δ) ◦ δ;

3. (Cancellation property) The vector spaces δ(C(G))(C⊗C(G)) and δ(C(G))(C(G)⊗C)
are dense in C(G)⊗C(G).

Example 2.2. A compact group G is regarded as a compact quantum group. Indeed,
via the identification C(G)⊗ C(G) = C(G×G), a coproduct δ is defined by

δ(x)(r, s) := x(rs) for all x ∈ C(G), r, s ∈ G.

The cancellation property means rs = rt or sr = tr imply s = t for r, s, t ∈ G. Note that
a compact semigroup with cancellation property is a compact group.

Let Γ be a discrete group. Then the full group C∗-algebra C∗Γ and the reduced group
C∗-algebra C∗redΓ are compact quantum groups. The coproducts are given by δ(r) = r⊗r
for r ∈ Γ.

The following state called Haar state plays an important role in the study of quantum
groups.

Theorem 2.3 (Woronowicz). There exists a unique state h ∈ C(G)∗ such that

(id⊗h)(δ(a)) = h(a)1 = (h⊗ id)(δ(a)) for all a ∈ C(G).

Example 2.4. The Haar state of C∗redΓ is given by the canonical tracial state (· δe, δe).
Composing the state and the surjection C∗Γ→ C∗redΓ, we obtain the Haar state on C∗Γ,
which is not faithful when Γ is non-amenable.

2.2. Reduced quantum groups. Let Nh := {a ∈ C(G) | h(a∗a) = 0}. Then it is
known that Nh is in fact an ideal of C(G), and we can consider the reduced compact
quantum group C(Gred) := C(G)/Nh with a natural coproduct. By definition, h is faithful
on C(Gred).
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Let (L2(G), πh,Ωh) be the GNS representation associated with the Haar state h, that is,

• L2(G) is a Hilbert space;
• πh : C(G)→ B(L2(G)) is a ∗-homomorphism;
• Ωh ∈ L2(G) is the GNS cyclic vector, i.e. we have L2(G) = πh(C(G))Ωh and
h(a) = (πh(a)Ωh,Ωh).

Note that Nh is precisely equal to kerπh. Hence we can regard C(Gred) = πh(C(G)). We
often omit πh.

2.3. Multiplicative unitaries. From the bi-invariance of the state h, the following
theorem follows:

Theorem 2.5. There exists a unitary V ∈ B(L2(G)⊗ L2(G)) satisfying

V (aΩh ⊗ ξ) = δ(a)(Ωh ⊗ ξ) for all a ∈ C(G), ξ ∈ L2(G);

Then V satisfies the following notable pentagon equation:

V12V13V23 = V23V12. (2.1)

So, V is called the multiplicative unitary [5]. By definition, we have the following imple-
mentation formula:

V (a⊗ 1)V ∗ = δ(a) for all a ∈ C(Gred). (2.2)

2.4. Von Neumann algebraic quantum groups. We denote by L∞(G) the weak
closure of C(Gred) in B(L2(G)). The coproduct δ extends to the normal morphism from
L∞(G) into L∞(G) ⊗ L∞(G) through (2.2). Then the pair (L∞(G), δ) is called the von
Neumann algebraic compact quantum group [11]VT. There exists a modular automor-
phism for h on C(Gred), and the Haar state h(·) = (·Ωh,Ωh) is faithful on L∞(G) [22].

2.5. Kac type quantum groups

Definition 2.6. A compact quantum group is said to be of Kac type when the Haar
state is tracial, i.e. h(ab) = h(ba) for all a, b ∈ C(G).

A compact group or a C∗-group algebra of a discrete group are typical examples
of Kac type quantum groups. They are commutative or co-commutative. Woronowicz’s
twisted quantum group SU−1(n) is also of Kac type, which is neither commutative nor
co-commutative [21]. Readers should note the first such example discovered by G. I. Kac
and V. G. Paljutkin [9], which is 8-dimensional C∗-algebra (8 is the smallest dimension
allowing a non-trivial Kac algebra).

2.6. Representation theory

Definition 2.7. Let H be a Hilbert space. A unitary v ∈ B(H) ⊗ L∞(G) is called a
(right unitary) representation if it satisfies

(id⊗δ)(v) = v12v13. (2.3)

We have the following natural operations:

• (direct sum)

v1 ⊕ v2 :=
(
v1 0
0 v2

)
∈ B(H1 ⊕H2)⊗ L∞(G).
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• (tensor product)

v1 ⊗ v2 := (v1)13(v2)23 ∈ B(H1 ⊗H2)⊗ L∞(G).

• (conjugation) Let v = (vij)i,j∈I be a matrix form of a representation. Consider

vc := (v∗ij)i,j∈I

which may not be a unitary, but this still satisfies (2.3). In fact, if the dimension is
finite, then it is unitarizable, i.e. there exists a positive invertible operator Q such
that

v := (Q1/2 ⊗ 1)vc(Q−1/2 ⊗ 1)

is a unitary matrix (see [22]).

