THE \mathbb{Z}_{2}-GRADED STICKY SHUFFLE PRODUCT HOPF ALGEBRA

ROBIN L. HUDSON
School of Mathematics, University of Loughborough
Loughborough, Leicestershire LE11 3TU, Great Britain
E-mail: R.Hudson@lboro.ac.uk

Abstract

By abstracting the multiplication rule for \mathbb{Z}_{2}-graded quantum stochastic integrals, we construct a \mathbb{Z}_{2}-graded version of the Itô Hopf algebra, based on the space of tensors over a \mathbb{Z}_{2}-graded associative algebra. Grouplike elements of the corresponding algebra of formal power series are characterised.

1. Introduction. This paper concerns \mathbb{Z}_{2}-graded algebras. An associative algebra \mathcal{A}, not necessarily unital, is \mathbb{Z}_{2}-graded if, as a vector space, it is the internal direct sum $\mathcal{A}=\mathcal{A}_{0}+\mathcal{A}_{1}$ of even and odd subspaces which satisfy

$$
\mathcal{A}_{0} \mathcal{A}_{0}, \mathcal{A}_{1} \mathcal{A}_{1} \subset \mathcal{A}_{0}, \quad \mathcal{A}_{0} \mathcal{A}_{1}, \mathcal{A}_{1} \mathcal{A}_{0} \subset \mathcal{A}_{1}
$$

The parity δ is the function on the set $\mathcal{A}_{0} \cup \mathcal{A}_{1}-\{0\}$ of which is 0 on \mathcal{A}_{0} and 1 on \mathcal{A}_{1}. The Chevalley tensor product [1] of two such algebras $\mathcal{A}=\mathcal{A}_{0}+\mathcal{A}_{1}, \mathcal{B}=\mathcal{B}_{0}+\mathcal{B}_{1}$ is the \mathbb{Z}_{2}-graded associative algebra got by equipping the vector space tensor product $\mathcal{A} \otimes \mathcal{B}$ with the product defined by bilinear extension of the rule that, for homogeneous $a, a^{\prime} \in$ $\mathcal{A}, b, b^{\prime} \in \mathcal{B},(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=(-1)^{\delta(b) \delta\left(b^{\prime}\right)} a a^{\prime} \otimes b b^{\prime}$ and the \mathbb{Z}_{2}-grading defined by $\delta(a \otimes b)=\delta(a)+\delta(b)(\bmod 2)$. In this paper the tensor product algebra of two \mathbb{Z}_{2}-graded associative algebras will always be understood as the Chevalley tensor product. Thus, for example, a \mathbb{Z}_{2}-graded Hopf algebra is a unital \mathbb{Z}_{2}-graded associative algebra \mathcal{H} equipped with a counital coassociative coproduct $\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$ which is multiplicative and \mathbb{Z}_{2}-graded (in the sense that even subspaces map to even and odd to odd) when $\mathcal{H} \otimes \mathcal{H}$ is equipped with the Chevalley structure, together with an antipode S which is \mathbb{Z}_{2}-gradedantimultiplicative, that is satisfies $S\left(h h^{\prime}\right)=(-1)^{\delta(h) \delta\left(h^{\prime}\right)} S\left(h^{\prime}\right) S(h)$.

In [8], generalising the shuffle product Hopf algebra used in [2], a Hopf algebra structure was introduced in the space of tensors over an associative algebra which can be used [6] to quantise Lie bialgebras in which the Lie bracket is formed by taking commutators

[^0]in the associative algebra in a comparatively [2] straightforward way. The purpose of the present work is to initiate a \mathbb{Z}_{2}-graded version of this circle of ideas. It is shown that, given a not necessarily unital \mathbb{Z}_{2}-graded associative algebra \mathcal{L}, the space of tensors $\mathcal{T}(\mathcal{L})$ can be equipped with the structure of a \mathbb{Z}_{2}-graded Hopf algebra which contains a sub-Hopf algebra isomorphic to the universal enveloping superalgebra of the Lie superalgebra got by taking supercommutators in \mathcal{L}.
2. The \mathbb{Z}_{2}-graded sticky shuffle product. Let \mathcal{L} be a $\mathbb{Z}_{2^{-}}$graded vector space, that is, a vector-space internal direct sum $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}$ of even and odd subspaces \mathcal{L}_{0} and \mathcal{L}_{1}. The vector space $\mathcal{T}(\mathcal{L})=\bigoplus_{n=0}^{\infty}\left(\bigotimes^{n} \mathcal{L}\right)$ (where $\bigotimes^{0} \mathcal{L}$ is the underlying field \mathbb{F}) of all tensors over \mathcal{L} becomes a unital associative algebra when equipped with the product defined by bilinear extension of the rule that, for $L_{1}, L_{2}, \ldots, L_{m+n} \in \mathcal{L}$ of definite parity,
\[

