ON THE TRANSIENT AND RECURRENT PARTS OF A QUANTUM MARKOV SEMIGROUP

VERONICA UMANITÀ
Dipartimento di Matematica " F. Brioschi", Politecnico di Milano
Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
E-mail: umanita@mate.polimi.it

Abstract

We define the transient and recurrent parts of a quantum Markov semigroup \mathcal{T} on a von Neumann algebra \mathcal{A} and we show that, when \mathcal{A} is σ-finite, we can write \mathcal{T} as the sum of such semigroups. Moreover, if \mathcal{T} is the countable direct sum of irreducible semigroups each with a unique faithful normal invariant state ρ_{n}, we find conditions under which any normal invariant state is a convex combination of ρ_{n} 's.

1. Introduction. If P is a Markov chain with finite state space, T is the set of its transient states and R_{1}, \ldots, R_{k} denote the different classes of recurrent states, then we can think of P as the sum of its transient part (i.e. the one relative to T) and its recurrent part, given by a block-diagonal matrix where any block is irreducible and it corresponds to a recurrent class R_{i}.

In their work [6], Evans and Høegh-Krohn have generalized this decomposition for a positive stochastic map Φ on a finite-dimensional C^{*}-algebra \mathcal{A} by introducing a recurrent and a transient projection in terms of invariant states; they show that the recurrent projection is subharmonic and that, if Φ is recurrent (i.e. its recurrent projection is equal to $\mathbf{1}$), there exists a resolution of the identity $\left\{p_{1}, \ldots, p_{s}\right\}$ such that the restriction of Φ to each of the subalgebras $p_{i} \mathcal{A} p_{i}$ is irreducible.

Our intention here is to extend such results to the case of a quantum Markov semigroup (QMS) \mathcal{T} on a σ-finite von Neumann algebra \mathcal{A}. As in [6], we define the fast recurrent projection p_{R} as the supremum of the supports of the normal invariant states, but, to distinguish between fast and slow recurrence, we decompose p_{R}^{\perp} further as the sum of a transient projection p_{T} (determined by range projections of potentials, see [10]) and a slow recurrent projection $p_{R_{0}}$. As in the case of Markov chains with finite state space, in the finite-dimensional setting we shall have $p_{R_{0}}=0$. Therefore, we shall call a QMS

[^0]transient or recurrent according to $p_{T}=\mathbf{1}$ or $p_{T}=0$, respectively. Further, we show that, when \mathcal{A} is σ-finite, the subalgebra $p_{T} \mathcal{A} p_{T}$ is invariant under the action of \mathcal{T} (see Cor. 11) and its restriction to this subalgebra is a transient semigroup; on the other hand, the reduced semigroup associated with p_{T}^{\perp} is a recurrent QMS (see Thm. 15). Moreover, under appropriate conditions, we can decompose the semigroup $\mathcal{T}^{p_{R}}$ associated with p_{R} into the direct sum of irreducible "sub"-QMS's each one supporting a unique faithful normal invariant state (Prop. 19).

Finally, in the last part we analyze a typical situation occurring in many examples known in the literature: we assume that there exists an orthogonal sequence $\left(p_{n}\right)$ of
 irreducible and possesses a (faithful) normal invariant state ρ_{n} for all n. Then, under this hypothesis, we investigate if we can write any normal invariant state as a convex combination of ρ_{n}, and we show that this is equivalent to a condition on the set of fixed points of \mathcal{T} (Thm. 24).
2. Preliminaries. In this paper \mathcal{A} is a von Neumann algebra with unit $\mathbf{1}$ acting on a complex Hilbert space \mathcal{H}. A quantum dynamical semigroup (QDS) is a w^{*}-continuous semigroup $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t \geq 0}$ of normal completely positive maps on \mathcal{A}; if $\mathcal{T}_{t}(\mathbf{1})=\mathbf{1}$ for all $t \geq 0$, then it is Markov (i.e. it is a QMS). The infinitesimal generator of \mathcal{T} is the operator \mathcal{L} whit domain $D(\mathcal{L})$ which is the vector space of elements a in \mathcal{A} such that the $\lim _{t \rightarrow 0} t^{-1}\left(\mathcal{T}_{t}(a)-a\right)$ exists in the weak* topology. For $a \in D(\mathcal{L}), \mathcal{L}(a)$ is defined as the limit above. In many cases (for instance \mathcal{T} uniformly continuous, i.e. such that there exists $\lim _{t \rightarrow 0}\left\|\mathcal{T}_{t}-\mathcal{T}_{0}\right\|=0$), the generator \mathcal{L} of a QMS \mathcal{T} can be represented in the Lindblad form

$$
\mathcal{L}(x)=i[H, x]-\frac{1}{2} \sum_{k}\left(L_{k}^{*} L_{k} x-2 L_{k}^{*} x L_{k}+x L_{k}^{*} L_{k}\right),
$$

where H, L_{k}, G are bounded operators on \mathcal{H}, H self-adjoint.
A state ω on \mathcal{A} is normal if it is σ-weakly continuous or, equivalently, if $\omega\left(\sup _{\alpha} a_{\alpha}\right)=$ $\sup _{\alpha} \omega\left(a_{\alpha}\right)$ for any increasing net $\left(a_{\alpha}\right)_{\alpha}$ of positive elements in \mathcal{A} with an upper bound; we denote by \mathcal{A}_{*} the predual of \mathcal{A}, that is the space of all σ-weakly continuous linear functionals on \mathcal{A}. We recall also that ω is a normal state if and only if there exists a density matrix ρ, that is, a positive trace-class operator of \mathcal{H} with a unit trace, such that $\omega(a)=\operatorname{tr}(\rho a)$ for all $a \in \mathcal{A}$.
ω is faithful if $\omega(a)>0$ for all non-zero positive elements $a \in \mathcal{A}$.
For any normal state ω on \mathcal{A}, the support projection $s(\omega)$ is the smallest projection in \mathcal{A} such that $\omega(s(\omega) a)=\omega(a s(\omega))=\omega(a)$ for any $a \in \mathcal{A}$ (cf. [5], Prop. 3); since it is easy to check that any normal state ω is faithful on $s(\omega) \mathcal{A} s(\omega)$, it follows that ω is faithful if and only if $s(\omega)=\mathbf{1}$.

If \mathcal{T} is a QDS on \mathcal{A}, its predual semigroup is the semigroup \mathcal{T}_{*} of operators in \mathcal{A}_{*} defined by $\left(\mathcal{T}_{* t}(\omega)\right)(a)=\omega\left(\mathcal{T}_{t}(a)\right)$ for every $a \in \mathcal{A}$ and $\omega \in \mathcal{A}_{*}$. Since any map $\mathcal{T}_{* t}$ is clearly weakly continuous on $\mathcal{A}_{*}, \mathcal{T}_{*}$ is a strongly continuous semigroup in the Banach space \mathcal{A}_{*} (see, for instance [3] Cor. 3.1.8); moreover, if \mathcal{T} is Markov, \mathcal{T} and \mathcal{T}_{*} are semigroups of contractions (see [7], Prop. 2.10.3).

We say that a normal state ω on \mathcal{A} is invariant if $\mathcal{T}_{* t}(\omega)=\omega$ for all $t \geq 0$ and we denote by $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ the set of normal invariant states on \mathcal{A}.

A family \mathcal{G} of normal states on \mathcal{A} is called faithful if $a \in \mathcal{A}$, a positive and $\omega(a)=0$ for all $\omega \in \mathcal{G}$ implies $a=0$; given a family \mathcal{G} of normal invariant state and put $p=$ $\sup \{s(\omega): \omega \in \mathcal{G}\}$, then \mathcal{G} is faithful on the subalgebra $p \mathcal{A} p$.

We recall that a von Neumann algebra \mathcal{A} on \mathcal{H} is σ-finite if there exists a countable subset S of \mathcal{H} which is separating for \mathcal{A} (i.e. for any $a \in \mathcal{A}$, $a u=0$ for all $u \in S$ implies $a=0$).

We shall often make use of the following elementary remark. Given a positive element $x \in \mathcal{A}$ and a projection p, then $p x p=0$ implies $p^{\perp} x p=p x p^{\perp}=0$ (see Lemma II.1 of [9]).
3. The fast recurrent projection and the transient projection. Following the theory of classical Markov processes and [6], we first introduce the fast recurrent projection p_{R} in such a way that the set of fast recurrent states is invariant for the system and the reduced semigroup is mean ergodic; therefore, p_{R} will be determined by the supports of the normal invariant states.

