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Abstract. The Fisher informational metric is unique in some sense (it is the only Markovian

monotone distance) in the classical case. A family of Riemannian metrics is called monotone if

its members are decreasing under stochastic mappings. These are the metrics to play the role

of Fisher metric in the quantum case. Monotone metrics can be labeled by special operator

monotone functions, according to Petz’s Classification Theorem. The aim of this paper is to

present an idea how one can narrow the set of monotone metrics from the statistical point of

view, and to show that the monotone metrics which occur in the literature most often fit to this

idea in qubit case.

1. Introduction. The idea in mathematical statistics that a statistical or informational

distance between probability measures gives rise to a Riemannian metric is due to Rao

[21] and was developed by Amari [1] and Streater [22] among others. The study of clas-

sical monotone metrics for parametric statistical manifolds was initiated by Čencov and

Morozova [12]. They proved that only the Fisher information metric is monotone with

respect to Markovian maps. In the quantum case Petz’s Classification Theorem estab-

lishes a correspondence between monotone metrics and operator monotone functions.

The main difference between classical and quantum information geometry is that in the

classical case there is a unique (canonical) Riemannian metric on the space of classical

finite probability distributions, but in the quantum case there are infinitely many such

metric.

To narrow the infinite set of metrics in the quantum case we consider the statistical

interpretations of the differential geometrical quantities. The volume of the geodesic ball

with center state D measures the statistical uncertainty. The first non trivial element

in the series expansion of the volume of the geodesic ball is the scalar curvature, which
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measures the average statistical uncertainty of the state D. Therefore it is reasonable to

believe that the other elements in this series expansion have similar statistical interpreta-

tion. Petz’s conjecture is about the monotonicity of the scalar curvature with respect to

the majorization relation when the state space is endowed with the Kubo–Mori metric. A

monotone Riemannain metric is called k-admissible if the first k element from the series

expansion of the volume of the geodesic ball is monotone with respect to the majoriza-

tion relation. Petz conjectured that the Kubo–Mori metric is 1-admissible. We present

numerical simulations to show that the monotone metrics from the literature are at least

1, 2 and 3-admissible in the qubit case.

2. Classical case. Probability distributions on a finite set Xn = {1, . . . , n} can be

characterized by (n − 1) independent parameters (pi)i=1,...,n−1 such that the density

function f is given as

f(x, p1, . . . , pn) = pi, if x = i, 1 ≤ i ≤ n,

where p1 + · · · + pn = 1. The open set of distributions on Xn is

Pn =
{

(p1, . . . , pn)
∣

∣

∣
0 < pi < 1,

n
∑

i=1

pi = 1
}

.

The distribution a = (a1, . . . , an) ∈ Pn is called majorised by the distribution b =

(b1, . . . , bn) ∈ Pn, denoted by a ≺ b, if the following inequalities hold for their decreasingly

ordered set of parameters (a
(↓)
i )i=1,...,n and (b

(↓)
i )i=1,...,n

k
∑

l=1

a
(↓)
l ≤

k
∑

l=1

b
(↓)
l

for all 1 ≤ k < n. The intuitive meaning of the majorisation relation a ≺ b is that the

distribution a is more mixed or more chaotic than the distribution b.

The space Pn is an (n − 1) dimensional differentiable manifold. At a point p =

(p1, . . . , pn) ∈ Pn the tangent space TpPn can be identified with the vector space

{(v1, . . . , vn) ∈ Rn |
∑n

i=1 vi = 0}. One can endow the space Pn with a Riemannian

metric using one of the following technics.

1. The entropy of the distribution p = (p1, . . . , pn) is

S(p) = −
n

∑

i=1

pi log pi.

This function is strictly concave on Pn, therefore (−1) times its Hessian is a Riemannian

metric. Let us denote this metric by g(1).

2. The space Pn can be viewed as a part of the (n − 1) sphere S
n−1 with the diffeo-

morphism

α : Pn → S
n−1, (p1, . . . , pn) 7→ (

√
p1, . . . ,

√
pn).