We introduce the intertwiner space between unitary representations vi ∈ B(Hi) ⊗
L∞(G), i = 1, 2,

Mor(v1, v2) := {T ∈ B(H1, H2) | (T ⊗ 1)v1 = v2(T ⊗ 1)}.

Definition 2.8. Let v ∈ B(H)⊗ L∞(G) be a unitary representation.

• A unitary representation is said to be irreducible when Mor(v, v) = C1H .
• Let w ∈ B(K) ⊗ L∞(G) be a unitary representation. We say that v and w are

equivalent if Mor(v, w) contains a unitary.

Theorem 2.9 (Woronowicz). For any compact quantum group G, the following hold:

1. An irreducible representation is finite dimensional;
2. A finite dimensional representation is the direct sum of irreducibles;
3. Let v ∈ B(H) ⊗ L∞(G) be a finite dimensional representation. Then v ∈ B(H) ⊗

C(G).

We denote by Irr(G) the set of equivalence classes of irreducible representations of G.
For each π ∈ Irr(G), we choose a corresponding representation vπ ∈ B(Hπ) ⊗ L∞(G).
Note that dim(Hπ) <∞ from the previous theorem.

Definition 2.10. We say that G has commutative fusion rules when v⊗w is equivalent
to w ⊗ v for any unitary representations v, w.

Example 2.11. If G is a compact group, then a usual flip map intertwines v ⊗ w and
w ⊗ v. For a q-deformation, an R-matrix takes place of that.

3. Discrete quantum groups. Let G be a c.q.g. In this section, we study basic prop-
erties of the dual Ĝ.

3.1. Right group algebras. Recall the multiplicative unitaries V , which are right and
left representations of G on L2(G). We introduce the following subspace:

R(G) := spanw{(id⊗ω)(V ) | ω ∈ L∞(G)∗},

which we call the right group algebra.
Define the map β : B(L2(G))→ B(L2(G))⊗B(L2(G)),

β(x) := V ∗(1⊗ x)V for x ∈ B(L2(G)).
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Theorem 3.1. The following hold:

• R(G) is a von Neumann algebra;
• The restriction ∆ := β|R(G) defines the coproduct, i.e.

∆(R(G)) ⊂ R(G)⊗R(G), (∆⊗ id) ◦∆ = (id⊗∆) ◦∆

So, the pair (R(G),∆) is a bialgebra. In fact, it is known that there exist weights ϕ
and ψ on R(G) such that

• ϕ((ω ⊗ id)(∆(x))) = ω(1)ψ(x) for all ω ∈ R(G)+
∗ , x ∈ R(G)+.

• ψ((id⊗ω)(∆(x))) = ω(1)ϕ(x) for all ω ∈ R(G)+
∗ , x ∈ R(G)+;

Therefore, Ĝ := (R(G),∆) is a quantum group in the sense of [11]. Using the usual
Peter-Weyl type isomorphism,

L2(G) ∼=
⊕

π∈Irr(G)

Hπ ⊗Hπ,

we obtain the isomorphism,

R(G)→
⊕

π∈Irr(G)

B(Hπ).

Hence Ĝ is also called a discrete quantum group.

3.2. Actions of quantum groups

Definition 3.2. Let G = (L∞(G), δ) be a locally compact quantum group and M a von
Neumann algebra. A map α : M →M ⊗L∞(G) is called a (right) action when it satisfies
the following:

• α is a unital faithful normal ∗-homomorphism;
• (id⊗δ) ◦ α = (α⊗ id) ◦ α.

A left action is similarly defined.

Example 3.3. The map β : B(L2(G))→ R(G)⊗B(L2(G)) is a left action of Ĝ. Similarly
α : B(L2(G))→ B(L2(G))⊗L∞(G) defined by α(x) = V (x⊗1)V ∗ is a right action of G.

3.3. Quantum subgroups and left (right) coideals. There are several ways to define
a quantum subgroup of a compact quantum group, but we adopt the following definition
in this article.

Definition 3.4. Let G and H be compact quantum groups. We say that H is a quantum
subgroup of G if there exists a unital ∗-homomorphism rH : A(G)→ A(H) such that

• rH is surjective;
• δH ◦ rH = (rH ⊗ rH) ◦ δG.

This definition is weaker than the usual C∗-version, which requires rH is a C∗-
homomorphism from C(G) onto C(H). Readers should notice that the map rH, called
the restriction, need not be unique. So, rigorously we have to say the pair {H, rH} is a
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quantum subgroup, but we simply say H is a quantum subgroup. Note that H acts on

A(G) from both sides as H
γ`

y A(G)
γr

x H defined by

γ` := (rH ⊗ id) ◦ δG, γr := (id⊗rH) ◦ δG.