We call a positive operator a subharmonic (resp. superharmonic, resp. harmonic) if $\mathcal{T}_{t}(a) \geq a$ (resp. $\mathcal{T}_{t}(a) \leq a$, resp. $\left.\mathcal{T}_{t}(a)=a\right)$ for all $t \geq 0$; we denote by $\mathcal{F}(\mathcal{T})$ the set of harmonic elements of \mathcal{T}. Subharmonic projections play an important role in the study of QMSs. For example, we have the following

Proposition 1 ([10]). Let \mathcal{T} be a $Q M S$ on \mathcal{A}. If $\omega \in \mathcal{A}_{*}$ is an invariant state, then its support projection is subharmonic.

Proof. Let ω be a normal invariant state, $p:=s(\omega)$, and fix $t \geq 0$. From the invariance of ω it follows $\omega\left(p-p \mathcal{T}_{t}(p) p\right)=\omega\left(p-\mathcal{T}_{t}(p)\right)=0$, and then $p \mathcal{T}_{t}(p) p=p$, because $p \mathcal{T}_{t}(p) p \leq p$ and ω is faithful on $p \mathcal{A} p$. Therefore, the projection p^{\perp} satisfies $p \mathcal{T}_{t}\left(p^{\perp}\right) p=0$, so $\mathcal{T}_{t}\left(p^{\perp}\right)=p^{\perp} \mathcal{T}_{t}\left(p^{\perp}\right) p^{\perp}$. This implies $\mathcal{T}_{t}\left(p^{\perp}\right) \leq p^{\perp}$ and then $\mathcal{T}_{t}(p) \geq p$.

Notation. For any $\omega \in \mathcal{A}_{*}$ and p projection of \mathcal{A}, we denote by $p \omega p$ the element of \mathcal{A}_{*} defined as $(p \omega p)(a)=\omega(p a p)$ for all $a \in \mathcal{A}$, and by $p \mathcal{A}_{*} p$ the set of $p \omega p$ as ω varies in \mathcal{A}_{*}. Then the subalgebra $p \mathcal{A} p$ is canonically isomorphic to the dual space of $p \mathcal{A}_{*} p$ and we can identify the normal states on $p \mathcal{A} p$ with the normal states on \mathcal{A} whose support is smaller than p.

Given a subharmonic projection p, we can construct a QMS on the subalgebra $p \mathcal{A} p$ in the following way: since p subharmonic implies that $p \mathcal{A}_{*} p$ is \mathcal{T}_{*}-invariant (see Prop. $I I .1$ of [9]), we can restrict \mathcal{T}_{*} to such a Banach space and obtain a weakly continuous semigroup. If we denote by $\mathcal{T}^{p}=\left\{\mathcal{T}_{t}^{p}\right\}_{t}$ its dual semigroup, taking $a \in p \mathcal{A} p=\left(p \mathcal{A}_{*} p\right)^{*}$ and $\omega \in p \mathcal{A}_{*} p$, we have

$$
\omega\left(\left(\mathcal{T}_{* t \mid p \mathcal{A}_{*} p}\right)^{*}(a)\right)=\left(\mathcal{T}_{* t}(\omega)\right)(a)=\omega\left(\mathcal{T}_{t}(a)\right)=\omega\left(p \mathcal{T}_{t}(a) p\right), \quad \forall t \geq 0
$$

that is,

$$
\begin{equation*}
\mathcal{T}_{t}^{p}(a)=p \mathcal{T}_{t}(a) p, \quad \forall a \in p \mathcal{A} p, t \geq 0 \tag{1}
\end{equation*}
$$

\mathcal{T}_{t}^{p} is a QMS on $p \mathcal{A} p$ because any \mathcal{T}_{t}^{p} is clearly normal, completely positive and

$$
p=p \mathcal{I}_{t}(\mathbf{1}) p \geq p \mathcal{T}_{t}(p) p \geq p
$$

Definition 1 ([13]). \mathcal{T}^{p} is called the reduced semigroup associated with p.
If $\left\{p_{i}\right\}_{i}$ is an arbitrary family of projections, then we denote by $\sup _{i} p_{i}$ the projection (in \mathcal{A}) onto the closure of the linear space of \mathcal{H} generated by the ranges of p_{i} 's.

Definition 2 ([13]). The fast recurrent projection associated with a QMS \mathcal{T} is the projection $p_{R}=\sup _{i} p_{i}$ where the p_{i} 's are the support projections of all invariant states of \mathcal{T}.

Theorem 2. Let \mathcal{T} be a $Q M S$ on \mathcal{A}. Then its fast recurrent projection is subharmonic.
Proof. It follows immediately from the definition, p_{R} being the least upper bound of subharmonic projections.

We can then consider the reduced semigroup associated with p_{R}.
We have $p_{R}=0$ when the semigroup has no normal invariant states, and $p_{R}=\mathbf{1}$ when \mathcal{T} has a faithful family of normal invariant states; in particular, if \mathcal{A} is σ-finite, then $p_{R}=\mathbf{1}$ if and only if there exists a faithful normal invariant state (Corollary 1 of [15]). However, since $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ is a faithful family on $p_{R} \mathcal{A} p_{R}$ and any \mathcal{T}-invariant state is
 ergodic Thm. of [12] to $\mathcal{T}^{p_{R}}$ we get the following
Theorem 3 ([13]). For all $a \in \mathcal{A}$ the limit

$$
\mathcal{E}(a):=\mathrm{w}^{*}-\lim _{t} \frac{1}{t} \int_{0}^{t} p_{R} \mathcal{T}_{s}(a) p_{R} d s
$$

exists and it defines a $p_{R} \mathcal{T} p_{R}$-invariant normal conditional expectation onto the von Neumann subalgebra $\mathcal{F}\left(\mathcal{T}^{p_{R}}\right)$ of $p_{R} \mathcal{A} p_{R}$ such that $\mathcal{E} \circ \mathcal{T}_{t}=\mathcal{E}$ for all $t \geq 0$. A normal state ω on \mathcal{A} is \mathcal{T}-invariant if and only if $\omega \circ \mathcal{E}=\omega$.

We now introduce the projection in which the system spends a small amount of time; for this purpose, we need to define a potential associated to \mathcal{T}, which really represents the time of sojourn of a pure state in a projection.

Our reference on quadratic forms is the book of Kato [14].
Definition 3 ([10]). Given a positive operator $x \in \mathcal{A}$ we define the form-potential of x as a quadratic form $\mathfrak{U}(x)$ by

$$
\mathfrak{U}(x)[u]=\int_{0}^{\infty}\left\langle u, \mathcal{T}_{s}(x) u\right\rangle d s, \quad \forall u \in D(\mathfrak{U}(x)),
$$

where the domain $D(\mathfrak{U}(x))$ is the set of all $u \in \mathcal{H}$ s.t. $\int_{0}^{\infty}\left\langle u, \mathcal{T}_{s}(x) u\right\rangle d s<\infty$.
This is clearly a symmetric and positive form; moreover, by Thm. 3.13a p. 461 and Lemma 3.14a p. 461 of [14] it is also closed. Therefore, when it is densely defined, it is represented by a self-adjoint operator (see Thm.2.1, p. 322, Thm. 2.6, p. 323 and Thm. 2.23 p. 331 of [14]). This motivates the following definition.

Definition 4 ([10]). For all positive $x \in \mathcal{A}$ such that $D(\mathfrak{U}(x))$ is dense, the potential of x is the self-adjoint operator $\mathcal{U}(x)$ which represents $\mathfrak{U}(x)$.

We put also $\mathcal{A}_{\text {int }}:=\left\{x \in \mathcal{A}_{+}: \mathcal{U}(x)\right.$ is bounded $\}$ and we call its elements \mathcal{T}-integrable (or integrable).

Since $D\left(\mathcal{U}(x)^{1 / 2}\right)=D(\mathfrak{U}(x))$ by [14] Th. 2.23 p. 331, given $x \in \mathcal{A}_{\text {int }}$, we have $D(\mathfrak{U}(x))=\mathcal{H}$ and then $\langle u, \mathcal{U}(x) u\rangle=\int_{0}^{\infty}\left\langle u, \mathcal{T}_{s}(x) u\right\rangle d s$ for all $u \in \mathcal{H}$.
Proposition 4. If \mathcal{T} is a $Q M S$ and $x \in \mathcal{A}$ is positive, then the orthogonal projections onto the closure of $D(\mathfrak{U}(x))$ and onto $\mathcal{K}(x)=\{u \in D(\mathfrak{U}(x)): \mathfrak{U}(x)[u]=0\}$ are subharmonic.
Proof. See Prop. 2 and 4 of [10].
For each operator x on \mathcal{H}, we call the orthogonal projection onto the closure of $x(\mathcal{H})$ the range projection of x and denote it by $[x]$; it is well-known that $x \in \mathcal{A}$ implies $[x] \in \mathcal{A}$.