$$
\begin{align*}
& \left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right)\left(0,0, \ldots, 0, L_{m+1} \otimes L_{m+2} \otimes \cdots \otimes L_{m+n}, 0,0, \ldots\right) \\
= & \sum_{\pi \in \mathcal{S}_{m, n}}(-1)^{\sigma\left(\pi ; L_{1}, L_{2}, \ldots, L_{m+n}\right)}\left(0,0, \ldots, 0, L_{\pi(1)} \otimes L_{\pi(2)} \otimes \cdots \otimes L_{\pi(m+n)} 0,0, \ldots\right) \tag{1}
\end{align*}
$$
\]

Here $\mathcal{S}_{m, n}$ is the set of permutations π of $\{1,2, \ldots, m+m\}$ such that $\pi(1)<\pi(2)<\cdots<$ $\pi(m)$ and $\pi(m+1)<\pi(m+2)<\cdots \pi(m+n)$ and $\sigma\left(\pi ; L_{1}, L_{2}, \ldots, L_{m+n}\right)$ counts the number of transpositions of adjacent pairs of odd elements needed to effect the reordering $\left(L_{1}, L_{2}, \ldots, L_{m+n}\right) \rightarrow\left(L_{\pi(1)}, L_{\pi(2)}, \cdots, L_{\pi(m+n)}\right)$. Thus, for example

$$
\begin{gathered}
\left(0, L_{1}, 0,0, \ldots\right)\left(0, L_{2}, 0,0, \ldots\right)=\left(0,0, L_{1} \otimes L_{2}+(-1)^{\delta\left(L_{1}\right) \delta\left(L_{2}\right)} L_{2} \otimes L_{1}, 0,0, \ldots\right) \\
\left(0,0, L_{1} \otimes L_{2}, 0,0, \ldots\right)\left(0, L_{3}, 0,0, \ldots\right) \\
=\left(0,0,0, L_{1} \otimes L_{2} \otimes L_{3}+(-1)^{\delta\left(L_{2}\right) \delta\left(L_{3}\right)} L_{1} \otimes L_{3} \otimes L_{2}\right. \\
\left.+(-1)^{\delta\left(L_{2}\right) \delta\left(L_{3}\right)+\delta\left(L_{2}\right) \delta\left(L_{3}\right)} L_{3} \otimes L_{1} \otimes L_{2}, 0,0, \ldots\right)
\end{gathered}
$$

The unit element is $\left(1_{\mathbb{F}}, 0,0, \ldots\right)$. In the totally even case $\mathcal{L}_{1}=\{0\}$ this is just the shuffle product, so called because of the analogy with shuffling packs of cards, so we call it the \mathbb{Z}_{2}-graded shuffle product corresponding to the \mathbb{Z}_{2}-grading $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}$.

Now suppose $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}$ is a not necessarily unital \mathbb{Z}_{2}-graded associative algebra. Thus it is equipped with an associative multiplication with the properties $\mathcal{L}_{0} \mathcal{L}_{0}, \mathcal{L}_{1} \mathcal{L}_{1} \subset$ $\mathcal{L}_{0}, \mathcal{L}_{0} \mathcal{L}_{1}, \mathcal{L}_{1} \mathcal{L}_{0} \subset \mathcal{L}_{1}$. We define a corresponding sticky \mathbb{Z}_{2}-graded shuffle product by adding extra terms to the shuffle product (1) based on this multiplication rule:

$$
\begin{align*}
& \left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right)\left(0,0, \ldots, 0, L_{m+1} \otimes L_{m+2} \otimes \cdots \otimes L_{m+n}, 0,0, \ldots\right) \\
= & \sum_{\pi \in \mathcal{S}_{m, n}}(-1)^{\sigma\left(\pi ; L_{1}, L_{2}, \ldots, L_{m+n}\right)}\left\{\left(0,0, \ldots, 0, L_{\pi(1)} \otimes L_{\pi(2)} \otimes \cdots \otimes L_{\pi(m+n)} 0,0, \ldots\right)\right. \\
& \left.+\sum_{k=1}^{m \wedge n}\left(0,0, \ldots, \sum_{\tau \in \mathcal{C}_{\pi ; k}}\left(L_{\tau(1)} \otimes L_{\tau(2)} \otimes \cdots \otimes L_{\tau(m+n-k)}\right), 0,0, \ldots\right)\right\} . \tag{2}
\end{align*}
$$

Here for each $k \in\{1,2, \ldots, m \wedge n\}, \mathcal{C}_{\pi ; k}$ is the class of ordered partitions $\tau=(\tau(1), \tau(2), \ldots$, $\tau(m+n-k)$) of the ordered set $(\pi(1), \pi(2), \ldots, \pi(m+n))$, consisting of k pairs and $m+n-2 k$ singletons, obtained by bracketing some adjacent pairs $\{\pi(r), \pi(s)\}$ with $r \in\{1,2, \ldots, m\}, s \in\{m+1, m+2, \ldots, m+n\}$ and $\pi(s)=\pi(r)+1$. For a singleton $\tau(j)$
$=\pi(r), L_{\tau(j)}$ is defined to be L_{r} while for a pair $\tau(j)=\{\pi(r), \pi(s)\}, L_{\tau(j)}=L_{r} L_{s}$. Thus, in a sticky shuffle, after the initial shuffle, a card from the first pack may stick to an adjacent card from the second pack and form a single card. For example

$$
\begin{gather*}
\begin{array}{r}
\left(0, L_{1}, 0,0, \ldots\right)\left(0, L_{2}, 0,0, \ldots\right)=\left(0, L_{1} L_{2}, L_{1} \otimes L_{2}+(-1)^{\delta\left(L_{1}\right) \delta\left(L_{2}\right)} L_{2} \otimes L_{1}, 0,0, \ldots\right) \\
\\
\left(0,0, L_{1} \otimes L_{2} 0,0, \ldots\right)\left(0, L_{3}, 0,0, \ldots\right) \\
= \\
\left(0,0, L_{1} \otimes L_{2} L_{3}, L_{1} \otimes L_{2} \otimes L_{3}, 0,0, \ldots\right) \\
\\
+(-1)^{\delta\left(L_{2}\right) \delta\left(L_{3}\right)}\left(0,0, L_{1} L_{3} \otimes L_{2}, L_{1} \otimes L_{3} \otimes L_{2}, 0,0, \ldots\right) \\
+(-1)^{\delta\left(L_{2}\right) \delta\left(L_{3}\right)+\delta\left(L_{2}\right) \delta\left(L_{3}\right)}\left(0,0,0, L_{3} \otimes L_{1} \otimes L_{2}, 0,0, \ldots\right) .
\end{array}
\end{gather*}
$$

This procedure defines a unital associative multiplication in $\mathcal{T}(\mathcal{L})$ with unit $1_{\mathbb{F}}$.
If $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}$ is the complex \mathbb{Z}_{2}-graded algebra of quantum stochastic Itô differentials of [4], [5] then, for $a<b \in \mathbb{R}^{+}$, the linear iterated stochastic integral map I_{a}^{b} from $\mathcal{T}(\mathcal{L})$ to operators on the restricted exponential domain in the appropriate Fock space \mathcal{F}_{a}^{b}, for which

$$
I_{a}^{b}\left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right)=\int_{a<t_{1}<t_{2}<\cdots<t_{m}<b} d L_{1}\left(t_{1}\right) d L_{2}\left(t_{2}\right) \ldots d L_{m}\left(t_{m}\right)
$$

is multiplicative, in the weak sense that for arbitrary restricted exponential vectors φ, ψ and α, β in $\mathcal{T}(\mathcal{L})$

$$
\left\langle\varphi, I_{a}^{b}(\alpha \beta) \psi\right\rangle=\left\langle I_{a}^{b}(\alpha)^{\dagger} \varphi, I_{a}^{b}(\beta) \psi\right\rangle .
$$