One can pull back the natural Riemannian metric of the sphere Sn−1 with α to generate

a Riemannian metric on the space of distributions g(2).
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3. Assume that X and Ξ are open connected subsets of Rm and Rn and for a function

f : X × Ξ → R for every point ξ ∈ Ξ the measure f(·, ξ)µ is a probability measure

on X, where µ is the Lebesgue measure on R
m. If f is smooth enough then the Fisher

information matrix of the parametric distribution f at a point ξ = (ξ1, . . . , ξn) ∈ Ξ is

(1) [g(ξ)]ij :=

∫

X

1

f(x, ξ)

∂f(x, ξ)

∂ξi

∂f(x, ξ)

∂ξi
dµ(x), 1 ≤ i, j ≤ n.

The Fisher information matrix of the statistical model Pn is an (n− 1)× (n− 1) matrix

and depends on (n − 1) parameters, because dimPn = (n − 1). This matrix at a point

p = (p1, . . . , pn) ∈ Pn is

(2) [g(p)]ij :=
1

pi
δij +

1

1 − ∑n−1
k=1 pk

, 1 ≤ i, j ≤ n − 1.

The matrix [g(p)ij ]i,j=1,...,n−1 is positive definite for every p ∈ Pn. Rao used this matrix

as a Riemannian metric first in 1945 [21].

4. One can determine a unique Riemannian metric on the space Pn using the Čencov

Theorem. The Theorem is based on the concept of Markovian kernels. For finite sets Xn

and Xm the function

κ : Xm × Xn → R
+, (i, j) 7→ κji,

is called a Markovian map if for every i ∈ Xn the equality
∑m

j=1 κji = 1 holds. A

Markovian map κ : Xm × Xn → R
+ generates a function between manifolds

κ̃ : Pn → Pm, (p1, . . . , pn) 7→
(

n
∑

i=1

κ0ipi, . . . ,

n
∑

i=1

κmipi

)

,

and this function has a natural action on the tangent bundle κ∗ : TPn → TPm.

Theorem 2.1 (Čencov, [5, 12]). Assume that for every n ∈ N the pair (Pn, gn) is a

Riemannian-manifold. Let us consider the family of these spaces (Pn, gn)n∈N. If for every

Markovian kernel κ : Xn × Xm → R the following monotonicity property holds

gκ̃(p)(κ
∗(X), κ∗(X)) ≤ gp(X, X) ∀p ∈ Pn, ∀X ∈ TpPn,

then the family of metrics (gn)n∈N is unique up to a positive real number.

5. Relative entropies are often considered as distance functions between probability

distributions. There are many relative entropy function [14], for example: for distributions

a = (a1, . . . , an) and b = (b1, . . . , bn) in Pn the Kullback–Liebler relative entropy [10] is

DKL(a, b) =
n

∑

k=1

ak log
ak

bk
,

the χ2 relative entropy is

Dχ2(a, b) =
1

2

n
∑

k=1

ak

((

bk

ak

)2

− 1

)

,

and the delta relative entropy [23] is

D∆(a, b) =
n

∑

k=1

(ak − bk)2

ak + bk
.
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For an arbitrary point p ∈ Pn the bilinear map

g(D)
p : TpPn × TpPn → R, (x, y) 7→ ∂2

∂t∂s
D(p + tx + sy, p)

∣

∣

∣

∣

t,s=0

,

is positive definite. So, these relative entropies—among others—generate Riemannian

metrics on the space Pn. It turns out that the generated metrics are equal, let us denote

any of them by g(5).

It seems that we have defined many Riemannian metrics on the space of the classical

discrete distributions Pn, but these metrics coincide (up to a constant factor) according

to the following theorem.

Theorem 2.2. For the above defined metrics the equalities g(1) = 4g(2) = g(3) = g(5)

hold and they are equal to g(4) up to a positive real multiplier.

Proof. The metrics g(1), g(2) and g(5) can be computed easily, which implies the first

equalities in the Theorem. It is enough to check that the metric g(1) fulfills the conditions

in Čencov Theorem 2.1, which is again a simple computation.

