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Abstract. The q-white noise is studied as the time derivative of the q-Brownian motion. As

an application of the q-white noise, a non-adapted (non-commutative) stochastic integral with

respect to the q-Brownian motion is constructed.

1. Introduction. A Fock representation of q-commutation relation (introduced by

Greenberg [7], and Bożejko and Speicher [3]) was first studied in [5] by constructing

a q-Fock space as the space of representation, see also [2]. A representation of the q-

commutation relation (−1 ≤ q ≤ 1) is given as the form:

a(ζ)a∗(η) − qa∗(η)a(ζ) = 〈ζ, η〉 · 1, ζ, η ∈ H.

The q-commutation relation (−1 < q < 1) provides an interpolation between the fer-

mionic and bosonic commutation relations which correspond to q = −1 and q = 1,

respectively. The spaces of the representation of the fermionic and bosonic commutation

relations are called the Fermion and Boson Fock spaces, respectively. Also, the full Fock

space corresponds to q = 0. Recently, in [10], we constructed a q-Fock space as the space

of the representation of the q-commutation relation such that for 0 < q < 1, the q-Fock

space is interpolated between the full Fock space and the Boson Fock space.
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On the other hand, stochastic calculus with respect to the q-annihilation process, q-

creation process and q-gauge process has been developed in [15]. Also, in [6], a stochastic

integral of adapted biprocess with respect to q-Brownian motion was developed by using

the method used for the free case in [1].

Main purpose of this paper is to study the q-white noise as like as the (standard

Gaussian) white noise [8, 11, 12, 13]. Then we construct a non-adapted stochastic integral

with respect to the q-Brownian motion, more generally, with respect to the q-annihilation

process and the q-creation process.

The paper is organized as follows. In Section 2 we briefly recall the notions in q-Fock

space [10]. In Section 3 we study the q-white noise within a rigged q-Fock space. In Section

4 we construct a non-adapted stochastic integrals with respect to the q-Brownian motion.

2. q-Fock space. Let Γ0(H) be the full Fock space (with the inner product 〈〈·, ·〉〉0)
over a complex Hilbert space H. Let Γfinite

0 (H) be the linear span of vectors of the forms

ξ1 ⊗ · · · ⊗ ξn ∈ H⊗n, n = 0, 1, 2, . . ., where H⊗0 = CΩ for the vacuum vector Ω ∈ Γ0(H).

Let q ∈ (−1, 1) be fixed. For each n = 0, 1, 2, . . ., we put

[n]q = 1 + q + · · · + qn−1, [0]q = 0.

The q-factorial is defined as

[n]q! = [1]q[2]q · · · [n]q, [0]q! = 1.

Let Sn denote the symmetric group of all permutations on {1, . . . , n} and I(σ) denote

the number of inversions of the permutation σ ∈ Sn defined by

I(σ) = #{(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}.

The operator Pq is defined on Γfinite
0 (H) by a linear extension of

PqΩ = Ω;

Pq(ξ1 ⊗ · · · ⊗ ξn) =
∑

σ∈Sn

qI(σ)ξσ(1) ⊗ · · · ⊗ ξσ(n).

Put

ξ1 ⊗q · · · ⊗q ξn := Pq(ξ1 ⊗ · · · ⊗ ξn), ξi ∈ H, i = 1, . . . , n.

and then

ξ1 ⊗q · · · ⊗q ξn =
n∑

i=1

qi−1ξi ⊗ (ξ1 ⊗q · · · ⊗q ξ̌i ⊗q · · · ⊗q ξn). (2.1)

Let Γfinite
q (H) be the linear span of vectors of the forms ξ1 ⊗q · · · ⊗q ξn ∈ H⊗n, n =

0, 1, 2, . . .. Define a sesquilinear form 〈〈·, ·〉〉q on Γfinite
q (H) by a sesquilinear extension of

〈〈ξ1 ⊗q · · · ⊗q ξn, η1 ⊗q · · · ⊗q ηm〉〉q := δnm[n]q!〈〈ξ1 ⊗q · · · ⊗q ξn, η1 ⊗ · · · ⊗ etam〉〉0.
Then by applying Theorem 2.2 in [5], we see that the sesquilinear form 〈〈·, ·〉〉q is the

strictly positive, i.e., 〈〈ξ, ξ〉〉q > 0 for 0 6= ξ ∈ Γfinite
q (H). The completion of Γfinite

q (H)

with respect to 〈〈·, ·〉〉q is called the q-Fock space and denoted by Γq(H).