Inspired by the notion of transient QMS given in [10] we give the following
Definition 5. The transient projection associated with the QMS \mathcal{T} is the projection p_{T} in \mathcal{A} defined by $p_{T}:=\sup _{p \in \mathcal{P}} p$, where $\mathcal{P}=\left\{[\mathcal{U}(x)]: x \in \mathcal{A}_{\text {int }}\right\}$.

This definition is original, as are all the next results.
The transient projection is orthogonal to p_{R}, indeed
Proposition 5. If \mathcal{T} is a $Q M S$ on \mathcal{A}, then $p_{T} \leq p_{R}^{\perp}$.
Proof. Let ω be a normal invariant state and put $p=[\mathcal{U}(x)]$ with $x \in \mathcal{A}_{\text {int }}$; then

$$
\int_{0}^{\infty} \omega(x) d s=\int_{0}^{\infty} \omega\left(\mathcal{T}_{s}(x)\right) d s=\omega(\mathcal{U}(x)) \leq\|\omega\| \cdot\|\mathcal{U}(x)\|
$$

implies $\omega(\mathcal{U}(x))=0$. But ω is faithful on the subalgebra $s(\omega) \mathcal{A} s(\omega)$, so that this means $s(\omega) \mathcal{U}(x)=0$, i.e. $\overline{\mathcal{U}(x)(\mathcal{H})} \subseteq \operatorname{ker} s(\omega)$; from the arbitrariness of ω it follows $p(\mathcal{H}) \subseteq$ ker p_{R}, so $p \leq p_{R}^{\perp}$ for all $p \in \mathcal{P}$. Hence $p_{T} \leq p_{R}^{\perp}$.

By Prop. 4 any projection $[\mathcal{U}(x)]$ with x integrable is superharmonic, but it is not clear whether the supremum of a family of superharmonic projections is still superharmonic. However, when \mathcal{A} is σ-finite, we will prove that p_{T} is superharmonic because we can write it as the supremum of an increasing sequence of superharmonic projections. We shall make use of the following
Lemma 6. If $e \in p_{T}(\mathcal{H})$, then there exists $x \in \mathcal{A}_{\text {int }}$ such that $e \in \overline{\operatorname{Ran}(\mathcal{U}(x))}$.
Proof. By definition of p_{T}, for any $n \geq 1$ there exists $u_{n} \in p_{n}(\mathcal{H}), p_{n}=\left[\mathcal{U}\left(x_{n}\right)\right]\left(x_{n} \in\right.$ $\left.\mathcal{A}_{\text {int }}\right)$, such that $\left\|e-u_{n}\right\|<n^{-1}$; therefore, if we put

$$
x:=\sum_{n \geq 1} 2^{-n}\left(\left\|x_{n}\right\|+\left\|\mathcal{U}\left(x_{n}\right)\right\|+1\right)^{-1} x_{n}
$$

we obtain an integrable element with $\operatorname{ker} \mathcal{U}(x)=\bigcap_{n \geq 1} \operatorname{ker} \mathcal{U}\left(x_{n}\right)$ and $p:=\sup _{n} p_{n}=$ $[\mathcal{U}(x)]$. Moreover, since $u_{n} \in p(\mathcal{H})$, we get

$$
\|e-p e\| \leq\left\|e-u_{n}\right\|+\left\|p u_{n}-p e\right\|<2 n^{-1} \quad \forall n \geq 1
$$

which implies $e \in p(\mathcal{H})$.

Theorem 7. Suppose \mathcal{A} is σ-finite and let \mathcal{T} be a $Q M S$ on \mathcal{A}. Then there exists an increasing sequence $\left(p_{n}\right)_{n \geq 0}$ in \mathcal{P} such that $p_{T}=\sup _{n \geq 0} p_{n}$. Moreover $p_{T} \in \mathcal{P}$.
Proof. Let $\left\{e_{n}\right\}_{n \geq 0}$ be a countable subset of \mathcal{H} which is separating for \mathcal{A}; then, for all $n \geq 0$ there exists $x_{n} \in \mathcal{A}_{\text {int }}$ such that $p_{T} e_{n} \in \overline{\operatorname{Ran}\left(\mathcal{U}\left(x_{n}\right)\right)}$ (see Lemma 6). If $y_{n}:=\sum_{k=0}^{n} x_{k}$ and $p_{n}:=\left[\mathcal{U}\left(y_{n}\right)\right](n \geq 0)$, we obtain an increasing sequence $\left(p_{n}\right)_{n \geq 0}$ in \mathcal{P} with $p_{T} e_{n} \in \overline{\mathcal{U}\left(x_{n}\right)(\mathcal{H})} \subseteq \overline{\mathcal{U}\left(y_{n}\right)(\mathcal{H})}=p_{n}(\mathcal{H})$; therefore we have $\left(p_{T}-\sup _{m \geq 0} p_{m}\right) p_{T} e_{n}=$ 0 for all $n \geq 0$, so $p_{T}=\sup _{n \geq 0} p_{n}$ because $\left\{p_{T} e_{n}\right\}_{n \geq 0}$ is separating for $p_{T} \mathcal{A} p_{T}$ and $p_{T}-\sup _{n \geq 0} p_{n} \in p_{T} \mathcal{A} p_{T}$.

Finally, put

$$
y:=\sum_{n \geq 0} 2^{-n}\left(\left\|y_{n}\right\|+\left\|\mathcal{U}\left(y_{n}\right)\right\|+1\right)^{-1} y_{n}
$$

it is clear that $y \in \mathcal{A}_{\text {int }}$ and $\operatorname{ker} \mathcal{U}(y)=\bigcap_{n \geq 0} \operatorname{ker} \mathcal{U}\left(y_{n}\right)=\operatorname{ker} p_{T}$, so that $[\mathcal{U}(y)]=p_{T}$, i.e. $p_{T} \in \mathcal{P}$.

Corollary 8. If \mathcal{A} is σ-finite and \mathcal{T} is a $Q M S$ on \mathcal{A}, then its transient projection p_{T} is superharmonic. In particular, the subalgebra $p_{T} \mathcal{A}_{T}$ is \mathcal{T}-invariant.

We put $\mathcal{T}^{T}:=\mathcal{T}_{\left.\right|_{p_{T} \mathcal{A}_{T}}}$; then it is a submarkovian QDS on $p_{T} \mathcal{A} p_{T}$. If $\left(p_{n}\right)_{n \geq 0}$ is a sequence of projections as in Thm. 7, then the map $t \mapsto\left\langle u, \mathcal{T}_{t}\left(p_{n}\right) u\right\rangle$ is integrable on $[0, \infty)$ for all $u \in \mathcal{H}$; this implies that $\mathcal{T}_{t}\left(p_{n}\right)$ is strongly convergent to 0 as $t \rightarrow \infty$. Using this fact and the uniform boundeness in t of \mathcal{T}_{t} we can easily show that \mathcal{T}^{T} has no normal invariant states.

Definition 6. The projection $p_{R_{0}}=p_{R}^{\perp}-p_{T}$ is called slow recurrent projection associated with the QMS \mathcal{T}.

4. Decomposition of QMSs

Definition 7. We call a QMS \mathcal{T}

1. irreducible if it has no non-trivial subharmonic projections;
2. transient if $p_{T}=\mathbf{1}$;
3. recurrent if $p_{T}=0$;
4. fast recurrent if $p_{R}=\mathbf{1}$;
5. slow recurrent if $p_{R_{0}}=\mathbf{1}$.

Notice that we can also define p_{T}, p_{R} and $p_{R_{0}}$ for a $\operatorname{QDS} \mathcal{T}$ on \mathcal{A} such that $\mathcal{T}_{t}(\mathbf{1}) \leq \mathbf{1}$ for all $t \geq 0$; since it is easy to check that these projections satisfy the same properties, we can introduce the concepts of transience and recurrence for such semigroups too.

Proposition 9. Let \mathcal{T} be a $Q M S$ on \mathcal{A}. If \mathcal{T} is irreducible, then it is either transient, or fast recurrent, or slow recurrent.

Proof. If \mathcal{T} is irreducible, since p_{T} is superharmonic we have either $p_{T}=\mathbf{1}$ or $p_{T}=0$, that is, \mathcal{T} is either transient or recurrent. On the other hand, if $p_{T}=0$, since p_{R} is subharmonic we get either $p_{R}=\mathbf{1}$ or $p_{R}=0$, that is, \mathcal{T} is either fast or slow recurrent.