The \mathbb{Z}_{2}-graded sticky shuffle product algebra $\mathcal{T}(\mathcal{L})$ is itself \mathbb{Z}_{2}-graded by the linear extension of the rule that, for homogeneous $L_{1}, L_{2}, \ldots, L_{m}$,

$$
\delta\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}\right)=\sum_{j=1}^{m} \delta\left(L_{j}\right)(\text { addition } \bmod 2)
$$

It reduces to the corresponding unsticky product when the associative multiplication in \mathcal{L} is the trivial one in which all products vanish.

From (3) it follows that the $\operatorname{map} \phi: \mathcal{L} \ni L \mapsto(0, L, 0,0, \ldots) \in \mathcal{T}(\mathcal{L})$ is a homomorphism of Lie superalgebras [9] when \mathcal{L}, and similarly $\mathcal{T}(\mathcal{L})$, is equipped with the supercommutator formed by bilinear extension of the rule for homogeneous L, K that $[L, K]=L K-(-1)^{\delta(L) \delta(K)} K L$. Thus ϕ has a unique extension Φ to a homomorphism of \mathbb{Z}_{2}-graded unital associative algebras from the universal enveloping superalgebra of the supercommutator Lie superalgebra \mathcal{L} into $\mathcal{T}(\mathcal{L})$. It follows from the \mathbb{Z}_{2}-graded Poincaré-Birkhoff-Witt theorem [9] that the map Φ is injective.
3. The \mathbb{Z}_{2}-graded sticky shuffle product Hopf algebra. The \mathbb{Z}_{2}-graded shuffle product algebra $\mathcal{T}(\mathcal{L})$ becomes a \mathbb{Z}_{2}-graded Hopf algebra under the coproduct Δ defined by linear extension of the rule

$$
\begin{align*}
& \Delta\left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right) \\
= & \sum_{j=0}^{m}\left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{j}, 0,0, \ldots\right) \\
& \otimes\left(0,0, \ldots, 0, L_{j+1} \otimes L_{j+2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right) . \tag{4}
\end{align*}
$$

The counit is the map ε taking each tensor into its zero-rank component and the antipode is the map S given by linear extension of
$S\left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right)=(-1)^{m} \Delta\left(0,0, \ldots, 0, L_{m} \otimes L_{m-1} \otimes \cdots \otimes L_{1}, 0,0, \ldots\right)$.
In fact Δ remains multiplicative if shuffles are replaced by sticky shuffles.
Theorem 1. The coproduct defined by (4) is multiplicative for the product defined by (2).
Proof. We abbreviate $\left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right)$ as $L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}$. Thus we have to show that, for $L_{1}, L_{2}, \ldots, L_{m+n} \in \mathcal{L}$ of definite parity,

$$
\begin{aligned}
& \Delta\left(\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}\right)\left(L_{m+1} \otimes L_{m+2} \otimes \cdots \otimes L_{m+n}\right)\right) \\
= & \Delta\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}\right) \Delta\left(L_{m+1} \otimes L_{m+2} \otimes \cdots \otimes L_{m+n}\right) .
\end{aligned}
$$

We give the proof in the case $m=2, n=1$. Then, replacing the symbol \otimes by \boxtimes for the tensor product between elements of different copies of $\mathcal{T}(\mathcal{L})$ for clarity, and denoting the grades of homogeneous elements L, L^{\prime} and $L^{\prime \prime}$ of \mathcal{L} by δ, δ^{\prime} and $\delta^{\prime \prime}$ respectively, we have

