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Abstract. By abstracting the multiplication rule for Z2-graded quantum stochastic integrals,

we construct a Z2-graded version of the Itô Hopf algebra, based on the space of tensors over a

Z2-graded associative algebra. Grouplike elements of the corresponding algebra of formal power

series are characterised.

1. Introduction. This paper concerns Z2-graded algebras. An associative algebra A,

not necessarily unital, is Z2-graded if, as a vector space, it is the internal direct sum

A = A0 + A1 of even and odd subspaces which satisfy

A0A0,A1A1 ⊂ A0, A0A1,A1A0 ⊂ A1.

The parity δ is the function on the set A0 ∪ A1 − {0} of which is 0 on A0 and 1 on A1.

The Chevalley tensor product [1] of two such algebras A = A0 + A1, B = B0 + B1 is the

Z2-graded associative algebra got by equipping the vector space tensor product A⊗ B

with the product defined by bilinear extension of the rule that, for homogeneous a, a′ ∈

A, b, b′ ∈ B, (a ⊗ b)(a′ ⊗ b′) = (−1)δ(b)δ(b′)aa′ ⊗ bb′ and the Z2-grading defined by

δ(a⊗ b) = δ(a)+ δ(b) (mod 2). In this paper the tensor product algebra of two Z2-graded

associative algebras will always be understood as the Chevalley tensor product. Thus, for

example, a Z2-graded Hopf algebra is a unital Z2-graded associative algebra H equipped

with a counital coassociative coproduct ∆ : H → H⊗H which is multiplicative and

Z2-graded (in the sense that even subspaces map to even and odd to odd) when H⊗H is

equipped with the Chevalley structure, together with an antipode S which is Z2-graded-

antimultiplicative, that is satisfies S(hh′) = (−1)δ(h)δ(h′)S(h′)S(h).

In [8], generalising the shuffle product Hopf algebra used in [2], a Hopf algebra struc-

ture was introduced in the space of tensors over an associative algebra which can be used

[6] to quantise Lie bialgebras in which the Lie bracket is formed by taking commutators
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in the associative algebra in a comparatively [2] straightforward way. The purpose of the

present work is to initiate a Z2-graded version of this circle of ideas. It is shown that, given

a not necessarily unital Z2-graded associative algebra L, the space of tensors T (L) can

be equipped with the structure of a Z2-graded Hopf algebra which contains a sub-Hopf

algebra isomorphic to the universal enveloping superalgebra of the Lie superalgebra got

by taking supercommutators in L.

2. The Z2-graded sticky shuffle product. Let L be a Z2-graded vector space, that is,

a vector-space internal direct sum L = L0+L1 of even and odd subspaces L0 and L1. The

vector space T (L) =
⊕∞

n=0(
⊗n

L) (where
⊗0

L is the underlying field F) of all tensors

over L becomes a unital associative algebra when equipped with the product defined by

bilinear extension of the rule that, for L1, L2, ..., Lm+n ∈ L of definite parity,

(0, 0, ..., 0, L1 ⊗ L2 ⊗ · · · ⊗ Lm, 0, 0, ...)(0, 0, ..., 0, Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n, 0, 0, ...)

=
∑

π∈Sm,n

(−1)σ(π;L1,L2,...,Lm+n)(0, 0, ..., 0, Lπ(1) ⊗ Lπ(2) ⊗ · · · ⊗ Lπ(m+n)0, 0, ...). (1)

Here Sm,n is the set of permutations π of {1, 2, ...,m+m} such that π(1) < π(2) < · · · <

π(m) and π(m + 1) < π(m + 2) < · · ·π(m + n) and σ(π;L1, L2, ..., Lm+n) counts the

number of transpositions of adjacent pairs of odd elements needed to effect the reordering

(L1, L2, ..., Lm+n) → (Lπ(1), Lπ(2), · · · , Lπ(m+n)). Thus, for example

(0, L1, 0, 0, ...)(0, L2, 0, 0, ...) = (0, 0, L1 ⊗ L2 + (−1)δ(L1)δ(L2)L2 ⊗ L1, 0, 0, ...),

(0, 0, L1 ⊗ L2, 0, 0, ...)(0, L3, 0, 0, ...)