q-WHITE NOISE AND NON-ADAPTED STOCHASTIC INTEGRAL 269

For each ζ ∈ H, we define the q-creation operator a∗(ζ) and the q-annihilation oper-

ator a(ζ) on the dense subspace Γfinite
q (H) of the q-Fock space Γq(H) as follows:

a∗(ζ)Ω = ζ;

a∗(ζ)ξ1 ⊗q · · · ⊗q ξn =
1√

[n + 1]q
ζ ⊗q ξ1 ⊗q · · · ⊗q ξn

and

a(ζ)Ω = 0;

a(ζ)ξ1 ⊗q · · · ⊗q ξn =
√

[n]qζ ⊗1 (ξ1 ⊗q · · · ⊗q ξn),

where f ⊗1 g is the left 1-contraction of f ∈ H and g ∈ H⊗m, see [13]. From (2.1), we

have

ζ ⊗1 (ξ1 ⊗q · · · ⊗q ξn) =
n∑

i=1

qi−1〈ζ, ξi〉ξ1 ⊗q · · · ⊗q ξ̌i ⊗q · · · ⊗q ξn,

where the symbol ξ̌i means that ξi has to be deleted in the tensor product and 〈·, ·〉
denotes the inner product on H.

Theorem 2.1 ([10]). Let ζ ∈ H.

(1) The operators a∗(ζ) and a(ζ) are bounded on Γq(H). Moreover,

‖a(ζ)‖OP = ‖a∗(ζ)‖OP ≤ 1/
√

1 − q |ζ|H . (2.2)

(2) The operators a∗(ζ) and a(ζ) are adjoints of each other on Γfinite
q (H) with respect

to 〈〈·, ·〉〉q.
(3) The q-creation and q-annihilation operators fulfill the q-commutation relation, i.e.,

a(ζ)a∗(η) − qa∗(η)a(ζ) = 〈ζ, η〉 · 1, ζ, η ∈ H.

The Boson Fock space is defined by

Γ1(H) =
∞⊕

n=0

H⊗̂n = {φ = (fn)∞n=0|fn ∈ H⊗̂n, n = 0, 1, . . . and ‖φ‖1 < ∞},

where H⊗̂n is the symmetric n-tensor product and ‖φ‖2
1 =

∑∞

n=0 |fn|2. Then we have the

following

Theorem 2.2 ([10]). For any 0 ≤ q ≤ 1 we have the following continuous inclusions:

Γ1(H) ⊂ Γq(H) ⊂ Γ0(H).

In particular, Γ1(H) is isometrically embedded into Γq(H) and the second inclusion is

contraction.

3. q-White noise. Let H = L2(R, dt) be the (complex) Hilbert space of L2-functions

on R with respect to the Lebesgue measure dt and the norm is denoted by | · |0. Let A

be the harmonic oscillator given by

A = 1 + t2 − d2

dt2
=

(
t +

d

dt

)∗(
t +

d

dt

)
+ 2.
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Recall that

ej(t) = (
√

π 2jj!)−1/2Hj(t)e
−t2/2, j = 0, 1, 2, . . . ,

where Hj is the Hermite polynomial of degree j, constitute an orthonormal basis of L2(R)

and Aej = (2j + 2)ej , and so

‖A−1‖OP = 1/2 < 1, ‖A−r‖2
HS =

∞∑

n=0

1

(2n + 2)2r
< ∞, r > 1/2.

For p ∈ R we define

|ξ|2p = |Apξ|20 =
∞∑

j=0

(2j + 2)2p|〈ξ, ej〉|2, ξ ∈ H.