Then we define the non-commutative quotient spaces by the following fixed point algebras:

A(H\G) := {a ∈ A(G) | γ`(a) = 1⊗ a},

A(G/H) := {a ∈ A(G) | γr(a) = a⊗ 1}.

The weak closures in B(L2(G)) are denoted by L∞(H\G) and L∞(G/H), respectively.
Note that the left H-action γ` and the right G-action δG are commuting, i.e. (id⊗δG)◦

γ` = (γ` ⊗ id) ◦ δG. Hence G is also acting on A(H\G) by δ. Similarly the coproduct δG
defines a left action on A(G/H). Since these actions preserve the Haar state, they extend
to the quotient spaces L∞(H\G) or L∞(G/H), respectively. They are typical examples
of right or left coideals.

Definition 3.5. Let B ⊂ L∞(G) be a von Neumann subalgebra. Then we say that

• B is a left coideal if δ(B) ⊂ L∞(G)⊗B;
• B is a right coideal if δ(B) ⊂ B ⊗ L∞(G);
• a left (right) coideal B is of quotient type if B = L∞(G/H) (resp. L∞(H\G)) for

some quantum subgroup H.

Thanks to Gelfand theorem, every left coideal is of quotient type when G is a compact
group [1]. However, this is not true in general [13, 14, 17]. Indeed, we have the following
characterization [18].

Theorem 3.6 (Tomatsu). Let B ⊂ L∞(G) be a right coideal. Then the following are
equivalent:

• B is of quotient type;
• There exists an expectation EB : L∞(G)→ B preserving the Haar state, and more-

over Ĝ acts on B, i.e. β(B) ⊂ R(G)⊗B.

This theorem has been proved for co-amenable quantum groups [18], but the same
proof works because we have changed the definition of quantum subgroups.

3.4. Amenability and co-amenability. For details of the theory of amenability for
quantum groups, readers are referred to [2, 3, 4, 16] and references therein.

Definition 3.7. We say that Ĝ is amenable when there exists an invariant mean m on
R(G), that is, m ∈ R(G)∗ is a state such that

m((id⊗ω)(∆(x))) = ω(1)m(x) = m((ω ⊗ id)(∆(x))).

In this case, G is said to be co-amenable.

Theorem 3.8 (Bedos-Murphy-Tuset, Tomatsu). The following are equivalent:

• G is co-amenable;
• C(Gred) has a bounded counit ε that is a ∗-homomorphism ε : C(Gred) → C such

that (ε⊗ id) ◦ δ = id = (id⊗ε) ◦ δ.
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4. Poisson boundaries. We briefly recall the notion of the Poisson boundary for a
discrete quantum group. We refer to [7, 8] for definitions of terminology.

4.1. Identification problems. Let φπ ∈ B(Hπ)∗ be a right G-invariant state. Define
a transition operator Pπ on R(G) by Pπ(x) = (id⊗φπ)(∆R(x)) for x ∈ R(G). When Ĝ is
a discrete group, Pg, g ∈ Ĝ, is nothing but the right translation of functions by g ∈ Ĝ,
which is an automorphism. However, the map Pπ is not an automorphism but a faithful
normal unital completely positive (u.c.p.) map in general.

For a probability measure µ on Irr(G), we set the non-commutative Markov operator,

Pµ :=
∑

π∈Irr(G)

µ(π)Pπ.

We assume µ is generating, that is, supp(µ) generates Irr(G) as a semigroup in the follow-
ing sense: for any π ∈ Irr(G), there exist ρ1, . . . , ρn ∈ supp(µ) such that the representation
π is contained in the tensor product representation ρ1 ⊗ · · · ⊗ ρn.

Then we define an operator system,

H∞(Ĝ, Pµ) := {x ∈ R(G) | Pµ(x) = x}.

We often regard id−Pµ as a Laplace operator on Ĝ, and we say that each element of
H∞(Ĝ, Pµ) is Pµ-harmonic. That operator system has the von Neumann algebra structure
defined by

x · y = lim
n→∞

Pnµ (xy) for x, y ∈ H∞(Ĝ, Pµ), (4.1)

where the limit is taken in the strong topology [7, Theorem 3.6]. The von Neumann
algebra H∞(Ĝ, Pµ) is called the (non-commutative) Poisson boundary of {R(G), Pµ}.
The following theorem is probably well-known to specialists.

Theorem 4.1. The von Neumann algebra H∞(Ĝ, Pµ) is amenable.

Proof. We know that H∞(Ĝ, Pµ) is isomorphic to (Rα)′ ∩ R, where R
αx G is an ITP

action [7]. Let Eα := (id⊗h) ◦ α be the averaging expectation. Take a faithful state
ω ∈ (Rα)∗, and set ψ := ω ◦ Eα. Since σψt |Rα = σωt , σψt ((Rα)′ ∩ R) = (Rα)′ ∩ R. Thanks
to Takesaki theorem [15], we see that there exists an expectation from R onto (RG)′ ∩R,
and (RG)′ ∩ R is amenable. Hence so is H∞(Ĝ, Pµ).