Remark 1. The above mentioned theorem means that the geometry of the space (Pn, g)

is well-known, because the metric g(2) is nothing else but the pull back of the natural

Riemannian metric of the sphere, so the space (Pn, g) is just a submanifold of the n

dimensional euclidean sphere Sn−1. Therefore, the main differential geometrical invariants

for example curvatures, geodesics, distances, volumes, etc. can be computed easily.

3. Noncommutative case. The quantum mechanical Hilbert space formalism gives

a mathematical description of particles with spin of n−1
2 . Concentrating on the spin

part of nonrelativistic particles one can build a proper mathematical model in an n

dimensional complex Hilbert space. This is the simplest physical realization of an n-level

quantum system. The states of an n-level system are identified with the set of real or

complex n × n self-adjoint positive semidefinite matrices with trace 1. The states are

the noncommutative generalizations of the classical statistical model Pn, because if we

restrict ourselves to the diagonal matrices we get back the space Pn. The states form a

closed convex set in the space of matrices and its interior, the set of all strictly positive

self-adjoint matrices with trace 1 becomes naturally a differentiable manifold, let M+
n

denote the set of these states.

Some concepts of the classical probability theory can be extended to the noncom-

mutative case. The majorisation relation is one of them. The state D1 ∈ M+
n is called

majorised by the state D2 ∈ M+
n , denoted by D1 ≺ D2 if the following inequalities hold

for their decreasingly ordered set of eigenvalues (λ
(↓)
i )i=1,...,n and (µ

(↓)
i )i=1,...,n

k
∑

l=1

λ
(↓)
l ≤

k
∑

l=1

µ
(↓)
l

for all 1 ≤ k < n.

The state space M+
n is a differentiable manifold, the dimension of the real and complex

state space is (n−1)(n+2)
2 and (n2 − 1). At a point D ∈ M+

n the tangent space TDM+
n
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can be identified with the vector space of real or complex self-adjoint traceless matrices.

One can try to endow the space M+
n with Riemannian metric as in the classical case.

1. John von Neumann defined the entropy in this quantum case in 1927 [13]. The von

Neumann entropy of the state D ∈ M+
n is

S(D) = −TrD log D.

This function is strictly concave on M+
n , therefore (−1) times its Hessian is a Riemannian

metric, called the Kubo–Mori or Bogoljubov metric. Let us denote this metric by g(KM).

2. The space M+
n can be viewed as a part of the euclidean sphere Sd with the diffeo-

morphism

α : M+
n → S

d D 7→
√

D,

where d = (n−1)(n+2)
2 for real state space and d = (n2 − 1) for complex state space.

One can pull back the natural Riemannian metric of the sphere S
d with α to generate a

Riemannian metric on the state space g(WY), which is called the Wigner–Yanase metric.

3. One runs into difficulties with the generalization of the Fisher information matrix.

The main problem is that in the definition of the classical Fisher information (1) the

quantities were real numbers (commutative quantities), but in this matrix setting the

analog quantities become matrices (noncommutative quantities). It means that one can

define many noncommutative Fisher type information quantities, for example using the

generalized logarithmic derivatives which were introduced by Petz and Tóth [20].

4. The noncommutative extension of the Čencov Theorem was given by Petz in 1996.

The stochastic maps are the counterpart of the Markovian maps in this setting. A linear

map between matrix spaces T : Mn → Mm is called stochastic if it is trace preserving

and completely positive.

Theorem 3.1 (Petz, [17]). Assume that for every n ∈ N the pair (M+
n , Kn) is a Rie-

mannian-manifold. Let us consider the family of these spaces (M+
n , Kn)n∈N. If for every

stochastic map T : Mn → Mm the following monotonicity property holds

KT (D)(T (X), T (X)) ≤ KD(X, X) ∀D ∈ M+
n , ∀X ∈ TDM+

n

then there exists an operator monotone function f : R+ → R with the property f(x) =

xf(x−1), such that

(3) KD(X, Y ) = Tr(X(R
1
2

n,Df(Ln,DR−1
n,D)R

1
2

n,D)−1(Y )),

where Ln,D and Rn,D are defined as Ln,D(X) = DX and Rn,D(X) = XD.