Now, for p ≥ 0, setting Ep = {ξ ∈ H ; |ξ|p < ∞} and defining E−p to be the completion

of H with respect to | · |−p, we obtain a chain of Hilbert spaces {Ep ; p ∈ R}. Define their

limit spaces:

E = S(R) = proj lim
p→∞

Ep, E∗ = S(R)∗ = ind lim
p→∞

E−p,

where E∗ is the dual space of E which is well-known as the Schwartz space. Identifying

H with its dual space, we have

E ⊂ Ep ⊂ H = L2(R, dt) ⊂ E−p ⊂ E∗. (3.1)

By taking q-Fock space from (3.1), we have the following natural inclusions:

Γq(Ep) ⊂ Γq(H) ⊂ Γq(E−p), p ≥ 0.

By the general duality theory, Γq(E−p) is the strong dual space of Γq(Ep). The norm

generated by the sesquilinear form 〈〈·, ·〉〉q;r on Γq(Er) is denoted by ‖ · ‖q;r.

Let T ∈ L(H, H) and Γ(T ) be the second quantization of T on Γfinite
0 (H), i.e.,

Γ(T )(ξ1 ⊗ · · · ⊗ ξn) = T⊗n(ξ1 ⊗ · · · ⊗ ξn), ξ1, . . . , ξn ∈ H, n = 1, 2, . . . .

Then since T⊗n and Pq commute, for any ξ1, . . . , ξn ∈ H we have

‖Γ(T )(ξ1 ⊗q · · · ⊗q ξn)‖q;0 = ‖T⊗nP 1/2
q (ξ1 ⊗ · · · ⊗ ξn)‖2

0

≤ ‖T‖2n
OP‖P 1/2

q (ξ1 ⊗ · · · ⊗ ξn)‖2
0

= ‖T‖2n
OP‖ξ1 ⊗q · · · ⊗q ξn‖q;0,

see Lemma 1.4 in [2]. Therefore, for any q ∈ (−1, 1) and T ∈ L(H, H) with ‖T‖OP ≤ 1,

the second quantization Γ(T ) of T can be extended to Γq(H) as a bounded operator.

Lemma 3.1. For any n ≥ 1 and r > 1/2, (A−r)⊗n is of Hilbert–Schmidt type on H⊗qn,

where H⊗qn is the completion of {ξ1 ⊗q · · · ⊗q ξn | ξi ∈ H, i = 1, 2, . . . , n} with respect to

〈〈·, ·〉〉q.

Proof. Let {ϕn,i}∞i=1 be a complete orthonormal basis for Γq(H). Since P
[n]
q is invertible

(see [4]), {
√

[n]q!P
[n]
q

−1/2
ϕn,i}∞i=1 is an orthonormal sequence in Γ0(H), where P

[n]
q is

the restriction of Pq to H⊗n. Let {φn,k}∞k=1 be a complete orthonormal basis for Γ0(H)
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containing {
√

[n]q! P
[n]
q

−1/2
ϕn,i}∞i=1. Then we have

‖(A−r)⊗n‖2
HS;q =

∞∑

i=1

〈〈(A−r)⊗nϕn,i, ϕn,i〉〉2q

=

∞∑

i=1

[n]q!〈〈(A−r)⊗nP [n]
q

−1/2
ϕn,i, P [n]

q

−1/2
ϕn,i〉〉20

≤
∞∑

k=1

〈〈(A−r)⊗nφn,k, φn,k〉〉20 = ‖(A−r)⊗n‖2
HS,

where ‖(A−r)⊗n‖HS;q is the Hilbert–Schmidt norm of (A−r)⊗n on Γq(H), which completes

the proof.

Theorem 3.2. For any r, s ∈ R with ‖A−(s−r)‖HS < 1, the natural inclusion

is,r : Γq(Es) → Γq(Er)

is of Hilbert–Schmidt type. In particular, for any r > 1, Γ(A−r) is of Hilbert–Schmidt

type on Γq(H).

Proof. Let {ϕs;n,k}∞n,k=0 be a complete orthonormal basis for Γq(Es), where for each

n ≥ 1, {ϕs;n,k}∞k=0 is a complete orthonormal basis for E
⊗qn
s which is the completion of

Γfinite
q (H) ∩ E⊗n

s with respect to ‖ · ‖q;s. First, we note that for any n, k

‖ϕs;n,k‖q;r = ‖(A−(s−r))⊗nϕs;n,k‖q;s.