= (0, 0, 0, L1 ⊗ L2 ⊗ L3 + (−1)δ(L2)δ(L3)L1 ⊗ L3 ⊗ L2

+ (−1)δ(L2)δ(L3)+δ(L2)δ(L3)L3 ⊗ L1 ⊗ L2, 0, 0, ...).

The unit element is (1F, 0, 0, ...). In the totally even case L1 = {0} this is just the shuffle

product, so called because of the analogy with shuffling packs of cards, so we call it the

Z2-graded shuffle product corresponding to the Z2-grading L = L0 + L1.

Now suppose L = L0 + L1 is a not necessarily unital Z2-graded associative algebra.

Thus it is equipped with an associative multiplication with the properties L0L0, L1L1 ⊂

L0, L0L1, L1L0 ⊂ L1. We define a corresponding sticky Z2-graded shuffle product by

adding extra terms to the shuffle product (1) based on this multiplication rule:

(0, 0, ..., 0, L1 ⊗ L2 ⊗ · · · ⊗ Lm, 0, 0, ...)(0, 0, ..., 0, Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n, 0, 0, ...)

=
∑

π∈Sm,n

(−1)σ(π;L1,L2,...,Lm+n)
{

(0, 0, ..., 0, Lπ(1) ⊗ Lπ(2) ⊗ · · · ⊗ Lπ(m+n)0, 0, ...)

+

m∧n
∑

k=1

(

0, 0, ...,
∑

τ∈Cπ;k

(Lτ(1) ⊗ Lτ(2) ⊗ · · · ⊗ Lτ(m+n−k)), 0, 0, ...
)}

. (2)

Here for each k ∈ {1, 2, ...,m∧n}, Cπ;k is the class of ordered partitions τ = (τ (1), τ (2), ...,

τ (m + n − k)) of the ordered set (π(1), π(2), ..., π(m + n)), consisting of k pairs and

m + n − 2k singletons, obtained by bracketing some adjacent pairs {π(r), π(s)} with

r ∈ {1, 2, ...,m}, s ∈ {m+ 1,m+ 2, ...,m+ n} and π(s) = π(r) + 1. For a singleton τ (j)
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= π(r), Lτ(j) is defined to be Lr while for a pair τ (j) = {π(r), π(s)}, Lτ(j) = LrLs.

Thus, in a sticky shuffle, after the initial shuffle, a card from the first pack may stick to

an adjacent card from the second pack and form a single card. For example

(0, L1, 0, 0, ...)(0, L2, 0, 0, ...) = (0, L1L2, L1 ⊗ L2 + (−1)δ(L1)δ(L2)L2 ⊗ L1, 0, 0, ...)

(0, 0, L1 ⊗ L20, 0, ...)(0, L3, 0, 0, ...)

= (0, 0, L1 ⊗ L2L3, L1 ⊗ L2 ⊗ L3, 0, 0, ...)

+ (−1)δ(L2)δ(L3)(0, 0, L1L3 ⊗ L2, L1 ⊗ L3 ⊗ L2, 0, 0, ...)

+(−1)δ(L2)δ(L3)+δ(L2)δ(L3)(0, 0, 0, L3 ⊗ L1 ⊗ L2, 0, 0, ...). (3)

This procedure defines a unital associative multiplication in T (L) with unit 1F.

If L = L0+L1 is the complex Z2-graded algebra of quantum stochastic Itô differentials

of [4],[5] then, for a < b ∈ R
+, the linear iterated stochastic integral map Ib

a from T (L)

to operators on the restricted exponential domain in the appropriate Fock space Fb
a, for

which

Ib
a(0, 0, ..., 0, L1 ⊗ L2 ⊗ · · · ⊗ Lm, 0, 0, ...) =

∫

a<t1<t2<···<tm<b

dL1(t1)dL2(t2)...dLm(tm),

is multiplicative, in the weak sense that for arbitrary restricted exponential vectors ϕ, ψ

and α, β in T (L)

〈ϕ, Ib
a(αβ)ψ〉 = 〈Ib

a(α)†ϕ, Ib
a(β)ψ〉.