These metrics are considered as the noncommutative generalizations of the Fisher-

information. Because of the monotonicity property these metrics are called monotone

metrics. One can use (3) to define a monotone metric on the state space starting from

an appropriate operator monotone function.

5. The first relative entropy definition in the quantum setting is due to Umegaki [24]:

SU(D1, D2) = Tr D1(log D1 − log D2).

Petz based the generalization of the classical relative entropy on relative modular opera-

tors [14, 18, 19]. For an operator convex function g : ]0,∞[ → R with property g(1) = 0
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the function

Sg(·, ·) : M+
n ×M+

n → R (D1, D2) 7→ Sg(D1, D2) = Tr(D
1/2
1 g(LD2

R−1
D1

)D
1/2
1 )

is called the g-relative entropy.

The operator convex function g(x) = (x−1) log x
2 generates the Umegaki relative en-

tropy, g(x) = (x−1)2

2 generates the quadratic relative entropy

SQ(D1, D2) =
1

2
Tr(D1 − D2)D

−1
1 (D1 − D2)

and g(x) = (x−1)2

1+x generates the Bures relative entropy

SB(D1, D2) = Tr(D1 − D2)(LD2
+ RD1

)−1(D1 − D2).

On the space of diagonal matrices these relative entropies are the classical ones, that

is SU = DKL, SQ = Dχ2 and SB = D∆. These relative entropies generate Riemannian

metrics on the state space M+
n , as in the classical case, because for an arbitrary state

D ∈ M+
n the bilinear map

g
(S)
D : TDM+

n × TDM+
n → R (X, Y ) 7→ ∂2

∂t∂s
S(D + tX + sY, D)

∣

∣

∣

∣

t,s=0

is positive definite. Let us denote the generated metrics by g(U), g(Q) and g(B). The

metrics g(Q) and g(B) are called greatest and smallest monotone metrics.

These methods gave the same Riemannian metric in the classical case, but in this

noncommutative setting we have the following Theorem.

Theorem 3.2. The metrics g(KM) and g(WY) are monotone metrics and the correspond-

ing operator monotone functions are x−1
log x and (

√
x−1)2

4 . The metric generated by the

Umegaki relative entropy is equal to the Kubo–Mori metric, that is g(U) = g(KM). The

greatest and smallest monotone metrics are monotone metrics, with operator monotone

functions 2x
1+x and 1+x

2 , respectively.

Remark 2. After these steps we conclude that there is no unique extension of the clas-

sical Fisher information, and the most general Fisher information is given by the Petz

formula (3). It means that the canonical geometry of the quantum mechanical state space

can be labeled by special operator monotone functions. So the differential geometrical

quantities of the state space depend on the operator monotone function which generates

its Riemannian metric.

4. Series expansion of the volume. Let (M, g) be an n-dimensional Riemannian

geometry. The geodesic ball with center p ∈ M and radius R is defined to be

BR(p) := {x ∈ M : dist(p, x) < R}.

For a fixed p point let VR(p) denote the volume of BR(p). For flat manifolds VR(p) is

equal to the volume of the euclidean ball, but in general spaces VR(p) can be greater

or smaller, because of the curvature. The first series expansion of VR(p) was given by
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Bertrand, Diguet and Puiseux in 1848 [4]. They published the formula

VR(p) = πR2

[

1 − K(p)

12
R2 + O(R4)

]

,

for surfaces in R3, where K(p) denotes the Gaussian curvature at a point p. This result was

generalized for arbitrary Riemannian manifolds by Vermeil in 1917 [25] and by Hotelling

in 1939 [9]. The next element from the series expansion was given by Gray in 1973 [7]

and another element was given by Gray and Vanhecke in 1979 [8].