Instead, in general a $\mathrm{QMS} \mathcal{T}$ is not type $2,3,4,5$ but, if \mathcal{A} is σ-finite, we can write it as a sum of a transient and a recurrent semigroup. Indeed, we have the following

Theorem 10. If \mathcal{A} is σ-finite and \mathcal{T} is a $Q M S$ on \mathcal{A}, then \mathcal{T}^{T} is a transient $Q D S$ on $p_{T} \mathcal{A} p_{T}$, while $\mathcal{T}^{p_{T}^{\perp}}$ is a recurrent $Q M S$ on $p_{T}^{\perp} \mathcal{A} p_{T}^{\perp}$. Moreover $\mathcal{T}^{p_{R}}$ is a fast recurrent semigroup on $p_{R} \mathcal{A} p_{R}$.

We refer to Thm. 9 of [15] for the proof.
It is not yet clear if we can associate a semigroup with the slow recurrent projection $p_{R_{0}}$ (we don't know if $p_{R_{0}}$ is superharmonic or subharmonic) and, in this case, if such a semigroup is slow recurrent.

Since, for all projections $p \in \mathcal{A}, \mathfrak{U}(p)[u]=\int_{0}^{\infty}\left\langle u, \mathcal{T}_{s}(p) u\right\rangle d s$ represents the time of sojourn of the state $\operatorname{tr}(|u\rangle\langle u| \cdot)(\|u\|=1)$ in p (see [10]) and any normal state ω is defined by a density matrix $\sum_{k} \lambda_{k}\left|e_{k}\right\rangle\left\langle e_{k}\right|$ with $e_{k} \in s(\omega)(\mathcal{H})$, we can read the above theorem as follows:

- starting from a transient state (support in $p_{T} \mathcal{A} p_{T}$), the semigroup \mathcal{T}_{*} spends a finite or an infinite amount of time in p_{T} but, if it leaves p_{T} to come into p_{T}^{\perp} (i.e. its support is in $\left.p_{T}^{\perp} \mathcal{A} p_{T}^{\perp}\right)$, it stays there forever;
- starting from a recurrent state, the semigroup \mathcal{T}_{*} cannot leave $p_{\bar{T}}^{\perp}$.

In particular, starting from a fast recurrent state, the semigroup \mathcal{T}_{*} cannot leave p_{R}.
We want now to decompose p_{R} as a sum of an arbitrary family of orthogonal $\mathcal{T}^{p_{R}}$ invariant projections $\left\{p_{i}\right\}$ such that any restriction of $\mathcal{T}^{p_{R}}$ to the subalgebra $p_{i} \mathcal{A} p_{i}$ is irreducible; such a decomposition is given in [6] for finite-dimensional algebras. We prove that this is possible if and only if there exists a faithful family of extremal states of $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ with orthogonal supports. In this case, since $p_{i} \mathcal{A} p_{i}$ is $\mathcal{T}^{p_{R}}$-invariant, the equation

$$
\mathcal{T}_{t}^{p_{R}}(x)=p_{i} \mathcal{T}_{t}^{p_{R}}(x) p_{i}=p_{i} \mathcal{T}_{t}(x) p_{i}=\mathcal{T}_{t}^{p_{i}}(x)
$$

holds for all $x \in p_{i} \mathcal{A} p_{i}$, so that the restriction of $\mathcal{T}^{p_{R}}$ to $p_{i} \mathcal{A} p_{i}$ is the reduced semigroup $\mathcal{T}^{p_{i}}$ for all i. Moreover, given $\omega \in \mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ with $\omega\left(p_{i}\right) \neq 0$, we have that

$$
\left(p_{i} \omega p_{i}\right)\left(\mathcal{T}_{t}^{p_{i}}(x)\right)=\omega\left(\mathcal{T}_{t}(x)\right)=\omega(x)
$$

for all $x \in p_{i} \mathcal{A} p_{i}$. Hence, $\omega_{i}:=\omega\left(p_{i}\right)^{-1} p_{i} \omega p_{i}$ is a normal $\mathcal{T}^{p_{i}}$-invariant state; also, from the irreducibility of $\mathcal{T}^{p_{i}}$, it follows that ω_{i} is faithful on $p_{i} \mathcal{A} p_{i}$, so that it is the unique normal invariant state on $p_{i} \mathcal{A} p_{i}$ by Thm. 1 of [11]. As a consequence, $\mathcal{T}^{p_{R}}$ is the direct sum of the irreducible "sub-QMS" $\mathcal{T}^{p_{i}}$ each one supporting a unique faithful normal invariant state.

Lemma 11. Let \mathcal{T} be a $Q M S$ on \mathcal{A}; if ω is a normal state on \mathcal{A} and p is a subharmonic projection such that $p \geq s(\omega)$, then:

1. ω is \mathcal{T}-invariant if and only if ω is \mathcal{T}^{p}-invariant;
2. ω is extremal in $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ if and only if ω is extremal in $\mathcal{F}\left(\mathcal{T}_{*}^{p}\right)_{1}$.

Theorem 12. Let \mathcal{T} be a $Q M S$ on \mathcal{A}. The following facts are equivalent:

1. there exists a set $\left\{p_{i}\right\}_{i \in I}$ of pairwise orthogonal projections such that:
a) $p_{R}=\sum_{i \in I} p_{i}$;
b) $\mathcal{T}_{t}^{p_{R}}\left(p_{i}\right)=p_{i}$ for all $i \in I$;
c) the restriction of $\mathcal{T}^{p_{R}}$ to the subalgebra $p_{i} \mathcal{A} p_{i}$ is irreducible for all $i \in I$.
2. there exists a faithful family of normal invariant states $\left\{\omega_{i}\right\}_{i \in I}$ such that:
$\left.a^{\prime}\right)$ each ω_{i} is an extremal point of $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$;
$\left.b^{\prime}\right) s\left(\omega_{j}\right) s\left(\omega_{i}\right)=0$ for $i \neq j, i, j \in I$.
Proof. $1 \Rightarrow 2$. Fix $i \in I$; by the above remarks, there exists a unique faithful normal
 we can conclude the proof by virtue of Lemma 11.
$2 \Rightarrow 1$. Define $p_{i}:=s\left(\omega_{i}\right)(i \in I)$; we obtain a set of pairwise orthogonal $\mathcal{T}^{p_{R}}$-harmonic projections, ω_{i} being a faithful invariant state on $p_{i} \mathcal{A} p_{i}$ and p_{i} subharmonic. Moreover, since $\omega_{j}\left(p_{R}-\sum_{i \in I} p_{i}\right)=0$ for all $j \in I$ and $\left\{\omega_{i}\right\}_{i \in I}$ is faithful, we get $p_{R}=\sum_{i \in I} p_{i}$.

Finally, for $i \in I, \omega_{i}$ is extremal in $\mathcal{F}\left(\mathcal{T}_{*}^{p_{i}}\right)_{1}$ by virtue of Lemma 11 and $\mathcal{T}^{p_{i}}=\mathcal{T}_{\left.\right|_{p_{i} \mathcal{A p}_{i}}}^{p_{R}}$ is irreducible by Thm. 1 of [11].
Remark 1. If \mathcal{A} is σ-finite, then we have $\operatorname{card}(\mathrm{I}) \leq \aleph_{0}$ by virtue of Prop. 2.5.6 of [3]. Therefore, in this case, $\mathcal{T}^{p_{R}}$ is a countable direct sum of irreducible semigroups.

We find now some conditions under which such a decomposition holds.
Proposition 13. Let \mathcal{T} be a $Q M S$ on \mathcal{A}. The equivalent conditions of Thm. 12 are satisfied if at least one of the following assumptions holds:

- $\mathcal{F}\left(\mathcal{T}_{*}\right)$ is finite dimensional,
- \mathcal{A} is commutative and the family of extremal states of $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ is faithful on $p_{R} \mathcal{A} p_{R}$.

Proof. Let $\left\{\omega_{i}\right\}_{i \in I}$ be a maximal family of extremal states of $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ with pairwise orthogonal supports. Set $q:=\sum_{i \in I} s\left(\omega_{i}\right)$, which is majorized by p_{R}, and define $q^{\prime}:=p_{R}-q$. If $q \neq p_{R}$ we show that there exists an extremal state σ of $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ such that $s(\sigma) s\left(\omega_{i}\right)=0$ for all $i \in I$. Since this contradicts the maximality of $\left\{\omega_{i}\right\}_{i \in I}$, we would obtain that $q=p_{R}$ (and then $\left(\omega_{i}\right)_{i \in I}$ is a faithful family of extremal points of $\left.\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}\right)$.