$$
\begin{aligned}
& \Delta\left(\left(L \otimes L^{\prime}\right) L^{\prime \prime}\right) \\
= & \Delta\left(L \otimes L^{\prime} \otimes L^{\prime \prime}+L \otimes L^{\prime} L^{\prime \prime}+(-1)^{\delta^{\prime} \delta^{\prime \prime}}\left(L \otimes L^{\prime \prime} \otimes L^{\prime}+L L^{\prime \prime} \otimes L^{\prime}\right)\right. \\
& \left.+(-1)^{\left(\delta+\delta^{\prime}\right) \delta^{\prime \prime}} L^{\prime \prime} \otimes L \otimes L^{\prime}\right) \\
= & 1_{\mathcal{T}(\mathcal{L})} \boxtimes\left(L \otimes L^{\prime} \otimes L^{\prime \prime}+L \otimes L^{\prime} L^{\prime \prime}+(-1)^{\delta^{\prime} \delta^{\prime \prime}}\left(L \otimes L^{\prime \prime} \otimes L^{\prime}+L L^{\prime \prime} \otimes L^{\prime}\right)\right. \\
& \left.+(-1)^{\left(\delta+\delta^{\prime}\right) \delta^{\prime \prime}} L^{\prime \prime} \otimes L \otimes L^{\prime}\right) \\
& +L \boxtimes\left(L^{\prime} \otimes L^{\prime \prime}\right)+\left(L \otimes L^{\prime}\right) \boxtimes L^{\prime \prime}+L \boxtimes L^{\prime} L^{\prime \prime} \\
& +(-1)^{\delta^{\prime} \delta^{\prime \prime}}\left(L \boxtimes\left(L^{\prime \prime} \otimes L^{\prime}\right)+\left(L \otimes L^{\prime \prime}\right) \boxtimes L^{\prime}+L L^{\prime \prime} \boxtimes L^{\prime}\right) \\
& +(-1)^{\left(\delta+\delta^{\prime}\right) \delta^{\prime \prime}}\left(L^{\prime \prime} \boxtimes\left(L \otimes L^{\prime}\right)+\left(L^{\prime \prime} \otimes L\right) \boxtimes L^{\prime}\right) \\
& +\left(L \otimes L^{\prime} \otimes L^{\prime \prime}+L \otimes L^{\prime} L^{\prime \prime}+(-1)^{\delta^{\prime} \delta^{\prime \prime}}\left(L \otimes L^{\prime \prime} \otimes L^{\prime}+L L^{\prime \prime} \otimes L^{\prime}\right)\right. \\
& \left.+(-1)^{\left(\delta+\delta^{\prime}\right) \delta^{\prime \prime}} L^{\prime \prime} \otimes L \otimes L^{\prime}\right) \boxtimes 1_{\mathcal{T}(\mathcal{L})} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\Delta\left(L \otimes L^{\prime}\right) \Delta\left(L^{\prime \prime}\right)= & \left\{1_{\mathcal{T}(\mathcal{L})} \boxtimes\left(L \otimes L^{\prime}\right)+L \boxtimes L^{\prime}+\left(L \otimes L^{\prime}\right) \boxtimes 1_{\mathcal{T}(\mathcal{L})}\right\} \\
& \left\{1_{\mathcal{T}(\mathcal{L})} \boxtimes L^{\prime \prime}+L^{\prime \prime} \boxtimes 1_{\mathcal{T}(\mathcal{L})}\right\} \\
= & 1_{\mathcal{T}(\mathcal{L})} \boxtimes\left(L \otimes L^{\prime} \otimes L^{\prime \prime}+L \otimes L^{\prime} L^{\prime \prime}+(-1)^{\delta^{\prime} \delta^{\prime \prime}}\left(L \otimes L^{\prime \prime} \otimes L^{\prime}+L L^{\prime \prime} \otimes L^{\prime}\right)\right. \\
& \left.+(-1)^{\left(\delta+\delta^{\prime}\right) \delta^{\prime \prime}} L^{\prime \prime} \otimes L \otimes L^{\prime}\right) \\
& +(-1)^{\left(\delta+\delta^{\prime}\right) \delta^{\prime \prime}} L^{\prime \prime} \boxtimes\left(L \otimes L^{\prime}\right)+L \boxtimes\left(L^{\prime} \otimes L^{\prime \prime}+(-1)^{\delta^{\prime} \delta^{\prime \prime}} L^{\prime \prime} \otimes L^{\prime}+L^{\prime} L^{\prime \prime}\right) \\
& +(-1)^{\delta^{\prime} \delta^{\prime \prime}\left(L \otimes L^{\prime \prime}+(-1)^{\delta \delta^{\prime \prime}} L^{\prime \prime} \otimes L+L L^{\prime \prime} \otimes L^{\prime}+\left(L \otimes L^{\prime}\right) \boxtimes L^{\prime \prime}\right.} \\
& +\left(L \otimes L^{\prime} \otimes L^{\prime \prime}+L \otimes L^{\prime} L^{\prime \prime}+(-1)^{\delta^{\prime} \delta^{\prime \prime}}\left(L \otimes L^{\prime \prime} \otimes L^{\prime}+L L^{\prime \prime} \otimes L^{\prime}\right)\right. \\
& \left.+(-1)^{\left(\delta+\delta^{\prime}\right) \delta^{\prime \prime}} L^{\prime \prime} \otimes L \otimes L^{\prime}\right) \boxtimes 1_{\mathcal{T}(\mathcal{L})}
\end{aligned}
$$