Assume that (M, g) is a Riemannian manifold. At a given point p ∈ M the met-

ric tensor is a matrix [g(p)ik]i,k=1,...,dim M , the inverse of this matrix is denoted by

[g(p)ik]i,k=1,...,dim M . From this point we will use the Einstein summation rule, that is: if

an index occurs once as a lower index and once as an upper index we have to sum up

over that index from 1 to dim M . To understand and use the series expansion of the vol-

ume first we introduce the most basic differential geometrical quantities (the Christoffel

symbol, the Riemannian curvature tensor, the Ricci tensor and the scalar curvature)

Γ..m
ij = gkm 1

2
(∂igjk + ∂jgik − ∂kgij),

R...l
ijk = ∂iΓ

..l
jk − ∂jΓ

..l
ik + Γ..m

jk Γ..l
im − Γ..m

ik Γ..l
jm,

Ricjk = R...i
ijk,

Scal = Ricij gij .

From these basic quantities we define some versions of them

Rickl = Ricij gikgjl, Ric.j
i = Ricik gkj , Rijkl = Rmnopg

mignjgokgpl,

Ri
jkl = Rnjklg

ni, R..kl
ij = Rijmngmkgnl, R

i.j
.k.l = Rmknlg

mignj ,

and some new summations of them

‖Ric ‖2 = Ricij Ricij , ‖R‖2 = RijklR
ijkl, Řic = Ric.j

i Ric.k
j Ric.i

k ,

〈Ric, Ṙ〉 = Ricij RipqrRj
.pqr, 〈Ric⊗Ric, R̃〉 = Ricij Rickl Rikjl, Ř = R..kl

ij R
..pq
kl R..ij

pq ,

R̄ = RikjlR
k.l
.p.qR

piqj ,

and finally some derivatives of them

‖∇Scal ‖2 = (∂i Scal)(∂j Scal)gij ,

(∇Ric)ijk = ∂k Ricij −Γ..p
ik Ricpj −Γ..p

jk Ricip,

‖∇Ric ‖2 = (∇Ric)ijk(∇Ric)lmngligmjgnk,

α(Ric) = (∇Ric)jki(∇Ric)lmngligmjgnk,

(∇R)ijklm = ∂mRijkl − Γ..p
imRpjkl − Γ..p

jmRipkl − Γ..p
kmRijpl − Γ..p

lmRijkm,
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‖∇R‖2 = (∇R)ijklm(∇R)nopqrg
nigojgpkgqlgrm,

∆Scal = (∂i∂j Scal)gij − Γ..p
ij (∂p Scal)gij ,

〈∆Ric, Ric〉 = (∂l(∇Ric)ijk)gkl Ricij −Γ..p
il (∇Ric)pjkgkl Ricij

−Γ..p
jl (∇Ric)ipkgkl Ricij −Γ..p

kl (∇Ric)ijpg
kl Ricij ,

〈∇2 Scal, Ric〉 = (∂j∂i Scal) Ricij −Γ..p
ij (∂p Scal) Ricij ,

〈∆R, R〉 = Rijklgmn(∂n(∇R)ijklm) − Γ..p
in (∇R)pjklmRijklgmn

−Γ..p
jn(∇R)ipklmRijklgmn − Γ..p

kn(∇R)ijplmRijklgmn

−Γ..p
ln (∇R)ijkpmRijklgmn − Γ..p

mn(∇R)ijklpR
ijklgmn,

∆2 Scal = (∂i∂j(∆Scal))gij − Γ..p
ij (∂p(∆Scal))gij .

Theorem 4.1 (Gray and Vanhecke, [8]). Let (M, g) be an n dimensional Riemannian

manifold. For an arbitrary point p ∈ M the series expansion of the volume of the geodesic

ball VR(p) (with center p and radius R) is the following:

VR(p) =
Rnπn/2

Γ(n
2 + 1)

[

1 − Scal

6(n + 2)
R2 +

−3‖R‖2 + 8‖Ric ‖2 − 5 Scal2 −18(∆Scal)

360(n + 2)(n + 4)
R4

(4)

+
1

720(n + 2)(n + 4)(n + 6)

(

− 5

9
Scal3 −8

3
Scal ‖Ric ‖2 + Scal ‖R‖2 +

64

63
Řic

+
64

21
〈Ric⊗Ric, R̃〉 +

32

7
〈Ric, Ṙ〉 +

110

63
Ř +

200

63
R̄ +

45

7
‖∇Scal ‖2 +

45

14
‖∇Ric ‖2

+
45

7
α(Ric) − 45

14
‖∇R‖2 + 6 Scal(∆Scal) +

48

7
〈∆Ric, Ric〉 +

54

7
〈∇2 Scal, Ric〉

− 30

7
〈∆R, R〉 − 45

7
(∆2 Scal)

)

R6 + O(R8)

]

.