Let $\rho \in \mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ be such that $\rho\left(q^{\prime}\right) \neq 0$. Since $\mathcal{T}^{p_{R}}\left(q^{\prime} \mathcal{A} q^{\prime}\right) \subseteq q^{\prime} \mathcal{A} q^{\prime}$ and $s(\rho) \leq p_{R}$, we have

$$
q^{\prime} \rho q^{\prime}\left(\mathcal{T}_{t}(a)\right)=\rho\left(\mathcal{T}_{t}^{p_{R}}\left(q^{\prime} a q^{\prime}\right)\right)=\rho\left(\mathcal{T}_{t}\left(q^{\prime} a q^{\prime}\right)\right)=q^{\prime} \rho q^{\prime}(a)
$$

for all $a \in \mathcal{A}, t \geq 0$, that is, $\omega:=\rho\left(q^{\prime}\right)^{-1} q^{\prime} \rho q^{\prime}$ is a normal invariant state. Therefore, if $\mathcal{F}\left(\mathcal{T}_{*}\right)$ is finite-dimensional, and since ω is a convex combination of extremal points of $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ by Thm. 2.3.15 of [3], we have $q^{\prime} \geq s(\omega) \geq s(\sigma)$ for some σ extremal in $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$, which means $s(\sigma) s\left(\omega_{i}\right)=0$ for all $i \in I$.

On the other hand, if \mathcal{A} commutative and the family of extremal states of $\mathcal{F}\left(\mathcal{T}_{*}\right)_{1}$ is faithful on $p_{R} \mathcal{A} p_{R}$, we can choose an extremal state ρ such that $\rho\left(q^{\prime}\right) \neq 0$. Fix $i \in I$: the condition $\left[s\left(\omega_{i}\right), s(\rho)\right]=0$ implies $s\left(\omega_{i}\right) \wedge s(\rho)=s\left(\omega_{i}\right) s(\rho)$; since $s\left(\omega_{i}\right) \wedge s(\rho) \leq s\left(\omega_{i}\right)$ is $\mathcal{T}^{s\left(\omega_{i}\right)}$-invariant and ω_{i}, ρ are extremal, by Thm. 1 of [11] we have that $\mathcal{T}^{s\left(\omega_{i}\right)}$ is irreducible, so $s\left(\omega_{i}\right) \wedge s(\rho)=0$, for $s\left(\omega_{i}\right) \leq q$. This means $s(\rho) s\left(\omega_{i}\right)=0$.
5. The finite-dimensional case. If \mathcal{A} acts on a finite-dimensional Hilbert space \mathcal{H}, as in the case of Markov chains with finite state space, we get $p_{R} \neq 0$ and $p_{R_{0}}=0$. Moreover, p_{T} is integrable.

Proposition 14. Suppose $\operatorname{dim} \mathcal{H}<+\infty$. If \mathcal{T} is a $Q M S$ on \mathcal{A}, then its fast recurrent projection p_{R} is not zero.

Proof. It is a trivial consequence of the Markov-Kakutani Theorem.
Corollary 15. If \mathcal{T} is an irreducible $Q M S$ on \mathcal{A} and \mathcal{H} is finite-dimensional, then \mathcal{T} is fast recurrent.

Proof. Since \mathcal{T} is irreducible, it can be either transient, or fast or slow recurrent by Prop. 9; but Prop. 14 implies $p_{R} \neq 0$, so that $p_{R}=\mathbf{1}$, i.e. \mathcal{T} is fast recurrent.
Lemma 16. If $\operatorname{dim} \mathcal{H}<+\infty$ and \mathcal{T} is a $Q M S$ on \mathcal{A}, then $p_{R}^{\perp} \in \mathcal{A}_{\text {int }}$. In particular, $\mathcal{T}_{t}\left(p_{R}^{\perp}\right) \xrightarrow{t \rightarrow \infty} 0$.
Proof. Let $x_{0} \in p_{R}^{\perp} \mathcal{A} p_{R}^{\perp}$ be the positive limit of the decreasing net $\left\{\mathcal{T}_{t}\left(p_{R}^{\perp}\right)\right\}_{t \geq 0}\left(p_{R}^{\perp}\right.$ is superharmonic); therefore x_{0} is harmonic. If we put

$$
\mathcal{S}(\omega)=\lim _{n} \frac{1}{n} \sum_{k=1}^{n} \mathcal{T}_{* k}(\omega)
$$

for all $\omega \in \mathcal{A}_{*}=\mathcal{A}^{*}$, then $\mathcal{S}(\omega) \in \mathcal{F}\left(\mathcal{T}_{*}\right)_{+}$, so $s(\mathcal{S}(\omega)) \leq p_{R}$. Hence

$$
\omega\left(x_{0}\right)=\lim _{n} \frac{1}{n} \sum_{k=1}^{n} \omega\left(\mathcal{T}_{1}^{k}\left(x_{0}\right)\right)=\mathcal{S}(\omega)\left(x_{0}\right)=\mathcal{S}(\omega)\left(s(\mathcal{S}(\omega)) x_{0}\right)=0
$$

so that $x_{0}=0$. But \mathcal{H} finite-dimensional implies that $\mathcal{T}_{t}\left(p_{R}^{\perp}\right)$ is also norm-convergent to 0 , and then there exists $t_{0}>0$ such that $\left\|\mathcal{T}_{t_{0}}\left(p_{R}^{\perp}\right)\right\|<1$; therefore, by $\left\|\mathcal{T}_{t}\left(p_{R}^{\perp}\right)\right\| \leq$ $\left\|\mathcal{T}_{t_{0}}\left(p_{R}^{\perp}\right)\right\|<1$ for all $t \geq t_{0}$, it follows that $\left\|\mathcal{T}_{t}\left(p_{R}^{\perp}\right)\right\| \leq c \exp (-t \alpha)$ for some $\alpha>0, c>0$, and for all $t \geq t_{0}$, so that finally

$$
\int_{0}^{\infty}\left\|\mathcal{T}_{t}\left(p_{R}^{\perp}\right)\right\| d t \leq t_{0}+\int_{t_{0}}^{\infty}\left\|\mathcal{T}_{t}\left(p_{R}^{\perp}\right)\right\| d t<\infty
$$

i.e. p_{R}^{\perp} is integrable.

Theorem 17. If $\operatorname{dim} \mathcal{H}<+\infty$ and \mathcal{T} is a $Q M S$ on \mathcal{A}, then $p_{R_{0}}=0$.
Proof. Since by virtue of Lemma $16 p_{R}^{\perp}$ is integrable, we have $p_{T}+p_{R_{0}}=p_{R}^{\perp} \leq\left[\mathcal{U}\left(p_{R}^{\perp}\right)\right]$ $\leq p_{T}$, i.e. $p_{R_{0}}=0$.
Corollary 18. Suppose $\operatorname{dim} \mathcal{H}<+\infty$. If \mathcal{T} is a $Q M S$ on \mathcal{A}, then its transient projection p_{T} is integrable.

We conclude this section with an application to a physical model: this is the open BCS model, where the system is described by spin variables and the reservoir is given in terms of bosonic operators (see [2]). It is contained in a box with N sites.

We show first some preliminary results which will be very useful to analyze the open BCS model.

We recall that, given a QMS \mathcal{T} on a von Neumann algebra \mathcal{A}, we can consider the subalgebra

$$
\mathcal{N}(\mathcal{T})=\bigcap_{t \geq 0}\left\{a \in \mathcal{A}: \mathcal{T}_{t}\left(a^{*} a\right)=\mathcal{T}_{t}\left(a^{*}\right) \mathcal{T}_{t}(a), \mathcal{T}_{t}\left(a a^{*}\right)=\mathcal{T}_{t}(a) \mathcal{T}_{t}\left(a^{*}\right)\right\}
$$