The Z2-graded sticky shuffle product algebra T (L) is itself Z2-graded by the linear

extension of the rule that, for homogeneous L1, L2, ..., Lm,

δ(L1 ⊗ L2 ⊗ · · · ⊗ Lm) =

m
∑

j=1

δ(Lj) (addition mod 2).

It reduces to the corresponding unsticky product when the associative multiplication in

L is the trivial one in which all products vanish.

From (3) it follows that the map φ : L ∋L 7→ (0, L, 0, 0, ...) ∈ T (L) is a homo-

morphism of Lie superalgebras [9] when L, and similarly T (L), is equipped with the

supercommutator formed by bilinear extension of the rule for homogeneous L,K that

[L,K] = LK− (−1)δ(L)δ(K)KL. Thus φ has a unique extension Φ to a homomorphism of

Z2-graded unital associative algebras from the universal enveloping superalgebra of the

supercommutator Lie superalgebra L intoT (L). It follows from the Z2-graded Poincaré-

Birkhoff-Witt theorem [9] that the map Φ is injective.

3. The Z2-graded sticky shuffle product Hopf algebra. The Z2-graded shuffle

product algebra T (L) becomes a Z2-graded Hopf algebra under the coproduct ∆ defined

by linear extension of the rule

∆(0, 0, ..., 0, L1 ⊗ L2 ⊗ · · · ⊗ Lm, 0, 0, ...)

=

m
∑

j=0

(0, 0, ..., 0, L1 ⊗ L2 ⊗ · · · ⊗ Lj , 0, 0, ...)

⊗(0, 0, ..., 0, Lj+1 ⊗ Lj+2 ⊗ · · · ⊗ Lm, 0, 0, ...). (4)
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The counit is the map ε taking each tensor into its zero-rank component and the antipode

is the map S given by linear extension of

S(0, 0, ..., 0, L1⊗L2⊗· · ·⊗Lm, 0, 0, ...) = (−1)m∆(0, 0, ..., 0, Lm⊗Lm−1⊗· · ·⊗L1, 0, 0, ...).

(5)

In fact ∆ remains multiplicative if shuffles are replaced by sticky shuffles.

Theorem 1. The coproduct defined by (4) is multiplicative for the product defined by (2).

Proof. We abbreviate (0, 0, ..., 0, L1 ⊗L2 ⊗ · · · ⊗Lm, 0, 0, ...) as L1 ⊗L2 ⊗ · · · ⊗Lm. Thus

we have to show that, for L1, L2, ..., Lm+n ∈ L of definite parity,

∆((L1 ⊗ L2 ⊗ · · · ⊗ Lm)(Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n))

= ∆(L1 ⊗ L2 ⊗ · · · ⊗ Lm)∆(Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n).

We give the proof in the case m = 2, n = 1. Then, replacing the symbol ⊗ by ⊠ for the

tensor product between elements of different copies of T (L) for clarity, and denoting the

grades of homogeneous elements L, L′ and L′′ of L by δ, δ′ and δ′′ respectively, we have

∆((L⊗ L′)L′′)

= ∆(L⊗ L′ ⊗ L′′ + L⊗ L′L′′ + (−1)δ′δ′′

(L⊗ L′′ ⊗ L′ + LL′′ ⊗ L′)

+(−1)(δ+δ′)δ′′

L′′ ⊗ L⊗ L′)

= 1 T (L) ⊠ (L⊗ L′ ⊗ L′′ + L⊗ L′L′′ + (−1)δ′δ′′

(L⊗ L′′ ⊗ L′ + LL′′ ⊗ L′)

+(−1)(δ+δ′)δ′′

L′′ ⊗ L⊗ L′)

+L⊠ (L′ ⊗ L′′) + (L⊗ L′) ⊠ L′′ + L⊠ L′L′′

+(−1)δ′δ′′

(L⊠ (L′′ ⊗ L′) + (L⊗ L′′) ⊠ L′ + LL′′
⊠ L′)

+(−1)(δ+δ′)δ′′

(L′′
⊠ (L⊗ L′) + (L′′ ⊗ L) ⊠ L′)

+(L⊗ L′ ⊗ L′′ + L⊗ L′L′′ + (−1)δ′δ′′

(L⊗ L′′ ⊗ L′ + LL′′ ⊗ L′)

+(−1)(δ+δ′)δ′′

L′′ ⊗ L⊗ L′) ⊠ 1 T (L).