Therefore, by Lemma 3.1 we have

‖is,r‖2
HS =

∞∑

n=0

∞∑

k=0

‖(A−(s−r))⊗nϕs;n,k‖2
q;s ≤

∞∑

n=0

‖A−(s−r)‖2n
HS

which is finite for any r, s ∈ R with ‖A−(s−r)‖HS < 1.

We put

Γq(E) = proj lim
p→∞

Γq(Ep), Γq(E)∗ = ind lim
p→∞

Γq(E−p).

Then we obtain a complex nuclear triple:

Γq(E) ⊂ Γq(H) ⊂ Γq(E)∗

which can be considered as a q-white noise triplet from the following:

Definition 3.3. Let G : H → L(Γq(H), Γq(H)) be defined by

Gf = a(f) + a∗(f), f ∈ H.

For notational convenience, for any t ∈ [0,∞) we write Bt = G1[0,t]
. Then {Bt}t≥0 is

called the q-Brownian motion.

Note that for any p > 5/12 the map R ∋ t 7→ δt ∈ E−p is continuous, where δt is the

delta function. Moreover, for any 0 ≤ α ≤ 1 with p > 5/12 + α/2 there exists a constant

C ≥ 0 such that

|δs − δt|−p ≤ C|s − t|α, s, t ∈ R,

see Theorem B.1 in [14].
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Remark. Let p ≥ 0. For any f ∈ H, the operators a(f) and a∗(f) can be considered

as operators in L(Γq(Ep), Γq(E−p)) since L(Γq(H), Γq(H)) ⊂ L(Γq(Ep), Γq(E−p)). Also,

for each t ≥ 0, a∗
t ≡ a∗(δt) is a bounded operator in L(Γq(E−p), Γq(E−p)) for any

p > 5/12 of which the proof is similar to the proof of (2) in Theorem 2.1, see [10], and so

at ≡ a(δt) ∈ L(Γq(Ep), Γq(Ep)).

Theorem 3.4. For any p > 5/12, the map t 7→ Bt ∈ L(Γq(Ep), Γq(E−p)) is differen-

tiable.

Proof. By linearity of the map E−p ∋ x 7→ a(x) ∈ L(Γq(Ep), Γq(E−p)) and (2.2), we have
∥∥∥∥

a(1[0,t+∆t]) − a(1[0,t])

∆t
− at

∥∥∥∥
OP

=
1

|∆t|

∥∥∥∥a(1[0,t+∆t] − 1[0,t] − ∆tδt)

∥∥∥∥
OP

≤ 1√
1 − q

∣∣∣∣
1[0,t+∆t] − 1[0,t]

∆t
− δt

∣∣∣∣
−p

→ 0

as ∆t → 0. Similarly, we have

lim
∆t→0

∥∥∥∥
a∗(1[0,t+∆t]) − a∗(1[0,t])

∆t
− a∗

t

∥∥∥∥
OP

= 0.

Hence Bt is differentiable in t and

dBt

dt
= at + a∗

t , t ≥ 0,

in L(Γ(Ep), Γ(E−p)).

To simplify notation, we write Wt = at + a∗
t for any t ≥ 0. The process {Wt}t≥0 is

called the q-white noise.

4. Non-adapted stochastic integral. From now on we fix a positive real number p

with p > 5/12. A family {Ξt}t≥0 of operators in L(Γq(Ep), Γq(E−p)) is called a quantum

stochastic process.

A quantum stochastic process {Ξt}t≥0 is said to be uniformly measurable if there

exists a sequence {Ξn,t}t≥0 of countable-valued quantum stochastic processes such that

Ξn,t converges to Ξt in L(Γq(Ep), Γq(E−p)) for almost all t ≥ 0. It is well known by

N. Dunford that the uniform measurability of a quantum stochastic process {Ξt}t≥0 is

equivalent to the following conditions:

(1) {Ξt}t≥0 is weakly measurable, i.e., for any φ, ϕ ∈ Γq(Ep) the map

R+ ∋ t 7→ 〈〈Ξtφ, ϕ〉〉 ∈ C

is measurable.

(2) {Ξt}t≥0 is almost separable-valued in L(Γq(Ep), Γq(E−p)), see [9].