Now we recall the actions Ĝ
β
y B(L2(G))

αx G defined by

β(x) := V ∗(1⊗ x)V, α(x) = V (x⊗ 1)V ∗.

Since we can prove Pµ and α or β are commuting on R(G), the Poisson boundary is a
Ĝ-G-von Neumann algebra [7]. We should note that if Ĝ is a discrete group, then α is
trivial. Hence non-triviality of α on R(G) is a purely quantum phenomenon.

In Poisson boundary theory, one of the most important problems is the following:

Problem 4.2 (Identification problem). Realize H∞(Ĝ, Pµ) as a more concrete Ĝ-G-von
Neumann algebra.

In [7], it is shown that H∞(SUq(2), Pµ) ∼= L∞(T\SUq(2)). This result is generalized
to SUq(n) by Izumi-Neshveyev-Tuset [8]. Their key ingredient is the Poisson integral
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Θ: L∞(G)→ R(G) defined by

Θ(a) := (id⊗h)(β(a)) for a ∈ L∞(G).

Then the faithful normal u.c.p. map Θ is Ĝ-G-equivariant, i.e.

∆ ◦Θ = (id⊗Θ) ◦ β, α ◦Θ = (Θ⊗ id) ◦ δ.

It is known that the range space Im Θ is contained in H∞(Ĝ, Pµ). Here, we should note
that Im Θ does not depend on µ. Indeed, if we define the operator system

H∞(Ĝ) := {x ∈ R(G) | Pπ(x) = x for all π ∈ Irr(G)},

then Im Θ ⊂ H∞(Ĝ).
From now, we focus on G with commutative fusion rules. Then H∞(Ĝ, Pµ) = H∞(Ĝ)

for any generating probability measure µ [8].
Our main theorem of this section is the following [18]:

Theorem 4.3. Let G be a co-amenable compact quantum group. Assume that its fusion
algebra is commutative. Then the following statements hold:

1. There exists a unique maximal quantum subgroup of Kac type H, that is, if K is
another Kac quantum subgroup of G, then L∞(H\G) ⊂ L∞(K\G);

2. The Poisson integral Θ: L∞(H \G)→ H∞(Ĝ) is an isomorphism.

Proof. We present a sketch of a proof. What we want to construct first is the inverse map
Λ: H∞(Ĝ)→ L∞(G). To do this, we recall Θ = (id⊗h) ◦ β. Then we would use a “Haar
state” on R(G), intuitively. If Ĝ was finite dimensional, it would be sufficient to replace
β with α. A problem is that we do not have such a functional in general. However, since
we have assumed amenability of Ĝ, we have an invariant mean m on R(G), which may
be singular. Then we introduce Λ: R(G)→ L∞(G) given by

Λ(x) := (m⊗ id)(α(x)) for x ∈ R(G),

where the u.c.p. map m⊗ id : R(G)⊗ L∞(G)→ L∞(G) is well-defined.
Next we compute Θ◦Λ, and we obtain Θ◦Λ = id on H∞(Ĝ) because of the ergodicity

of H∞(Ĝ)
αx G, which comes from the commutativity of fusion rules. In particular, we

have shown Im Θ = H∞(Ĝ). Moreover, we can see that Λ is multiplicative on H∞(Ĝ):
for any x ∈ H∞(Ĝ), we have

x∗ · x = Θ(Λ(x))∗ ·Θ(Λ(x)) ≤ Θ(Λ(x)∗Λ(x)) ≤ Θ(Λ(x∗ · x)) = x∗ · x.

Hence we obtain Θ(Λ(x)∗Λ(x)) = Θ(Λ(x∗ · x)). Since Λ(x)∗Λ(x) ≤ Λ(x∗ · x) and Θ is
faithful, Λ(x)∗Λ(x) = Λ(x∗ · x) holds.

Next we study the image of Λ, and put B := Im Λ, which is a von Neumann subalgebra
in L∞(G). We consider E := Λ ◦Θ: L∞(G)→ L∞(G). It is easy to see that E is a Haar
state preserving expectation onto B. Since Λ is Ĝ-G-equivariant, Ĝ and G are acting on
B. Hence B is a right coideal with nice properties, and B must be of quotient type by
Theorem 3.6.

So, B is of the form L∞(H\G) for some quantum subgroup H. By definition, E is also
Ĝ-equivariant, and we see that H is of Kac type. With a little effort, we can see that H
is the maximal quantum subgroup of Kac type.
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For the q-deformation of a classical compact Lie group, we can show that the maximal
Kac quantum subgroup is exactly equal to the maximal torus [18]. Hence we have the
following result which generalizes the main result of [8]:

Corollary 4.4. Let Gq be the q-deformation of a classical compact Lie group G. Then
the Poisson integral Θ: L∞(T \Gq)→ H∞(Ĝq) is an isomorphism.