If $\mathcal{A}=\mathcal{B}(\mathcal{H}), \mathcal{T}$ is uniformly continuous and its generator is represented in the Lindblad form, we have $\mathcal{N}(\mathcal{T})=\left\{L_{k}, L_{k}^{*}: k \geq 0\right\}^{\prime}$ (see Prop. 2.33 of [8]); moreover, if there exists
a faithful normal invariant state, Prop. 2.32 of [8] implies that $\mathcal{F}(\mathcal{T})=\left\{L_{k}, L_{k}^{*}, H: k \geq\right.$ $0\}^{\prime} \subseteq \mathcal{N}(\mathcal{T})$. We shall use these facts in the following
Proposition 19. Let $\mathcal{A}=M_{2}(\mathbb{C})^{\otimes^{N}}$, with $N \geq 1$. If $\omega_{1}, \ldots, \omega_{N}$ are faithful states on $M_{2}(\mathbb{C})$, then $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is a faithful state on \mathcal{A}.
Proof. We denote by E_{1} and E_{2} the partial traces over $\left(\mathbb{C}^{2}\right)^{\otimes^{(N-1)}}$ and \mathbb{C}^{2} respectively. It is clear that $\left(\omega_{1} \otimes \ldots \otimes \omega_{N}\right)(\mathbf{1})=\left(\omega_{1} \otimes \ldots \otimes \omega_{N}\right)(\mathbf{1} \otimes \ldots \otimes \mathbf{1})=1$. We prove by induction on N that $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is positive and faithful: for $N=1$, it is trivial. Suppose now $\omega_{2} \otimes \ldots \otimes \omega_{N}$ positive and faithful on $M_{2}(\mathbb{C})^{\otimes^{N-1}}$, and denote by ρ its density; hence, if we denote by $\operatorname{tr}, \operatorname{tr}_{1}$ and tr_{2} the normalized traces on the Hilbert spaces $\left(\mathbb{C}^{2}\right)^{\otimes^{N}}, \mathbb{C}^{2}$ and $\left(\mathbb{C}^{2}\right)^{\otimes^{(N-1)}}$ respectively, we have

$$
\begin{equation*}
\left(\omega_{2} \otimes \ldots \otimes \omega_{N}\right)(b)=\operatorname{tr}_{2}(\rho b)=\operatorname{tr}_{2}\left(\rho^{1 / 2} b \rho^{1 / 2}\right) \tag{2}
\end{equation*}
$$

for all $b \in M_{2}(\mathbb{C})^{\otimes^{N-1}}$. Let F be the $\left(\omega_{1} \otimes \ldots \otimes \omega_{N}\right)$-preserving conditional expectation onto $M_{2}(\mathbb{C})$ given by

$$
\begin{array}{ccc}
F: M_{2}(\mathbb{C}) \otimes M_{2}(\mathbb{C})^{\otimes^{N-1}} & \rightarrow & M_{2}(\mathbb{C}) \otimes \mathbb{C} \\
a \otimes b & \mapsto\left(\omega_{2} \otimes \ldots \otimes \omega_{N}\right)(b) a \otimes \mathbf{1} .
\end{array}
$$

Therefore, identifying $M_{2}(\mathbb{C}) \otimes \mathbb{C}$ with $M_{2}(\mathbb{C})$, we have

$$
\left(\omega_{1} \otimes \ldots \otimes \omega_{N}\right)(a)=\omega_{1}(F(a))
$$

for all $a \in \mathcal{A}$. In particular, if a is positive, $F(a)$ is also positive in $M_{2}(\mathbb{C})$, so that $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is a positive functional on \mathcal{A}.

Assume now that $\left(\omega_{1} \otimes \ldots \otimes \omega_{N}\right)(a)=0, a \in \mathcal{A}_{+}$. With the identification $\mathbb{C} \otimes$ $M_{2}(\mathbb{C})^{\otimes^{(N-1)}} \simeq M_{2}(\mathbb{C})^{\otimes^{(N-1)}}$, the faithfulness of ω_{1} and (2) imply

$$
0=F(a)=E_{2}\left(\left(\mathbf{1} \otimes \rho^{1 / 2}\right) a\left(\mathbf{1} \otimes \rho^{1 / 2}\right)\right)
$$

Since $\left(\mathbf{1} \otimes \rho^{1 / 2}\right) a\left(\mathbf{1} \otimes \rho^{1 / 2}\right)$ is positive and E_{2} is faithful, we obtain that $\left(\mathbf{1} \otimes \rho^{1 / 2}\right) a(\mathbf{1} \otimes$ $\left.\rho^{1 / 2}\right)=0$, and so

$$
0=\operatorname{tr}((\mathbf{1} \otimes \rho) a)=\operatorname{tr}_{2}\left(\rho E_{1}(a)\right)=\left(\omega_{2} \otimes \ldots \otimes \omega_{N}\right)\left(E_{1}(a)\right)
$$

Due to the faithfulness of $\omega_{2} \otimes \ldots \otimes \omega_{N}$ and E_{1}, we have $a=0$. This proves that $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is a faithful state on \mathcal{A}.
Proposition 20. Let $\mathcal{A}=M_{2}(\mathbb{C})^{\otimes^{N}}$ and \mathcal{L} be the linear map on \mathcal{A} given by

$$
\begin{equation*}
\mathcal{L}\left(x_{1} \otimes \ldots \otimes x_{N}\right)=\sum_{j=1}^{N} x_{1} \otimes \ldots \otimes \underbrace{\mathcal{L}_{j}\left(x_{j}\right)}_{j} \otimes \ldots x_{N} \quad \forall x_{i} \in M_{2}(\mathbb{C}) \tag{3}
\end{equation*}
$$

where each \mathcal{L}_{j} is the generator of a uniformly continuous $Q M S \mathcal{T}^{(j)}$ on $M_{2}(\mathbb{C})$. Then \mathcal{L} generates a uniformly continuous $Q M S \mathcal{T}$ on \mathcal{A} defined by

$$
\begin{equation*}
\mathcal{T}_{t}\left(x_{1} \otimes \ldots \otimes x_{N}\right)=\mathcal{T}_{t}^{(1)}\left(x_{1}\right) \otimes \ldots \otimes \mathcal{T}_{t}^{(N)}\left(x_{N}\right) \tag{4}
\end{equation*}
$$

Moreover, if we assume that:

1. each $\mathcal{T}^{(j)}$ is irreducible and it possesses a (unique) faithful invariant state ω_{j},
2. $\mathcal{N}\left(\mathcal{T}^{(j)}\right)=\mathcal{F}\left(\mathcal{T}^{(j)}\right)$ for all $j=1, \ldots, N$,
then \mathcal{T} is irreducible and $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is the unique faithful invariant state of \mathcal{T}.

Proof. If

$$
\mathcal{L}_{j}(x)=\frac{1}{2}\left(\sum_{k \geq 0}\left(L_{k}^{(j)}\right)^{*} L_{k}^{(j)} x-2 \sum_{k \geq 0}\left(L_{k}^{(j)}\right)^{*} x L_{k}^{(j)}+\sum_{k \geq 0} x L_{k}^{(j) *} L_{k}^{(j)}\right)+i\left[H^{(j)}, x\right]
$$

is the Lindblad form of \mathcal{L}_{j}, then \mathcal{L} can be represented in the Lindblad form too taking

$$
\begin{aligned}
& L_{j, k}=\mathbf{1} \otimes \ldots \otimes \underbrace{L_{k}^{(j)}}_{j} \otimes \ldots \mathbf{1} \\
& H=\sum_{i=1}^{N} \mathbf{1} \otimes \ldots \otimes H^{(i)} \otimes \ldots \otimes \mathbf{1}
\end{aligned}
$$

for all $j=1, \ldots, N$ and $k \geq 0$. Therefore \mathcal{L} generates a uniformly continuous QMS \mathcal{T} on \mathcal{A}; it is easy to prove that \mathcal{T} is given by (4) and

$$
\begin{equation*}
\mathcal{L}_{*}\left(\sigma_{1} \otimes \ldots \otimes \sigma_{N}\right)=\sum_{j=1}^{N} \sigma_{1} \otimes \ldots \otimes \underbrace{\mathcal{L}_{j *}\left(\sigma_{j}\right)}_{j} \otimes \ldots \sigma_{N} \quad \forall \sigma_{i} \in M_{2}(\mathbb{C}) . \tag{5}
\end{equation*}
$$

Suppose now that conditions 1,2 hold. Hence $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is a faithful \mathcal{T}-invariant state thanks to (5) and Proposition 19. To conclude, it is enough to prove that $\mathcal{F}(\mathcal{T})=\mathbb{C} 1$: indeed, in this case, since $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is a faithful \mathcal{T}-invariant state, Thm. 1 and Lemma 2 of [11] imply that \mathcal{T} is irreducible and $\omega_{1} \otimes \ldots \otimes \omega_{N}$ is the unique invariant state.