From now on, for notational convenience we denote by ‖ · ‖OP;r,s the operator norm

on L(Γq(Er), Γq(Es)).

Definition 4.1. Let {Ξt}t≥0 ⊂ L(Γq(Er), Γq(Es)) be a quantum stochastic process.

(1) A countable-valued process {Ξt}t≥0 is said to be (Bochner) integrable on [0, T ] if

‖Ξt‖OP;r,s is integrable on [0, T ].
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(2) The process {Ξt}t≥0 is said to be integrable on [0, T ] if {Ξt}t≥0 is uniformly measur-

able, i.e., there exists a sequence {Ξn,t}t≥0 of countable-valued integrable processes

such that Ξn,t converges to Ξt in L(Γq(Er), Γq(Es)) for almost all t ∈ [0, T ], and

lim
n→∞

∫ T

0

‖Ξn,t − Ξt‖OP;r,s dt = 0. (4.1)

In this case, we write ∫ T

0

Ξt dt = lim
n→∞

∫ T

0

Ξn,t dt.

Theorem 4.2. Let {Ξt}t≥0 ⊂ L(Γq(E−p), Γq(E−p)) be an integrable process on [0, T ].

Then {Ξtat}t≥0 and {Ξta
∗
t }t≥0 are integrable on [0, T ]. Moreover, {ΞtWt} is integrable

on [0, T ].

Proof. Since the maps

R+ ∋ t 7→ at ∈ L(Γq(Ep), Γq(Ep)), R+ ∋ t 7→ a∗
t ∈ L(Γq(E−p), Γq(E−p))

are continuous, by assumption {Ξtat}t≥0 and {Ξta
∗
t }t≥0 are uniformly measurable on

[0, T ]. On the other hand, there exists a sequence {Ξn,t}t≥0 of countable-valued integrable

processes such that Ξn,t converges to Ξt for almost all t ∈ [0, T ], and (4.1) holds with

r = s = −p. For any n = 1, 2, . . ., we put

an,t = ati
, t ∈ [(i − 1)T/n, iT/n), i = 1, 2, . . . , n.

Then an,t converges to at for almost all t ∈ [0, T ]. Therefore, by the dominated conver-

gence theorem we have
∫ T

0

‖Ξn,tan,t − Ξtat‖OP;p,−p dt

≤
∫ T

0

‖Ξn,t − Ξt‖OP;−p,−p‖an,t − at‖OP;p,p dt +

∫ T

0

‖Ξt‖OP;−p,−p‖an,t − at‖OP;p,p dt

+

∫ T

0

‖Ξn,t − Ξt‖OP;−p,−p‖at‖OP;p,p dt

≤ 3K

∫ T

0

‖Ξn,t − Ξt‖OP;−p,−p dt +

∫ T

0

‖Ξt‖OP;−p,−p‖an,t − at‖OP;p,p dt

→ 0

as n → ∞, where K = sup{‖at‖OP;p,p | t ∈ [0, T ]} which is finite by the continuity. Hence

{Ξtat}t≥0 is integrable. The rest of the proof is similar.

Theorem 4.3. Let {Ξt}t≥0 ⊂ L(Γq(Ep), Γq(Ep)) be an integrable process on [0, T ]. Then

{atΞt}t≥0 and {a∗
t Ξt}t≥0 are integrable on [0, T ]. Moreover, {WtΞt} is integrable on [0, T ].

Proof. The proof is similar to the proof of Theorem 4.2.

Remark. By Theorems 4.2 and 4.3, the quantum stochastic processes {at}, {a∗
t } and

{Wt} are integrable on [0, T ] and we have

a(1[0,t]) =

∫ t

0

asds, a∗(1[0,t]) =

∫ t

0

a∗
sds, Bt =

∫ t

0

Wsds.
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Therefore, we write
∫ t

0

WsΞsds =

∫ t

0

dBsΞs,

∫ t

0

ΞsWsds =

∫ t

0

ΞsdBs

and call them the stochastic integrals with respect to the q-Brownian motion.

