QUANTUM PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 73 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2006

ON THE TRANSIENT AND RECURRENT PARTS OF A QUANTUM MARKOV SEMIGROUP

VERONICA UMANITÀ

Dipartimento di Matematica "F. Brioschi", Politecnico di Milano Piazza Leonardo da Vinci 32, I-20133, Milano, Italy E-mail: umanita@mate.polimi.it

Abstract. We define the transient and recurrent parts of a quantum Markov semigroup \mathcal{T} on a von Neumann algebra \mathcal{A} and we show that, when \mathcal{A} is σ -finite, we can write \mathcal{T} as the sum of such semigroups. Moreover, if \mathcal{T} is the countable direct sum of irreducible semigroups each with a unique faithful normal invariant state ρ_n , we find conditions under which any normal invariant state is a convex combination of ρ_n 's.

1. Introduction. If P is a Markov chain with finite state space, T is the set of its transient states and R_1, \ldots, R_k denote the different classes of recurrent states, then we can think of P as the sum of its transient part (i.e. the one relative to T) and its recurrent part, given by a block-diagonal matrix where any block is irreducible and it corresponds to a recurrent class R_i .

In their work [6], Evans and Høegh-Krohn have generalized this decomposition for a positive stochastic map Φ on a finite-dimensional C*-algebra \mathcal{A} by introducing a recurrent and a transient projection in terms of invariant states; they show that the recurrent projection is subharmonic and that, if Φ is recurrent (i.e. its recurrent projection is equal to 1), there exists a resolution of the identity $\{p_1, \ldots, p_s\}$ such that the restriction of Φ to each of the subalgebras $p_i \mathcal{A} p_i$ is irreducible.

Our intention here is to extend such results to the case of a quantum Markov semigroup (QMS) \mathcal{T} on a σ -finite von Neumann algebra \mathcal{A} . As in [6], we define the *fast* recurrent projection p_R as the supremum of the supports of the normal invariant states, but, to distinguish between fast and slow recurrence, we decompose p_R^{\perp} further as the sum of a transient projection p_T (determined by range projections of potentials, see [10]) and a slow recurrent projection p_{R_0} . As in the case of Markov chains with finite state space, in the finite-dimensional setting we shall have $p_{R_0} = 0$. Therefore, we shall call a QMS

²⁰⁰⁰ Mathematics Subject Classification: 46L55, 82C10.

The paper is in final form and no version of it will be published elsewhere.

transient or recurrent according to $p_T = 1$ or $p_T = 0$, respectively. Further, we show that, when \mathcal{A} is σ -finite, the subalgebra $p_T \mathcal{A} p_T$ is invariant under the action of \mathcal{T} (see Cor. 11) and its restriction to this subalgebra is a transient semigroup; on the other hand, the reduced semigroup associated with p_T^{\perp} is a recurrent QMS (see Thm. 15). Moreover, under appropriate conditions, we can decompose the semigroup \mathcal{T}^{p_R} associated with p_R into the direct sum of irreducible "sub"-QMS's each one supporting a unique faithful normal invariant state (Prop. 19).

Finally, in the last part we analyze a typical situation occurring in many examples known in the literature: we assume that there exists an orthogonal sequence (p_n) of \mathcal{T}^{p_R} -invariant projections such that the restriction of \mathcal{T}^{p_R} to the subalgebra $p_n \mathcal{A} p_n$ is irreducible and possesses a (faithful) normal invariant state ρ_n for all n. Then, under this hypothesis, we investigate if we can write any normal invariant state as a convex combination of ρ_n , and we show that this is equivalent to a condition on the set of fixed points of \mathcal{T} (Thm. 24).

2. Preliminaries. In this paper \mathcal{A} is a von Neumann algebra with unit 1 acting on a complex Hilbert space \mathcal{H} . A quantum dynamical semigroup (QDS) is a w^{*}-continuous semigroup $\mathcal{T} = (\mathcal{T}_t)_{t\geq 0}$ of normal completely positive maps on \mathcal{A} ; if $\mathcal{T}_t(1) = 1$ for all $t \geq 0$, then it is Markov (i.e. it is a QMS). The infinitesimal generator of \mathcal{T} is the operator \mathcal{L} whit domain $D(\mathcal{L})$ which is the vector space of elements a in \mathcal{A} such that the $\lim_{t\to 0} t^{-1}(\mathcal{T}_t(a) - a)$ exists in the weak^{*} topology. For $a \in D(\mathcal{L})$, $\mathcal{L}(a)$ is defined as the limit above. In many cases (for instance \mathcal{T} uniformly continuous, i.e. such that there exists $\lim_{t\to 0} ||\mathcal{T}_t - \mathcal{T}_0|| = 0$), the generator \mathcal{L} of a QMS \mathcal{T} can be represented in the Lindblad form

$$\mathcal{L}(x) = i[H, x] - \frac{1}{2} \sum_{k} (L_k^* L_k x - 2L_k^* x L_k + x L_k^* L_k),$$

where H, L_k, G are bounded operators on \mathcal{H}, H self-adjoint.