If $x \in \mathcal{F}(\mathcal{T})$, then in particular x commutes with each $L_{j, k}$, so that

$$
\sum_{i_{j}, k_{j}=1}^{2} x_{\left(i_{1}, k_{1}\right), \ldots,\left(i_{j}, k_{j}\right), \ldots,\left(i_{N}, k_{N}\right)} E_{i_{j}}^{k_{j}} \in\left\{L_{k}^{(j)}, L_{k}^{(j) *}: k \geq 0\right\}^{\prime}=\mathcal{N}\left(\mathcal{T}^{(j)}\right)
$$

for all $j=1, \ldots, N$; since $\mathcal{N}\left(\mathcal{T}^{(j)}\right)=\mathcal{F}\left(\mathcal{T}^{(j)}\right)$ and this last space is equal to $\mathbb{C} \mathbf{1}$ by Thm . 1 and Lemma 2 of [11], this means that $x_{\left(i_{1}, k_{1}\right), \ldots,\left(i_{N}, k_{N}\right)}=0$ for $i_{j} \neq k_{j}$ and

$$
x_{\left(i_{1}, k_{1}\right), \ldots(\underbrace{}_{j}), \ldots,\left(i_{N}, k_{N}\right)}=x_{\left(i_{1}, k_{1}\right), \ldots,(\underbrace{(, 2)}_{j}), \ldots,\left(i_{N}, k_{N}\right)}
$$

for all $j=1, \ldots, N$. Therefore, we get $x_{\left(i_{1}, i_{1}\right), \ldots,\left(i_{N}, i_{N}\right)}=x_{\left(k_{1}, k_{1}\right), \ldots,\left(k_{N}, k_{N}\right)}$ for all $i_{j}, k_{j} \in$ $\{1,2\}$ and $j=1, \ldots, N$, i.e. $\mathcal{F}(\mathcal{T})=\mathbb{C}(\mathbf{1} \otimes \ldots \otimes \mathbf{1})=\mathbb{C} \mathbf{1}$.
Example 1. Let $\mathcal{H}=\left(\mathbb{C}^{2}\right)^{\otimes N}, N \geq 1$, and $\mathcal{A}=\mathcal{B}(\mathcal{H}) \simeq M_{2}(\mathbb{C})^{\otimes N}$; denote $\sigma_{i}^{\epsilon}=$ $\mathbf{1} \otimes \ldots \otimes \mathbf{1} \otimes \underbrace{\sigma^{\epsilon}}_{i} \otimes \mathbf{1} \otimes \ldots \otimes \mathbf{1}$, where $\epsilon=0, \pm, i=1, \ldots, N$ and

$$
\sigma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \sigma^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

We recall that $\left[\sigma_{i}^{+}, \sigma_{j}^{-}\right]=\delta_{i j} \sigma_{i}^{0}$ and $\left[\sigma_{i}^{ \pm}, \sigma_{j}^{0}\right]=\mp 2 \delta_{i j} \sigma_{i}^{ \pm}$. The index i represents the discrete values of the momentum that an electron in a fixed volume can have, σ_{i}^{+}creates a Cooper pair with given momentum while σ_{i}^{-}annihilates the same pair.

We define

$$
\mathcal{L}(x)=\sum_{j=1}^{N} \sum_{\alpha=0, \pm}\left\{\Gamma_{\alpha}\left[\rho_{\alpha}^{j}, x\right] \rho_{\alpha}^{j *}+\Lambda_{\alpha}\left[\rho_{\alpha}^{j *}, x\right] \rho_{\alpha}^{j}-\bar{\Gamma}_{\alpha} \rho_{\alpha}^{j}\left[\rho_{\alpha}^{j *}, x\right]-\bar{\Lambda}_{\alpha} \rho_{\alpha}^{j *}\left[\rho_{\alpha}^{j}, x\right]\right\}
$$

for all $x \in \mathcal{A}$, where $\Gamma_{\alpha}, \Lambda_{\alpha} \in \mathbb{C}, \Re \Gamma_{\alpha}, \Re \Lambda_{\alpha}>0$, and $\rho_{\alpha}^{j}=\mathbf{1} \otimes \ldots \otimes \mathbf{1} \otimes \underbrace{\rho_{\alpha}}_{j} \otimes \mathbf{1} \otimes \ldots \otimes \mathbf{1}$
with

$$
\begin{aligned}
& \rho_{0}=\frac{g^{2} S^{+}}{\omega^{2}}\left(2 S^{-} \sigma^{+}+S^{0} \sigma^{0}+2 S^{+} \sigma^{-}\right) \\
& \rho_{+}=\frac{g S^{+}}{\omega^{2}}\left(g S^{-} \frac{\omega-g S^{0}}{\omega+g S^{0}} \sigma^{+}+\frac{\omega-g S^{0}}{2} \sigma^{0}-g S^{+} \sigma^{-}\right) \\
& \rho_{-}=\frac{g S^{+}}{\omega^{2}}\left(g S^{-} \frac{\omega+g S^{0}}{\omega-g S^{0}} \sigma^{+}-\frac{\omega+g S^{0}}{2} \sigma^{0}-g S^{+} \sigma^{-}\right)
\end{aligned}
$$

$\omega, S^{0} \in \mathbb{R}, S^{+}, S^{-} \in \mathbb{C}, \omega \pm g S^{0}, S^{+}, S^{-}, \omega \neq 0 ;-g<0$ is the interaction close to the Fermi surface.

Notice that \mathcal{L} assumes the form (3) with $\mathcal{L}_{k}=\tilde{\mathcal{L}}$ for all $k=1, \ldots, N$ and

$$
\tilde{\mathcal{L}}(x):=\sum_{\alpha=0, \pm}\left\{\Gamma_{\alpha}\left[\rho_{\alpha}, x\right] \rho_{\alpha}^{*}+\Lambda_{\alpha}\left[\rho_{\alpha}^{*}, x\right] \rho_{\alpha}-\bar{\Gamma}_{\alpha} \rho_{\alpha}\left[\rho_{\alpha}^{*}, x\right]-\bar{\Lambda}_{\alpha} \rho_{\alpha}^{*}\left[\rho_{\alpha}, x\right]\right\}
$$

for any $x \in M_{2}(\mathbb{C})$. Since $\tilde{\mathcal{L}}$ can be represented in the Lindblad form taking

$$
L_{1, \alpha}=\sqrt{2 \Re \Gamma_{\alpha}} \rho_{\alpha}^{*}, \quad L_{2, \alpha}=\sqrt{2 \Re \Lambda_{\alpha}} \rho_{\alpha}
$$

for all $\alpha=0, \pm$ and $H=0$, it is the generator of a uniformly continuous QMS $\tilde{\mathcal{T}}$. Therefore, it follows from Prop. 20 that \mathcal{L} generates a uniformly continuous QMS \mathcal{T} on \mathcal{A}. We want to prove that $\tilde{\mathcal{T}}$ satisfies conditions 1,2 of the same Proposition, so that \mathcal{T} is irreducible and it possesses a unique faithful normal invariant state.

Denote by p_{R} the fast recurrent projection of $\tilde{\mathcal{T}}$ and analyze the subharmonic projections of this semigroup; notice that, if p is such a projection, then $p L_{j, \alpha} p=L_{j, \alpha} p$ for $j=1,2$ means $p \rho_{\alpha} p=\rho_{\alpha} p$ and $p \rho_{\alpha}^{*} p=\rho_{\alpha}^{*} p, \alpha=0, \pm$, that is,

$$
p \in\left\{\rho_{\alpha}, \rho_{\alpha}^{*}\right\}^{\prime}=\left\{L_{j, \alpha}, L_{j, \alpha}^{*}: j=1,2, \alpha=0, \pm\right\}^{\prime}=\mathcal{N}(\tilde{\mathcal{T}})
$$

But $H=0$ implies $\mathcal{N}(\tilde{\mathcal{T}})=\mathcal{F}(\tilde{\mathcal{T}})$, so that any subharmonic (and therefore superharmonic) projection is harmonic; in particular, the non-zero superhamonic projections are not integrable. As a consequence, since p_{T} is superharmonic and integrable (because \mathcal{H} is finite-dimensional), we get $p_{T}=0$ and then $p_{R}=p_{T}^{\perp}=\mathbf{1}$, i.e. $\tilde{\mathcal{T}}$ is fast recurrent. In particular there exists a faithful $\tilde{\mathcal{T}}$-invariant state ω (Corollary 1 of $[15], M_{2}(\mathbb{C})$ being a σ-finite algebra). Since a straightforward calculation shows that $\mathcal{F}(\tilde{\mathcal{T}})=\mathbb{C} 1$, this implies that $\tilde{\mathcal{T}}$ is irreducible and ω is its unique normal invariant state by virtue of Thm. 1 and Lemma 2 of [11]. We have thus proved that conditions 1, 2 of Prop. 20 are fulfilled; therefore, \mathcal{T} is irreducible and its unique faithful normal invariant state is $\underbrace{\omega \otimes \ldots \otimes \omega}_{N \text { times }}$.
6. Characterization of normal invariant states. In this section we analyze a classical situation: assume that there exists a set $\left\{p_{n}\right\}_{n \in N}, N \subset \mathbb{N}$, of orthogonal projections which satisfy:

1. $\sum_{n \in N} p_{n}=\mathbf{1}$,
2. $\mathcal{T}_{t}\left(p_{n}\right)=p_{n}$ for all $n \in N$,
3. the restriction of \mathcal{T} to the subalgebra $p_{n} \mathcal{A} p_{n}$ is irreducible for all $n \in N$,
4. there exists a normal invariant state ρ_{n} with $s\left(\rho_{n}\right) \leq p_{n}$.