as required.
Thus $\mathcal{T}(\mathcal{L})$ becomes a \mathbb{Z}_{2}-graded bialgebra. By regarding it as a deformation of the \mathbb{Z}_{2}-graded unsticky shuffle product algebra (for example by inserting a formal deformation
parameter h into the product in \mathcal{L} so that the extra sticky terms are prefixed by positive powers of h; see [8] for the corresponding ungraded argument) we may invoke the $\mathbb{Z}_{2^{-}}$ graded version of the theorem [3] that a deformation bialgebra of a Hopf algebra is itself a Hopf algebra, to conclude that $\mathcal{T}(\mathcal{L})$ is a \mathbb{Z}_{2}-graded Hopf algebra, in which the antipode got by adding correction terms of lower rank to the right hand side of (5). We call it the \mathbb{Z}_{2}-graded sticky shuffle product Hopf algebra.

In the case when \mathcal{L} is the \mathbb{Z}_{2}-graded algebra of quantum stochastic Itô differentials [4], [5], the coproduct Δ is related to the splitting or continuous tensor product structure of Fock space as follows. For $a<b<c \in \mathbb{R}^{+}$, making the identification $\mathcal{F}_{a}^{c}=\mathcal{F}_{a}^{b} \otimes \mathcal{F}_{b}^{c}$, we have

$$
I_{a}^{c}=\left(I_{a}^{b} \otimes I_{b}^{c}\right) \Delta
$$

Here the algebras of processes on $\mathcal{F}_{a}^{c}, \mathcal{F}_{a}^{b}, \mathcal{F}_{b}^{c}$ must be \mathbb{Z}_{2}-graded using the corresponding grading operators [5] $\Gamma_{a}^{c}, \Gamma_{a}^{b}, \Gamma_{b}^{c}$. For example for homogeneous $L \in \mathcal{L}$ then

$$
I_{a}^{c}(0, L, 0,0, \ldots)=I_{a}^{b}(0, L, 0,0, \ldots) \otimes \operatorname{id} \mathcal{F}_{b}^{c}+\left(\Gamma_{a}^{b}\right)^{\delta(L)} \otimes I_{b}^{c}(0, L, 0,0, \ldots)
$$

where \otimes means the usual operator tensor product operator.
We define the iterated coproducts $\Delta^{(n)}: \mathcal{T}(\mathcal{L}) \rightarrow \bigotimes^{n}(\mathcal{T}(\mathcal{L})), n=0,1,2, \ldots$, by $\Delta^{(0)}=$ $\varepsilon, \Delta^{(1)}=\operatorname{id}_{\mathcal{T}(\mathcal{L})}, \Delta^{(n)}=\left(\Delta \otimes \operatorname{id} \otimes^{n-1} \mathcal{T}(\mathcal{L})\right) \Delta^{(n-1)}, n>1$. Thus $\Delta^{(2)}=\Delta$. The following useful theorem also holds in the ungraded case [6].