On the other hand

∆(L⊗ L′)∆(L′′) = {1 T (L) ⊠ (L⊗ L′) + L⊠ L′ + (L⊗ L′) ⊠ 1 T (L)}

{1 T (L) ⊠ L′′+ L′′
⊠ 1 T (L)}

= 1 T (L) ⊠ (L⊗ L′ ⊗ L′′+ L⊗ L′L′′+ (−1)δ′δ′′

(L⊗ L′′⊗ L′ + LL′′⊗ L′)

+(−1)(δ+δ′)δ′′

L′′⊗ L⊗ L′)

+(−1)(δ+δ′)δ′′

L′′
⊠ (L⊗ L′) + L⊠ (L′ ⊗ L′′+ (−1)δ′δ′′

L′′⊗ L′ + L′L′′)

+(−1)δ′δ′′

(L⊗ L′′+ (−1)δδ′′

L′′⊗ L+ LL′′) ⊠ L′ + (L⊗ L′) ⊠ L′′

+(L⊗ L′ ⊗ L′′+ L⊗ L′L′′+ (−1)δ′δ′′

(L⊗ L′′⊗ L′ + LL′′⊗ L′)

+(−1)(δ+δ′)δ′′

L′′⊗ L⊗ L′) ⊠ 1 T (L)

as required.

Thus T (L) becomes a Z2-graded bialgebra. By regarding it as a deformation of the

Z2-graded unsticky shuffle product algebra (for example by inserting a formal deformation
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parameter h into the product in L so that the extra sticky terms are prefixed by positive

powers of h; see [8] for the corresponding ungraded argument) we may invoke the Z2-

graded version of the theorem [3] that a deformation bialgebra of a Hopf algebra is itself

a Hopf algebra, to conclude that T (L) is a Z2-graded Hopf algebra, in which the antipode

got by adding correction terms of lower rank to the right hand side of (5). We call it the

Z2-graded sticky shuffle product Hopf algebra.

In the case when L is the Z2-graded algebra of quantum stochastic Itô differentials

[4], [5], the coproduct ∆ is related to the splitting or continuous tensor product structure

of Fock space as follows. For a < b < c ∈ R
+, making the identification Fc

a = Fb
a ⊗ Fc

b ,

we have

Ic
a = (Ib

a ⊗ Ic
b )∆.

Here the algebras of processes on Fc
a, F

b
a, F

c
b must be Z2-graded using the corresponding

grading operators [5] Γc
a, Γb

a, Γc
b. For example for homogeneous L ∈ L then

Ic
a(0, L, 0, 0, ...) = Ib

a(0, L, 0, 0, ...) ⊗ id Fc
b

+ (Γb
a)δ(L) ⊗ Ic

b (0, L, 0, 0, ...)

where ⊗ means the usual operator tensor product operator.

We define the iterated coproducts ∆(n) : T (L) →
⊗n

(T (L)), n=0, 1, 2, ..., by ∆(0) =

ε, ∆(1) = id T (L), ∆
(n) = (∆⊗id ⊗

n−1 T (L))∆
(n−1), n > 1. Thus ∆(2) = ∆. The following

useful theorem also holds in the ungraded case [6].

Theorem 2. For n=0, 1, 2, ...denote by αn the component of rank n of α ∈ T (L). Then,

in the decomposition

n
⊗

T (L) =

∞
⊕

m1,m2,...mn=0

((

m1
⊗

)

⊗
(

m2
⊗

)

⊗ · · · ⊗
(

mn
⊗

))

,

the component of ∆(n)(α) of joint rank (1, 1, ...,
(n)

1 ) is αn.

Proof. The Theorem holds when n = 0, 1 by the definitions of ∆(0),∆(1). From (4) it

holds when n = 2 for tensors whose second rank components are product tensors and

hence generally by linearity. For an nth rank product tensor then by iteration of (4) we

have

∆(n)(0, 0, ..., 0, L1 ⊗ L2 ⊗ · · · ⊗ Lm, 0, 0, ...)