Since ρ_{n} is clearly also $\mathcal{T}_{\left.\right|_{p_{n} \mathcal{A}_{n}}}$-invariant, $s\left(\rho_{n}\right)$ is a subharmonic projection for the irreducible semigroup $\mathcal{T}_{p_{p_{n} \mathcal{A} p_{n}}}$ (see Prop. 1), so that ρ_{n} is faithful on $p_{n} \mathcal{A} p_{n}$ (i.e. $s\left(\rho_{n}\right)=p_{n}$); moreover, it is the unique normal invariant state on $p_{n} \mathcal{A} p_{n}$ by Thm. 1 of [11].

This implies that $\sum_{n \in N} 2^{-n} \rho_{n}$ is a faithful normal invariant state on \mathcal{A} and then $p_{R}=\mathbf{1}$, so there exists a \mathcal{T}-invariant normal conditional expectation \mathcal{E} onto $\mathcal{F}(\mathcal{T})$ by Thm. 3.

We wish now to determine when it is possible to write every normal invariant state in the form $\sum_{n \in N} \lambda_{n} \rho_{n}$ for some positive λ_{n} such that $\sum_{n \in N} \lambda_{n}=1$.

In general, this is not the case, as the following example shows: take $\mathcal{A}=\mathcal{B}(\mathcal{H}), \mathcal{H}$ separable with $\left\{e_{m}\right\}_{m \geq 1}$ a orthonormal basis, and \mathcal{T}_{t} the identity map. Then, $\left\{\left|e_{m}\right\rangle\left\langle e_{m}\right|\right\}_{m \geq 1}$ is a sequence of orthogonal projections which fulfills the above properties by letting $\rho_{m}=\left|e_{m}\right\rangle\left\langle e_{m}\right|$, every state is invariant, yet not every normal state can be expressed as $\sum_{m \geq 1} \lambda_{m}\left|e_{m}\right\rangle\left\langle e_{m}\right|$.

Theorem 21. Let $\left(p_{n}\right)_{n \in N}$ be a set of orthogonal projections with card $(N) \leq \aleph_{0}$. If $\left(p_{n}\right)_{n \in N}$ satisfies 1-4, then the following conditions are equivalent:

1. any normal invariant states on \mathcal{A} has the form $\sum_{n \in N} \lambda_{n} \rho_{n}$ for some $\lambda_{n} \geq 0$ with $\sum_{n \in N} \lambda_{n}=1$;
2. $\mathcal{F}(\mathcal{T})=\overline{\operatorname{span}\left\{p_{n}: n \in N\right\}}$.

Proof. $1 \Rightarrow 2$. Let ω be a normal invariant state on \mathcal{A}; since $\omega(a)=\sum_{i, j \in N} \omega\left(p_{i} a p_{j}\right)$ for all $a \in \mathcal{A}$, and $p_{n} \omega p_{n}=\omega\left(p_{n}\right) \rho_{n}$ by Thm. 1 of [11] (because $p_{n} \omega p_{n}$ is a normal invariant functional on $\left.p_{n} \mathcal{A} p_{n}\right)$, it is enough to prove that $\mathcal{E}\left(p_{i} a p_{j}\right)=0$ for all $i, j \in N, i \neq j$, for $\omega=\omega \circ \mathcal{E}$ by Thm. 3 .

So, fix $a \in \mathcal{A}$ and $i \neq j$: since $\mathcal{E}\left(p_{i} a p_{j}\right)=\lim _{k} x_{k}$ with $x_{k} \in \operatorname{span}\left\{p_{n}: n \in N\right\}$, we have $p_{l} \mathcal{E}\left(p_{i} a p_{j}\right) p_{n}=0$ for all $l \neq n$, and also $p_{l} \mathcal{E}\left(p_{i} a p_{j}\right) p_{l}=\mathcal{E}\left(p_{l} p_{i} a p_{j} p_{l}\right)=0$ for all $l \in N$, for $p_{l}=\mathcal{E}\left(p_{l}\right)$ and $i \neq j$. Therefore, $\mathcal{E}\left(p_{i} a p_{j}\right)=0$, as claimed.
$2 \Rightarrow 1$. Let $x \in \mathcal{F}(\mathcal{T})$, which is an algebra. Thus, $p_{n} x p_{n} \in \mathcal{F}(\mathcal{T})$, so that $p_{n} x p_{n} \in$ $\mathcal{F}\left(\mathcal{T}_{p_{n} \mathcal{A} p_{n}}\right)$; but $\mathcal{F}\left(\mathcal{T}_{\left.\right|_{p_{n} \mathcal{A} p_{n}}}\right)=\mathbb{C} p_{n}$ by virtue of Thm. 1 of $[11]$, so $p_{n} x p_{n}=\rho_{n}(x) p_{n}$ for all $n \in N$. We want to prove that $p_{i} x p_{j}=0$ for $i, j \in N, i \neq j$.

Fix $i \neq j$ and $\omega \in \mathcal{A}_{*}$ a state: since $\left(t^{-1} \int_{0}^{t} \mathcal{T}_{* s}(\omega) d s\right)_{t \geq 0}$ is weakly convergent to a normal invariant state by Thm. 2.1 of [13], there exists a sequence $\left\{\lambda_{n}\right\}_{n \in N}$ of positive numbers such that $\sum_{n \in N} \lambda_{n}=1$ and

$$
\frac{1}{t} \int_{0}^{t} \mathcal{T}_{* s}(\omega)\left(p_{i} x p_{j}\right) d s \rightarrow \sum_{n \geq 0} \lambda_{n} \rho_{n}\left(p_{i} x p_{j}\right)=0
$$

But this means $\omega\left(p_{i} x p_{j}\right)=0$, because $p_{i} x p_{j}$ also belongs to $\mathcal{F}(\mathcal{T})$, and finally $p_{i} x p_{j}=0$ by the arbitrariness of ω. Therefore,

$$
x=\sum_{n \in N} p_{n} x p_{n}=\sum_{n \in N} \rho_{n}(x) p_{n} \in \overline{\operatorname{span}\left\{p_{n}: n \in N\right\}} .
$$

References

[1] W. B. Averson, Subalgebras of C^{*}-algebras, Acta Math. 123 (1969), 141-224.
[2] F. Bagarello, The stochastic limit in the analysis of the open BCS model, J. Phys. A 37 (2004), 1537-1548.
[3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[4] C. Dellacherie and P. A. Meyer, Probabilités et potentiel. Chapitres XII-XVI, second edition, Hermann, Paris, 1987.
[5] J. Dixmier, Les C^{*}-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969.
[6] D. E. Evans and R. Høegh-Krohn, Spectral properties of positive maps on C^{*}-algebras, J. London Math. Soc. (2) 17 (1978), 345-355.
[7] F. Fagnola, Quantum Markov semigroups and quantum flows, Proyecciones 18 (1999), 1-144.
[8] F. Fagnola and R. Rebolledo, Lectures on the qualitative analysis of quantum Markov semigroups, in: Quantum Interacting Particle Systems (Trento, 2000), QP-PQ Quantum Probab. White Noise Anal. 14, World Scientific, Singapore, 2002, 1-192.
[9] F. Fagnola and R. Rebolledo, Subharmonic projections for a quantum semigroups, J. Math. Phys. 43 (2002), 1074-1082.
[10] F. Fagnola and R. Rebolledo, Transience and recurrence of quantum Markov semigroups, Probab. Theory and Relat. Fields 126 (2003), 289-306.
[11] A. Frigerio, Quantum dynamical semigroups and approach to equilibrium, Lett. Math. Phys. 2 (1977), 79-87.
[12] A. Frigerio, Stationary states of quantum dynamical semigroups, Comm. Math. Phys. 63 (1978), 269-276.
[13] A. Frigerio and M. Verri, Long-time asymptotic properties of dynamical semigroups on W^{*}-algebras, Math. Z. 180 (1982), 275-286.
[14] T. Kato, Perturbation Theory for Linear Operators, Corr. printing of the 2nd ed., SpringerVerlag, New York, 1980.
[15] V. Umanità, Classification and decomposition of quantum Markov semigroups, Probab. Theory and Relat. Fields, 2004, to appear.

[^0]: 2000 Mathematics Subject Classification: 46L55, 82C10.
 The paper is in final form and no version of it will be published elsewhere.