Theorem 2. For $n=0,1,2, \ldots$ denote by α_{n} the component of rank n of $\alpha \in \mathcal{T}(\mathcal{L})$. Then, in the decomposition

$$
\bigotimes_{\bigotimes}^{\mathcal{Q}} \mathcal{T}(\mathcal{L})=\bigoplus_{m_{1}, m_{2}, \ldots m_{n}=0}^{\infty}\left(\left(\bigotimes_{\bigotimes}^{m_{1}}\right) \otimes\left(\stackrel{m_{2}}{\otimes}\right) \otimes \cdots \otimes\left(\stackrel{m_{n}}{\otimes}\right)\right),
$$

the component of $\Delta^{(n)}(\alpha)$ of joint $\operatorname{rank}(1,1, \ldots, \stackrel{(n)}{1})$ is α_{n}.
Proof. The Theorem holds when $n=0,1$ by the definitions of $\Delta^{(0)}, \Delta^{(1)}$. From (4) it holds when $n=2$ for tensors whose second rank components are product tensors and hence generally by linearity. For an nth rank product tensor then by iteration of (4) we have

$$
\begin{aligned}
& \Delta^{(n)}\left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right) \\
& \sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n} \leq m}\left\{\left(0,0, \ldots, 0, L_{1} \otimes L_{2} \otimes \cdots \otimes L_{j_{1}}, 0,0, \ldots\right)\right. \\
& \otimes\left(0,0, \ldots, 0, L_{j_{1}+1} \otimes L_{j_{1}+2} \otimes \cdots \otimes L_{j_{1}+j_{2}}, 0,0, \ldots\right) \otimes \cdots \\
& \left.\otimes\left(0,0, \ldots, 0, L_{j_{1}+j_{2}+\cdots j_{n}+1} \otimes L_{j_{1}+j_{2}+\cdots j_{n}+2} \otimes \cdots \otimes L_{m}, 0,0, \ldots\right)\right\} .
\end{aligned}
$$

From this it follows that the component of joint rank $(1,1, \ldots, \stackrel{(n)}{1})$ of $\Delta^{(n)}\left(0,0, \ldots, 0, L_{1} \otimes\right.$ $\left.L_{2} \otimes \cdots \otimes L_{n}, 0,0, \ldots\right)$ is just $L_{1} \otimes L_{2} \otimes \cdots \otimes L_{n}$ and that product tensors of other ranks cannot contribute to this component. The result now follows by linearity.
4. Grouplike elements of $\mathcal{T}(\mathcal{L})[[h]]$. We equip the vector space $\mathcal{T}(\mathcal{L})[[h]]$ of formal power series with coefficients in $\mathcal{T}(\mathcal{L})$ with the convolution multiplication

$$
\sum_{N=0}^{\infty} h^{N} \alpha^{(N)} \sum_{N=0}^{\infty} h^{N} \beta^{(N)}=\sum_{N=0}^{\infty} h^{N} \sum_{j=0}^{N} \alpha^{(N-j)} \beta^{(j)} .
$$

The coproduct Δ extends to a map from $\mathcal{T}(\mathcal{L})[[h]]$ to $(\mathcal{T}(\mathcal{L}) \otimes \mathcal{T}(\mathcal{L}))[[h]]$ by action on coefficients; $\Delta\left(\sum_{N=0}^{\infty} h^{N} \alpha^{(N)}\right)=\sum_{N=0}^{\infty} h^{N} \Delta\left(\alpha^{(N)}\right)$. As an illustration of the use of Theorem 2 let us characterise elements $\alpha[h]$ of $\mathcal{T}(\mathcal{L})[[h]]$ which are group-like, meaning that $\Delta \alpha[h]=\alpha[h] \otimes \alpha[h]$. Here the tensor product is rearranged into a formal power series with coefficients in $\mathcal{T}(\mathcal{L}) \otimes \mathcal{T}(\mathcal{L})$ by convolution; thus

$$
\sum_{N=0}^{\infty} h^{N} \alpha^{(N)} \otimes \sum_{N=0}^{\infty} h^{N} \beta^{(N)}=\sum_{N=0}^{\infty} h^{N} \sum_{j=0}^{N} \alpha^{(N-j)} \otimes \beta^{(j)}
$$

Theorem 3 may be compared with the proof based on calculus of a corresponding result in the ungraded case [7].