Remark 3. For example one curvature invariant which occurs in the series expansion is

‖∇R‖2 =
n

∑

i,j,k,l,m,o,p,q,r,s=1

(∇R)ijklm(∇R)opqrsg
iogjpgkqglrgms,

so to compute the higher order curvature invariants in a concrete application is nearly

hopeless, even in low dimensions, because it requires to sum up n10 elements.

In the classical case the series expansion of the geodesic ball is given by the following

theorem. It is worth remarking that the series expansion in this case is independent of

the center of the ball.

Theorem 4.2 (Classical case). For the Riemannian geometry (Pn, g) the series expan-

sion of the volume of the geodesic ball is
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Vn(R) =
rn−1π(n−1)/2

Γ(n−1
2 + 1)

[

1 − (n − 1)(n − 2)

24(n + 1)
R2 + +

(n − 1)(n − 2)(5n − 12)

5760(n + 3)
R4

− (n − 1)(n − 2)(35n2 − 182n + 240)

2903040(n + 5)
R6 + O(R8)

]

.

Proof. Let us use

ϕ : Pn → R
n−1, (p1, . . . , pn) 7→ (p1, . . . , pn−1),

the global coordinate system on the manifold Pn. The components of the metric tensor

[gij ]i,j=1,...,n−1 is given by (2). The inverse of the metric tensor is gij = −pipj + δijpi.

The Christoffel symbols, Ricci tensor and scalar curvature are

Γ..k
ij =

1

2

(

pk

1 −
∑n−1

j=1 pj

+ δij
pk

pi
− δijδjk

1

pj

)

,

Ricjk =
n − 2

4

(

1

1 −
∑n−1

i=1 pi

+ δjk
1

pj

)

,

Scal =
(n − 1)(n − 2)

4
.

The other derived quantities are the following.

Ricij =
n − 2

4
(−pipj + δijpi), ‖Ric ‖2 =

(n − 1)(n − 2)2

16
, ∆Scal = 0,

‖R‖2 =
(n − 1)(n − 2)

8
, Řic =

(n − 1)(n − 2)3

64
, ‖∇Ric ‖2 = 0,

〈∆Ric, Ric〉 = 0, ‖∇Scal ‖2 = 0, 〈∇2 Scal, Ric〉 = 0,

〈Ric⊗Ric, R̃〉 = − (n − 1)(n − 2)3

64
, α(Ric) = 0, ∇2 Scal = 0,

〈Ric, Ṙ〉 =
(n − 1)(n − 2)2

32
, Ř = − (n − 1)(n − 2)

16
, ‖∇R‖2 = 0,

R̄ = − (n − 1)(n − 2)(n − 3)

64
, 〈∆R, R〉 = 0.

Substituting these quantities into the series expansion of the volume one concludes the

proof of the Theorem.

The volume of the geodesic ball with center p ∈ M can be written in the form

VR(p) = CnRn
(

1 +
∞
∑

i=1

αi(p)R2i
)

,

where only the functions (αi)i∈N depend on the point p. Gray and Vanhecke computed

the functions α1, α2 and α3.