4.2. Description of centers of Poisson boundaries. Here, we will propose a new
problem on a Poisson boundary. Recall that Pµ and α are commuting, and Pµ acts on
the fixed point algebra R(G)α, which is nothing but the center Z(R(G)) = `∞(Irr(G)).
Hence we introduce the classical part of a Poisson boundary,

H∞(Ĝ, Pµ)class := H∞(Ĝ, Pµ) ∩ Z(R(G)).

Let us denote the center of H∞(Ĝ, Pµ) by Z(H∞(Ĝ, Pµ)), where we should again
remember the product structure (4.1). It is trivial by (4.1) that the classical part
H∞(Ĝ, Pµ)class is contained in Z(H∞(Ĝ, Pµ)). Now we present following our problem:

Conjecture 4.5. Let G be a compact quantum group and µ a generating probability
measure. Then the following equality holds:

H∞(Ĝ, Pµ)class = Z(H∞(Ĝ, Pµ)).

When G has commutative fusion rules, then the classical part is trivial [6, 7]. So, the
conjecture means the factoriality of H∞(Ĝ, Pµ).

There are some positive observations about this conjecture. For SUq(2) case, it is
true because the quantum flag manifold (or a Podleś sphere) L∞(T\SUq(2)) is a type I∞
factor. However, that is unknown for other q-deformations. The conjecture holds even for
non-amenable examples such as Ao(F ) and Au(F ) [19, 20]. It has seemed to be affirmative
so far.

4.3. A criterion on a factoriality of L∞(Tmax\G). From now on, G is the q-defor-
mation of a classical compact Lie group [10]. It is proved that the maximal Kac quantum
subgroup of G is the maximal torus Tmax [18]. Then Theorem 4.3 implies the isomorphism,

Θ: L∞(Tmax\G)→ H∞(Ĝ).

Recall the left action Tmax
γ`

y L∞(G) introduced in §3.3.

Lemma 4.6. Let Z be the center of L∞(G). Then the left action Tmax
γ`

y L∞(G) is
centrally ergodic, i.e. Zγ

`

= C

Proof. Recall the left Ĝ-action β(x) = V ∗(x ⊗ 1)V , x ∈ L∞(G). Then L∞(G)β = Z.
Since Zγ

`

= L∞(Tmax\G)β , Θ(Zγ
`

) = H∞(Ĝ)β , this is equal to C because R(G)β = C.
Hence Zγ

`

= Θ−1(C) = C.

Hence there exists a subgroup Γ ⊂ T̂max such that the following decomposition holds:

Z =
⊕
χ∈Γ

Zχ,

where Zχ := {x ∈ Z | γ`z(x) = χ(z)x for z ∈ Tmax}. From the previous lemma, Z0 = C,
and each Zχ is one-dimensional subspace spanned by a unitary.
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Theorem 4.7. If the action Tmax
γ`

y Z is faithful, then the following hold:

1. L∞(G) = Z ∨ L∞(Tmax\G);
2. L∞(Tmax\G) is the type I∞ factor;
3. H∞(Ĝ) is the type I∞ factor.

Proof. By our assumption, Γ coincides with T̂max. Hence for any χ ∈ T̂max, there exists
a unitary uχ ∈ Zχ. Then u∗χL

∞(G)χ = L∞(G)γ
`

= L∞(Tmax\G). Hence L∞(G)χ =
uχL

∞(Tmax\G), and (1) holds.
It is known that C(G) is a type I C∗-algebra [10], and so are L∞(G) and L∞(Tmax\G),

which is trivially infinite dimensional. By (1), the center of L∞(Tmax\G) is contained in
Z. The central ergodicity of γ` implies the factoriality of L∞(Tmax\G).

(3) is trivial from Theorem 4.3.

From the next subsection, we present a complete proof for the SUq(2) case.

4.4. Quantum group SUq(2). The definition of SUq(2) is as follows. Our notations
are same as those of [12]. The continuous function algebra C(SUq(2)) is the universal
C∗-algebra generated by four elements x, u, v and y with the following relations:

ux = qxu, vx = qxv, yu = quy, yv = qvy, uv = vu,

xy − q−1uv = 1 = yx− quv,

x∗ = y, u∗ = −q−1v.

The coproduct δ is given by(
δ(x) δ(u)
δ(v) δ(y)

)
:=
(
x⊗ 1 u⊗ 1
v ⊗ 1 y ⊗ 1

)
·
(

1⊗ x 1⊗ u
1⊗ v 1⊗ y

)
,

which means the following matrix is an (irreducible) representation:

w(1/2) :=
(
x u

v y

)
.