=
∑

0≤j1≤j2≤···≤jn≤m

{(0, 0, ..., 0, L1 ⊗ L2 ⊗ · · · ⊗ Lj1 , 0, 0, ...)

⊗(0, 0, ..., 0, Lj1+1 ⊗ Lj1+2 ⊗ · · · ⊗ Lj1+j2 , 0, 0, ...) ⊗ · · ·

⊗(0, 0, ..., 0, Lj1+j2+···jn+1 ⊗ Lj1+j2+···jn+2 ⊗ · · · ⊗ Lm, 0, 0, ...)}.

From this it follows that the component of joint rank (1, 1, ...,
(n)

1 ) of ∆(n)(0, 0, ..., 0, L1 ⊗

L2 ⊗ · · · ⊗Ln, 0, 0, ...) is just L1 ⊗L2 ⊗ · · · ⊗Ln and that product tensors of other ranks

cannot contribute to this component. The result now follows by linearity.
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4. Grouplike elements of T (L)[[h]]. We equip the vector space T (L)[[h]] of formal

power series with coefficients in T (L) with the convolution multiplication

∞
∑

N=0

hNα(N)
∞
∑

N=0

hNβ(N) =

∞
∑

N=0

hN

N
∑

j=0

α(N−j)β(j).

The coproduct ∆ extends to a map from T (L)[[h]] to (T (L) ⊗ T (L))[[h]] by action on

coefficients; ∆(
∑∞

N=0 h
Nα(N)) =

∑∞
N=0 h

N∆(α(N)). As an illustration of the use of The-

orem 2 let us characterise elements α[h] of T (L)[[h]] which are group-like, meaning that

∆α[h] = α[h] ⊗ α[h]. Here the tensor product is rearranged into a formal power series

with coefficients in T (L) ⊗ T (L) by convolution; thus

∞
∑

N=0

hNα(N) ⊗

∞
∑

N=0

hNβ(N) =

∞
∑

N=0

hN

N
∑

j=0

α(N−j) ⊗ β(j).

Theorem 3 may be compared with the proof based on calculus of a corresponding result

in the ungraded case [7].

Theorem 3. Let α[h] be a nonzero grouplike element of T (L)[[h]]. Then there exists a

formal power series L[h] with coefficients in L and vanishing zero-order coefficient such

that

α[h] =
(

1, L[h], L[h] ⊗ L[h], ...,
n

⊗

L[h], ...
)

. (6)

Conversely every element of this form is grouplike.

Proof. Note first that for L[h] = hL(1) + h2L(2) + · · · ∈ hL[[h]] the right hand side of (6)

is a well defined element of T (L)[[h]];

(

1, L[h], L[h] ⊗ L[h], ...,
n

⊗

L[h], ...
)

.

= (1, 0, 0, ...) + h(0, L(1), 0, 0, ...) + h2(0, L(2), L(1) ⊗ L(1), 0, 0, ...) + · · · .

Suppose α[h] ∈ T (L)[[h]] is nonzero and satisfies ∆α[h] = α[h]⊗α[h]. Then in particular

α0[h] = (α0[h])
2 whence either α0[h] = 0 or α0[h] = 1. In the former case the group-

like property implies that α[h] = 0. Thus α0[h] = 1. Iterating the grouplike property

gives

∆(n)(α[h]) =

n
⊗

(α[h]).

Hence by Theorem 2 the component of rank n is given by

αn[h] =
(

n
⊗

(α[h])
)

(1,1,...,
(n)

1 )
=

(

n
⊗

(1, L[h], ...)
)

(1,1,...,
(n)

1 )
=

n
⊗

L[h]

where L[h] = α1[h] ∈ L[[h]]. But for α[h] = (1, L[h], L[h] ⊗ L[h], ...) to be well defined as

an element of T (L)[[h]] it is necessary that the zero-order coefficient L0 = 0 other wise

the zero-order coefficient of α[h] will be nonterminating. Hence α[h] is as claimed. The

converse follows directly from (4).
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