We will focus on the geometry of state space (quantum information geometry). It

is widely believed that in the above mentioned information geometrical setting (both

classical and quantum case) the quantity VR(p) has statistical interpretation. Therefore

the functions (αi)i∈N in the series expansion also can interpreted in the language of

statistics. For example the first nontrivial function α1 corresponds to the scalar curvature,

which measures the average statistical uncertainty as shown by Petz [15]. It is reasonable
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to expect that more mixed states are less distinguishable than less mixed states. It means

mathematically that in this case the scalar curvature of a Riemann structure should have

the following monotonicity property: if D1 is more mixed than D2 then Scal(D2) should be

smaller then Scal(D1). This is known as the Petz conjecture, if the state space is endowed

with the Kubo–Mori metric [16]. Petz proved the conjecture for 2 × 2 complex density

matrices [16]. The scalar curvature of the state endowed with the Kubo–Mori metric was

given by Michor, Petz and Andai for the real state space [11] and by Dittmann for the

complex state space [6]. Partial results about the conjecture can be found in [3]. Taking

into account the statistical interpretation of the volume and the first nontrivial element

in the series expansion we conclude that those monotone metrics are important in some

sense from statistical point of view, for which the functions (αi)i∈N are monotone with

respect to the majorisation relation. This is the concept behind the following definition.

Definition 1. The monotone Riemannian metric g on the state space M+
n is called

k-admissible if for any states D1, D2 ∈ M+
n the implication

D1 ≺ D2 =⇒ ∀i ∈ {1, . . . , k} : αi(D1) ≤ αi(D2)

holds, and g is admissible if it is k-admissible for every k ∈ N.

In this sense Petz conjecture means that the Kubo–Mori metric is 1-admissible. Be-

cause of the central role of the entropy in the theory of (quantum) statistical mechanics

we conjecture that the metric generated by the entropy is admissible.

Conjecture 4.1 (Generalized Petz conjecture). The Kubo–Mori metric is admissible.

From a given operator monotone function, which generates monotone metric, it is not

easy to decide whether the generated metric is admissible or not, because the functions

αi are rather complicated.

5. Qubit case. In the simplest quantum case, dealing with 2 × 2 matrices we can use

the Stokes parametrization, that is every state D can be uniquely written in the form

D =
1

2
(I + x1σ1 + x2σ2 + x3σ3),

where (σi)i=1,2,3 are the Pauli matrices and (x1, x2, x3) ∈ R3 with x2
1 + x2

2 + x2
3 ≤ 1.

The interior of the set of states can be identified with the open unit ball in R
3 by this

parametrization. For a fixed state D ∈ M+
2 (qubit) from the open unit ball denote by

r the distance between D and the origin. If λ1 and λ2 are the eigenvalues of D then

r = |λ1 − λ2|, and this r measures the purity of the state: r = 0 corresponds to the most

mixed state and in a pure state r = 1.

Theorem 5.1. Let D ∈ M+
2 and r = 2λ1−1 where λ1 is an eigenvalue of D and assume

that the monotone metric of M+
2 comes from a function f . Then the function α1 at D is

α1(r) = −
7(r − 1)[f ′( 1−r

1+r )]2

15(1 + r)3[f( 1−r
1+r )]2

−
(r2 + 7r − 6)f ′( 1−r

1+r )

15(1 + r)2rf( 1−r
1+r )

−
4(1 − r)f ′′( 1−r

1+r )

15(1 + r)3f( 1−r
1+r )

(5)

−
(1 + r)f( 1−r

1+r )

15r2
− 3r3 + 5r2 + 8r − 4

60(1 + r)r2
.
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Proof. The scalar curvature of M+
2 at a state D ∈ M+

2 was expressed in [2] in terms of

the function f . To prove this Theorem it is enough to substitute that expression into the

series expansion of the volume.

One can show that the volume of the geodesic ball with a given center D ∈ M+
2

and with radius R depends only on the parameters r (which measures the purity of the

state D) and R, we will denote this volume by VR(r). The quantity VR(r) for a general

monotone Riemannian metric cannot be expressed explicitly, except when the center of

the ball is the most mixed state.

Theorem 5.2 ([2]). Assume that the monotone metric of M+
2 is generated by f . The

volume of the geodesic ball with radius R around the most mixed state (when r = 0) is

VR(0) = 4π

∫ R

0

t2

(1 + t)
√

1 − t2f( 1−t
1+t )

dt.