Each element of Irr(SUq(2)) is determined by the highest weight, which is an element
of (1/2)Z+ = {0, 1/2, · · · } in this case. Each ν ∈ (1/2)Z+ is called the spin and the
dimension of w(ν) is 2ν + 1. The quantum dimension of w(ν) is given by the q-integer
(2ν + 1)q := (q−2ν−1 − q2ν+1)/(q−1 − q) [12].

On tensor products, we have the same formula (Clebsch-Gordan rule) as that of
SU(2),

w(µ)⊕ w(ν) = w(|µ− ν|)⊕ w(|µ− ν|+ 1)⊕ · · · ⊕ w(µ+ ν − 1)⊕ w(µ+ ν). (4.2)

For ` ∈ (1/2)Z+, we set I` := {−`,−` + 1, . . . , ` − 1, `}. Set the positive operator
ζ := u∗u = −q−1uv.

Theorem 4.8. For each ` ∈ (1/2)Z+ and i, j ∈ I`, the matrix elements w(`)i,j are
expressed in terms of the little q-Jacobi polynomials in ζ as follows:

1. Case i+ j ≤ 0, i ≥ j:

q(`+j)(j−i)
[
`+ i

i− j

] 1
2

q2

[
`− j
i− j

] 1
2

q2
x−i−jvi−jP

(i−j,−i−j)
`+j (ζ; q2);
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2. Case i+ j ≤ 0, i ≤ j:

q(`+i)(i−j)
[
`− i
j − i

] 1
2

q2

[
`+ j

j − i

] 1
2

q2
x−i−juj−iP

(j−i,−i−j)
`+i (ζ; q2);

3. Case i+ j ≥ 0, i ≤ j:

q(j−i)(j−`)
[
`− i
j − i

] 1
2

q2

[
`+ j

j − i

] 1
2

q2
P

(j−i,i+j)
`−j (ζ; q2)uj−iyi+j ;

4. Case i+ j ≥ 0, i ≥ j:

q(i−j)(i−`)
[
`+ i

i− j

] 1
2

q2

[
`− j
i− j

] 1
2

q2
P

(i−j,i+j)
`−i (ζ; q2)vi−jyi+j ,

where we have used the q-binomial coefficients and the little q-Jacobi polynomials:[
m

n

]
q

=
(q; q)m

(q; q)n(q; q)m−n
, (t; q)m =

m−1∏
s=0

(1− tqs),

P (α,β)
n (ζ; q2) =

∑
r≥0

(q−2n; q2)r(q2α+2β+2n+2; q2)r
(q2; q2)r(q2α+2; q2)r

(q2ζ)r.

Corollary 4.9. For each ` ∈ (1/2)Z+ and i, j ∈ I`, the following equality holds:

w(`)∗i,j = (−q)i−jw(`)−i,−j .

Let σh be the modular automorphism group for h. Then we have the following formula
[12, 21, 22]:

σht (w(`)r,s) = q−2(r+s)itw(`)r,s for all t ∈ R. (4.3)

4.5. Description of L∞(T\SUq(2)). Our aim is to prove the faithfulness of

T
γ`

y Z(L∞(SUq(2))), which implies the factoriality of the standard Podleś sphere
L∞(T\SUq(2)) by Theorem 4.7. We let Z := Z(L∞(SUq(2))).

It is known that the spectrum of ζ = u∗u is quantized. More precisely, we obtain
Sp(ζ) = {q2k}∞k=0 [12, 21]. Hence there exist orthogonal projections {pk}∞k=0 in C(SUq(2))
such that

ζ =
∞∑
k=0

q2kpk.

Lemma 4.10. The set {pk}∞k=0 is a partition of unity in L∞(SUq(2)).

Proof. Let p :=
∑∞
k=0 pk and p′ := 1− p. Using ζx = q2xζ, we see that

xpk = pk+1x. (4.4)

Summing up both sides over k ≥ 0, we have xp = (p− p0)x. Since xx∗ + ζ = 1, we have
p0xx

∗p0 = 0, and xp = px. Then

h(p′) = h((xx∗ + uu∗)p′) = h(xx∗p′)

= h(x∗p′σh−i(x)) = q−2h(x∗p′x) = q−2h(p′x∗x)

= q−2h(p′(x∗x+ u∗u)) = q−2h(p′),

and h(p′) = 0. Since h is faithful, p′ = 0.
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Remark 4.11. We can compute h(pk) and directly verify the above result as follows.
Recall the formula h(ζn) = (1− q2)/(1− q2n+2) [12]. Since ζn converges to p0 as n→∞
(in the norm topology), we have h(p0) = 1− q2. Next using (4.4), we have

h(xpkx∗) = h(pk+1xx
∗) = h(pk+1(1− ζ)) = (1− q2k+2)h(pk+1).

Thanks to σht (x) = q2itx, we also obtain

h(xpkx∗) = h(pkx∗σh−i(x)) = q2h(pkx∗x) = q2h(pk(1− q2ζ)) = q2(1− q2k+2)h(pk).