Definition 4.4. Let {Ξt}t≥0 ⊂ L(Γq(Er), Γq(Es)) be a quantum stochastic process. The

process {Ξt}t≥0 is said to be square integrable on [0, T ] if {Ξt}t≥0 is uniformly measurable,

i.e., there exists a sequence {Ξn,t}t≥0 of countable-valued integrable processes such that

Ξn,t converges to Ξt in L(Γq(Er), Γq(Es)) for almost all t ∈ [0, T ], and

lim
n→∞

∫ T

0

‖Ξn,t − Ξt‖2
r;s dt = 0.

Theorem 4.5. Let {Ξ(1)
t }t≥0 ⊂ L(Γq(E−p), Γq(E−p)), {Ξ(2)

t }t≥0 ⊂ L(Γq(Ep), Γq(Ep))

be square integrable processes on [0, T ]. Then {Ξ(1)
t atΞ

(2)
t }t≥0 and {Ξ(1)

t a∗
t Ξ

(2)
t }t≥0 are

integrable on [0, T ]. Moreover, {Ξ(1)
t WtΞ

(2)
t }t≥0 is integrable on [0, T ].

Proof. The proof is a simple modification of the proof of Theorem 4.2.

Now, we consider the stochastic integrals with respect to the q-Brownian motion which

are usual operators in L(Γq(H), Γq(H)).

Let T ≥ 0 be fixed. The algebraic tensor product L2[0, T ] ⊗a L(Γq(H), Γq(H)) is

identified with a linear subspace of L(Γq(H), Γq(H))-valued square integrable functions

on [0, T ] by the identification:

f =

n∑

i=1

fi ⊗ Ξi ↔
n∑

i=1

fi(·) ⊗ Ξi.

Define seminorms ||| · |||l and ||| · |||r on L2[0, T ] ⊗a L(Γq(H), Γq(H)) by

|||f |||l =
∥∥∥

n∑

i=1

(a∗(fi) + a(fi))Ξi

∥∥∥
OP

, |||f |||r =
∥∥∥

n∑

i=1

Ξi(a
∗(fi) + a(fi))

∥∥∥
OP

for f =
∑n

i=1 fi ⊗ Ξi ∈ L2[0, T ] ⊗a L(Γq(H), Γq(H)). Put

Nǫ = {f ∈ L2[0, T ] ⊗a L(Γq(H), Γq(H)) | |||f |||ǫ = 0}, ǫ = l, r.

The completion of L2[0, T ] ⊗a L(Γq(H), Γq(H))/Nǫ with respect to the norm ||| · |||ǫ is

denoted by B
2
ǫ ([0, T ]), where ǫ = l, r.

Note that for any f =
∑n

i=1 fi ⊗ Ξi ∈ L2[0, T ] ⊗a L(Γq(H), Γq(H)) it is (Bochner)

integrable on [0, T ] and
∫ T

0

Wsf(s)ds =

n∑

i=1

(a∗(fi) + a(fi)) Ξi,

∫ T

0

f(s)Wsds =

n∑

i=1

Ξi (a∗(fi) + a(fi)) .

Therefore, for any f ∈ B
2
l ([0, T ]) and g ∈ B

2
r([0, T ]) there exist sequences {fn}∞n=1 and

{gn}∞n=1 in L2[0, T ] ⊗a L(Γq(H), Γq(H)) such that

lim
n→∞

|||fn − f |||l = 0, lim
n→∞

|||gn − g|||r = 0
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which implies that
{∫ T

0

Wsfn(s)ds

}∞

n=1

,

{∫ T

0

gn(s)Wsds

}∞

n=1

are Cauchy sequences in L(Γq(H), Γq(H)) and the limits are denoted by
∫ T

0

Wsf(s)ds = lim
n→∞

∫ T

0

Wsfn(s)ds,

∫ T

0

g(s)Wsds = lim
n→∞

∫ T

0

gn(s)Wsds.

Remark. For the stochastic integrals with respect to the q-Brownian motion, we used

B
2
ǫ([0, T ]) as the space of integrands which is obtained by taking completion with respect

to uniform operator norms. But we can consider a bigger space as a space of integrands

in the stochastic integrals by taking completion with respect to weaker topologies, e.g.,

strong operator topology, weak operator topology or L2 space of operators with certain

state, and then we can consider some connections with the results in [6] and [15] which

are now in progress.
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