The series expansion of this volume is

VR(0) =
4πR3

3

[

1 − 1 + 6f ′′(1)

5
R2 +

2 − 30f (4)(1) + 150f ′′(1) + 180(f ′′(1))2

105
R4(6)

+

(

− 1

945
+

14

9
f (4)(1) +

178

15
f ′′(1) − 4(f ′′(1))2 − 4

135
f (6)(1)

+
32

3
f (3)(1) +

8

9
f ′′(1)f (4)(1) − 8

3
(f ′′(1))3

)

R6 + O(R8)

]

.

To express the functions α2 and α3 one has to continue the differential geometrical

computations which was given in [2]. The results for general function f will be quite

complicated formulas. Using mathematical programs (Maple or Mathematica) one can

compute and visualize the functions α2 and α3 in concrete examples.

Example 1. The monotone metric generated by the function f(x) = 1+x
2 is the smallest

metric. The series expansion of the volume of a geodesic ball with center D ∈ M+
2 is

VR(r) =
4πR3

3

(

1 − 1

5
R2 +

2

105
R4 − 1

945
R6 + O(R8)

)

.

The functions (αi)i=1,2,3 do not depend on the center state D, as in the classical case.

This is the only monotone metric with this property known to the author.

Example 2. The monotone metric generated by the function f(x) = 2x
1+x is the largest

metric. The series expansion of VR(r) is

VR(r) =
4πR3

3

(

1 − 1

15

6 − r2

1 − r2
R2 + +

1

1575

3r4 + 50r2 + 225

(1 − r2)2
R4

+
1

33075

r6 − 84r4 − 2380r2 − 2170

(1 − r2)3
R6 + O(R8)

)

.

The functions α1, α2 and α3 are plotted with solid, dashed and dotted lines in the

following picture.
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Largest metric
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Example 3. The Kubo–Mori metric is generated by the function f(x) = x−1
log x . The

volume expansion for a fixed D ∈ M+
2 qubit can be computed, but the result is a rather

complicated formula. The picture shows the behavior of the functions (αi)i=1,2,3.

Kubo Mori metric
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Example 4. The function f(x) = 2xp+1/2

1+x2p generates a monotone metric for every pa-

rameter p ∈
[

0, 1
2

]

. In this case the functions (αi)i=1,2,3 depend not only r, but on the

parameter of the metric p as well. In this parametric case αi are rather complicated ex-

pressions, for example the function α3 consists of more than 500 summands. The function

α1 is the brightest and α3 is the darkest in the next picture.
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From the above mentioned metrics numerical simulations show that they are 3-

admissible. (Every function (αi)i=1,2,3 is increasing with respect to the parameter r.)

The same property can be proved numerically about the monotone metric generated by

the function fβ(x) = β(1−β)(x−1)2

(xβ−1)(x1−β−1)
, where 0 < β < 1. But this is not true for every

monotone metric even in the qubit case.

Example 5. The next picture shows the strange behavior of the functions (αi)i=1,2,3 if

the monotone metric is generated by the function f(x) = 9x2+82x+9
5(x+1) .

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1
r

6. Conclusion. We showed numerically that the well known monotone metrics are at

least 3-admissible in the qubit case. (We conjecture that they are admissible.) For n× n

density matrices the computing time of the quantities (αi)i=1,2,3 is about n20. To compute

these quantities on the space of 3 × 3 complex density matrices requires about 3000

times longer computing time, so it remains an open question whether these metrics are

admissible or not in the space of higher level quantum systems.

References

[1] S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics 28,

Springer-Verlag, New York, 1985.

[2] A. Andai, Monotone Riemannian metrics on density matrices with non-monotone scalar

curvature, J. Math. Phys. 44 (2003), 3675–3688.

[3] A. Andai, On the monotonicity conjecture for the curvature of the Kubo–Mori metric,

arXiv:math-ph/0310064.

[4] J. Bertrand, C. F. Diguet and V. Puiseux, Démonstration d’un théorème de Gauss, Jour-
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mann’schen Mannigfaltigkeit , Akad. Wiss. Göttingen Nachr. (1917), 334–344.