Therefore, h(pk+1) = q2h(pk), and h(pk) = q2k(1− q2). The summation of {h(pk)}∞k=0 is
indeed equal to 1.

Theorem 4.12. The following hold:

1. γ` is a faithful action on Z;
2. L∞(SUq(2)) = Z ∨ L∞(T\SUq(2));
3. Z is T-equivariantly isomorphic to L∞(T);
4. L∞(T\SUq(2)) is the type I∞ factor.

Proof. Let u = a|u| = aζ1/2 be the polar decomposition of u. By Lemma 4.10, aa∗ =
a∗a = 1. We show that a ∈ Z. Indeed, we have

qx|u|2 = uxu∗ = a|u|x|u|a∗ = qax|u|2a∗ = qaxa∗|u|2.

Again by Lemma 4.10, we have x = axa∗. The ∗-algebra L∞(SUq(2)) is generated by x
and u, so a ∈ Z. Since γ`z(u) = zu, we have γ`z(a) = za for all z ∈ T. The other statements
are trivial from Theorem 4.7.

Hence Conjecture 4.5 holds for SUq(2). Although we have discussed and got the previ-
ous result using somewhat general results, we can directly obtain that from Woronowicz’s
classification of irreducible representations of the C∗-algebra C(SUq(2)) as follows.

Let us consider the tensor product von Neumann algebra N := L∞(T)⊗B(`2). Define
the four operators x′, v′, u′ and y′ in this algebra by

x′ = z ⊗
∞∑
k=0

√
1− q2k+2ek+1,k, u′ = z ⊗

∞∑
k=0

−qkek,k

v′ = z ⊗
∞∑
k=0

qk+1ek,k, y′ = z ⊗
∞∑
k=0

√
1− q2k+2ek,k+1,

where z ∈ L∞(T) is a canonical generating unitary. Then they satisfy the same relations
as those of C(SUq(2)). Hence there exists a surjection π : C(SUq(2)) → C∗(x′, u′, v′, y′)
by universality.

Consider the tensor product state hT ⊗ Trρ on N , where hT is the Haar state on
L∞(T) and the density is ρ :=

∑∞
k=0(1− q2)q2kekk. We can verify h = (hT ⊗Trρ) ◦ π on

the ∗-algebra generated by x, u, v, y from Theorem 4.8. Hence the surjection π extends
to the isomorphism between L∞(SUq(2)) and C∗(x′, u′, v′, y′)′′ = N . It is trivial that π
intertwines the torus actions γ` and β ⊗ id, where β is the rotation on L∞(Z). Hence
L∞(T\SUq(2)) is isomorphic to B(`2).
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4.6. More complete description of Z. We close this article by giving generators of Z
for SUq(2) and studying their relations. Recall the torus actions γ and γ` on L∞(SUq(2)),(

γ`z(x) γ`z(u)
γ`z(v) γ`z(y)

)
=
(
zx zu

z̄v z̄y

)
,

(
γz(x) γz(u)
γz(v) γz(y)

)
=
(
zx z̄u

zv z̄y

)
for z ∈ T.

The following formulae are immediate from Theorem 4.8:

γ`z(w(ν)i,j) = z−2iw(ν)i,j , γz(w(ν)i,j) = z−2jw(ν)i,j . (4.5)

Lemma 4.13. We have the following equalities:

1. xw(ν)r,−r = αν,rw(ν − 1/2)r−1/2,−r−1/2 + βν,rw(ν + 1/2)r−1/2,−r−1/2

2. w(ν)r,−rx = α′ν,rw(ν − 1/2)r−1/2,−r−1/2 + β′ν,rw(ν + 1/2)r−1/2,−r−1/2

3. yw(ν)r,−r = γν,rw(ν − 1/2)r+1/2,−r+1/2 + δν,rw(ν + 1/2)r+1/2,−r+1/2

4. w(ν)r,−ry = γ′ν,rw(ν − 1/2)r+1/2,−r+1/2 + δ′ν,rw(ν + 1/2)r+1/2,−r+1/2,

where the constants are given by

αν,r = γ′ν,r = qν+1

√
(ν + r)q(ν − r)q

(2ν + 1)q
, βν,r = δ′ν,r = q−ν

√
(ν + r + 1)q(ν − r + 1)q

(2ν + 1)q
,

α′ν,r = γν,r = q−ν−1

√
(ν + r)q(ν − r)q

(2ν + 1)q
, β′ν,r = δν,r = qν

√
(ν + r + 1)q(ν − r + 1)q

(2ν + 1)q
,

Proof. The element xw(ν)r,−r is spanned by w(ν±1/2)i,j . Using (4.5), we see that there
exist some complex numbers α and β such that

xw(ν)r,−r = αw(ν − 1/2)r−1/2,−r−1/2 + βw(ν + 1/2)r−1/2,−r−1/2.