Theorem 3. Let $\alpha[h]$ be a nonzero grouplike element of $\mathcal{T}(\mathcal{L})[[h]]$. Then there exists a formal power series $L[h]$ with coefficients in \mathcal{L} and vanishing zero-order coefficient such that

$$
\begin{equation*}
\alpha[h]=\left(1, L[h], L[h] \otimes L[h], \ldots, \bigotimes^{n} L[h], \ldots\right) \tag{6}
\end{equation*}
$$

Conversely every element of this form is grouplike.
Proof. Note first that for $L[h]=h L^{(1)}+h^{2} L^{(2)}+\cdots \in h \mathcal{L}[[h]]$ the right hand side of (6) is a well defined element of $\mathcal{T}(\mathcal{L})[[h]]$;

$$
\begin{aligned}
& \left(1, L[h], L[h] \otimes L[h], \ldots, \bigotimes^{n} L[h], \ldots\right) \\
= & (1,0,0, \ldots)+h\left(0, L^{(1)}, 0,0, \ldots\right)+h^{2}\left(0, L^{(2)}, L^{(1)} \otimes L^{(1)}, 0,0, \ldots\right)+\cdots .
\end{aligned}
$$

Suppose $\alpha[h] \in \mathcal{T}(\mathcal{L})[[h]]$ is nonzero and satisfies $\Delta \alpha[h]=\alpha[h] \otimes \alpha[h]$. Then in particular $\alpha_{0}[h]=\left(\alpha_{0}[h]\right)^{2}$ whence either $\alpha_{0}[h]=0$ or $\alpha_{0}[h]=1$. In the former case the grouplike property implies that $\alpha[h]=0$. Thus $\alpha_{0}[h]=1$. Iterating the grouplike property gives

$$
\Delta^{(n)}(\alpha[h])=\bigotimes^{n}(\alpha[h])
$$

Hence by Theorem 2 the component of rank n is given by

$$
\alpha_{n}[h]=\left(\bigotimes^{n}(\alpha[h])\right)_{(1,1, \ldots, \stackrel{(n)}{1})}=\left(\bigotimes^{n}(1, L[h], \ldots)\right)_{(1,1, \ldots, \stackrel{(n)}{1})}=\bigotimes^{n} L[h]
$$

where $L[h]=\alpha_{1}[h] \in \mathcal{L}[[h]]$. But for $\alpha[h]=(1, L[h], L[h] \otimes L[h], \ldots)$ to be well defined as an element of $\mathcal{T}(\mathcal{L})[[h]]$ it is necessary that the zero-order coefficient $L_{0}=0$ other wise the zero-order coefficient of $\alpha[h]$ will be nonterminating. Hence $\alpha[h]$ is as claimed. The converse follows directly from (4).

References

[1] C. Chevalley, The construction and study of certain important algebras, Publ. Math. Soc. Japan I, Princeton University Press (1955).
[2] B. Enriquez, Quantization of Lie bialgebras and shuffle algebras of Lie algebras, Selecta Math. (N.S.) 7 (2001), 321-407.
[3] P. Etingof and O. Schiffman, Lectures on Quantum Groups, International Press, 1998.
[4] T. M. W. Eyre, Quantum Stochastic Calculus and Representations of Lie Superalgebras, LNM 1692, Springer, 1998.
[5] T. M. W. Eyre and R. L. Hudson, Representations of Lie superalgebras and generalised Boson-Fermion equivalence in quantum stochastic calculus, Commun. Math. Phys. 186 (1997), 87-94.
[6] R. L. Hudson, Itô calculus and quantisation of Lie bialgebras, to appear in Annales de l'Inst. H Poincaré (Probabilités et Statistiques), P. A. Meyer memorial volume.
[7] R. L. Hudson, Calculus in enveloping algebras, J. London Math. Soc. (2) 65 (2002), 361-380.
[8] R. L. Hudson and S. Pulmannová, Double product integrals and Enriquez quantization of Lie bialgebras I, Jour. Math. Phys. 45 (2004), 2090-2107.
[9] M. Scheunert, The Theory of Lie Superalgebras, LNM 716, Springer, 1979.

[^0]: 2000 Mathematics Subject Classification: 81S25, 16W30, 16W55.
 The paper is in final form and no version of it will be published elsewhere.