From Theorem 4.8, we have

w(ν)r,−r = q−2r(ν−r)
[
ν + r

2r

]
q2
v2rP 2r,0

ν−r (ζ, q2)

w(ν − 1/2)r−1/2,−r−1/2 = q−2r(ν−r−1)

[
ν + r − 1

2r

]1/2

q2

[
ν + r

2r

]1/2

q2
xv2rP 2r,1

ν−r−1(ζ, q2)

w(ν + 1/2)r−1/2,−r−1/2 = q−2r(ν−r)
[
ν + r

2r

]1/2

q2

[
ν + r + 1

2r

]1/2

q2
xv2rP 2r,1

ν−r (ζ, q2).

By comparing the constant term and the degree (ν − r) term of ζ, we can obtain
β = q−ν(2ν + 1)−1

q

√
(ν + r + 1)q(ν − r + 1)q and α = qν+1(2ν + 1)−1

q

√
(ν + r)q(ν − r)q.

Similarly we get the other equalities.

Let r ∈ (1/2)Z+ and Z−2r the spectral subspace for the action γ` for the eigen-
value −2r. Since Z ⊂ L∞(SUq(2))σ

h

, an element a ∈ Z−2r has the following expansion
in L2(SUq(2)):

a =
∞∑
ν=r

λν,rw(ν)r,−r,

where λν,r ∈ C and the summation is taken for ν = r, r+1, . . . . From the previous lemma,
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the commutativity of a and x implies∑
ν≥r

λν,r(αν,rw(ν − 1/2)r−1/2,−r−1/2 + βν,rw(ν + 1/2)r−1/2,−r−1/2)

=
∑
ν≥r

λν,r(α′ν,rw(ν − 1/2)r−1/2,−r−1/2 + β′ν,rw(ν + 1/2)r−1/2,−r−1/2).

From this we get the recurrence formula λν+1,r(αν+1,r−α′ν+1,r) = λν,r(β′ν,r−βν,r) whose
solution is

λν,r =
(2ν + 1)q

(ν)q(ν + 1)q
(r)q(r + 1)q

(2r + 1)q
λr,r,

where (t)q := (q−t − qt)/(q−1 − q) for any t ∈ R.

Lemma 4.14. For r ∈ (1/2)Z+, the following element ar is a well-defined unitary in Z−2r

and commutes with x, u, v and y:

ar = q−r(r)q
∞∑
ν=r

(2ν + 1)q
(ν)q(ν + 1)q

w(ν)r,−r.

Proof. Since γ` is faithful on Z, the above elements have to be well-defined. Using the
formulae h(w(ν)∗r,−rw(ν)r,−r) = (2ν + 1)−1q2r and (2ν + 1)q = (ν + 1)2

q − (ν)2
q, we have

h(a∗rar) = q−2r(r)2
q

∞∑
ν=r

(2ν + 1)2
q

(ν)2
q(ν + 1)2

q

· (2ν + 1)−1
q q2r = (r)2

q

∞∑
ν=r

(2ν + 1)q
(ν)2

q(ν + 1)2
q

= (r)2
q

∞∑
ν=r

(ν + 1)2
q − (ν)2

q

(ν)2
q(ν + 1)2

q

= (r)2
q

∞∑
ν=r

(
1

(ν)2
q

− 1
(ν + 1)2

q

)
= 1.

Hence ar is a unitary.

Next we compare a1/2 with b that is a unitary of the polar decomposition of v, i.e.
v = b|v| = qbζ1/2. From this equality, we get v∗b = qζ1/2. Using h(pk) = (1− q2)q2k, we
obtain

h(v∗b) = qh(ze1/2) = q
∞∑
k=0

qk(1− q2)q2k =
q(1− q2)

1− q3
.

By definition, a1/2 is equal to

q−1/2(1/2)q
∞∑

ν=1/2

(2ν + 1)q
(ν)q(ν + 1)q

w(ν)1/2,−1/2 = q−1/2(1/2)q
(2)q

(1/2)q(3/2)q
v + · · · .

Using h(v∗v) = q2h(ζ) = q2(1 + q2)−1, we have

h(v∗a1/2) = q−1/2(1/2)q ·
(2)q

(1/2)q(3/2)q
· q2

1 + q2
=
q(1− q2)

1− q3
.

Since dimZ−1 = 1, a1/2 is a scalar multiple of b, but we have shown a1/2 = b by the
above calculation.

Therefore v = a1/2|v| is the polar decomposition. Next we compute ak1/2, k ≥ 1, which
has to be a scalar multiple of ak/2. In a similar way to the previous calculation, we obtain

h((v∗)kak1/2) = qk(1− q2)(1− q3)−1 = h((v∗)kak/2).

Summarizing our discussions, we have the following:
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Theorem 4.15. Let ar be as above. Then the following hold:

1. Z = {a1/2}′′;
2. v = a1/2|v| is the polar decomposition;
3. ak1/2 = ak/2 for all integer k ≥ 1.
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