A state ω on \mathcal{A} is *normal* if it is σ -weakly continuous or, equivalently, if $\omega(\sup_{\alpha} a_{\alpha}) = \sup_{\alpha} \omega(a_{\alpha})$ for any increasing net $(a_{\alpha})_{\alpha}$ of positive elements in \mathcal{A} with an upper bound; we denote by \mathcal{A}_* the *predual* of \mathcal{A} , that is the space of all σ -weakly continuous linear functionals on \mathcal{A} . We recall also that ω is a normal state if and only if there exists a density matrix ρ , that is, a positive trace-class operator of \mathcal{H} with a unit trace, such that $\omega(a) = tr(\rho a)$ for all $a \in \mathcal{A}$.

 ω is *faithful* if $\omega(a) > 0$ for all non-zero positive elements $a \in \mathcal{A}$.

For any normal state ω on \mathcal{A} , the support projection $s(\omega)$ is the smallest projection in \mathcal{A} such that $\omega(s(\omega)a) = \omega(as(\omega)) = \omega(a)$ for any $a \in \mathcal{A}$ (cf. [5], Prop. 3); since it is easy to check that any normal state ω is faithful on $s(\omega)\mathcal{A}s(\omega)$, it follows that ω is faithful if and only if $s(\omega) = \mathbf{1}$.

If \mathcal{T} is a QDS on \mathcal{A} , its *predual semigroup* is the semigroup \mathcal{T}_* of operators in \mathcal{A}_* defined by $(\mathcal{T}_{*t}(\omega))(a) = \omega(\mathcal{T}_t(a))$ for every $a \in \mathcal{A}$ and $\omega \in \mathcal{A}_*$. Since any map \mathcal{T}_{*t} is clearly weakly continuous on \mathcal{A}_* , \mathcal{T}_* is a strongly continuous semigroup in the Banach space \mathcal{A}_* (see, for instance [3] Cor. 3.1.8); moreover, if \mathcal{T} is Markov, \mathcal{T} and \mathcal{T}_* are semigroups of contractions (see [7], Prop. 2.10.3). We say that a normal state ω on \mathcal{A} is *invariant* if $\mathcal{T}_{*t}(\omega) = \omega$ for all $t \geq 0$ and we denote by $\mathcal{F}(\mathcal{T}_*)_1$ the set of normal invariant states on \mathcal{A} .

A family \mathcal{G} of normal states on \mathcal{A} is called *faithful* if $a \in \mathcal{A}$, a positive and $\omega(a) = 0$ for all $\omega \in \mathcal{G}$ implies a = 0; given a family \mathcal{G} of normal invariant state and put $p = \sup\{s(\omega) : \omega \in \mathcal{G}\}$, then \mathcal{G} is faithful on the subalgebra $p\mathcal{A}p$.

We recall that a von Neumann algebra \mathcal{A} on \mathcal{H} is σ -finite if there exists a countable subset S of \mathcal{H} which is separating for \mathcal{A} (i.e. for any $a \in \mathcal{A}$, au = 0 for all $u \in S$ implies a = 0).

We shall often make use of the following elementary remark. Given a positive element $x \in \mathcal{A}$ and a projection p, then pxp = 0 implies $p^{\perp}xp = pxp^{\perp} = 0$ (see Lemma II.1 of [9]).

3. The fast recurrent projection and the transient projection. Following the theory of classical Markov processes and [6], we first introduce the fast recurrent projection p_R in such a way that the set of fast recurrent states is invariant for the system and the reduced semigroup is mean ergodic; therefore, p_R will be determined by the supports of the normal invariant states.

We call a positive operator a subharmonic (resp. superharmonic, resp. harmonic) if $\mathcal{T}_t(a) \geq a$ (resp. $\mathcal{T}_t(a) \leq a$, resp. $\mathcal{T}_t(a) = a$) for all $t \geq 0$; we denote by $\mathcal{F}(\mathcal{T})$ the set of harmonic elements of \mathcal{T} . Subharmonic projections play an important role in the study of QMSs. For example, we have the following

PROPOSITION 1 ([10]). Let \mathcal{T} be a QMS on \mathcal{A} . If $\omega \in \mathcal{A}_*$ is an invariant state, then its support projection is subharmonic.

Proof. Let ω be a normal invariant state, $p := s(\omega)$, and fix $t \ge 0$. From the invariance of ω it follows $\omega(p - p\mathcal{T}_t(p)p) = \omega(p - \mathcal{T}_t(p)) = 0$, and then $p\mathcal{T}_t(p)p = p$, because $p\mathcal{T}_t(p)p \le p$ and ω is faithful on $p\mathcal{A}p$. Therefore, the projection p^{\perp} satisfies $p\mathcal{T}_t(p^{\perp})p = 0$, so $\mathcal{T}_t(p^{\perp}) = p^{\perp}\mathcal{T}_t(p^{\perp})p^{\perp}$. This implies $\mathcal{T}_t(p^{\perp}) \le p^{\perp}$ and then $\mathcal{T}_t(p) \ge p$.

Notation. For any $\omega \in \mathcal{A}_*$ and p projection of \mathcal{A} , we denote by $p\omega p$ the element of \mathcal{A}_* defined as $(p\omega p)(a) = \omega(pap)$ for all $a \in \mathcal{A}$, and by $p\mathcal{A}_*p$ the set of $p\omega p$ as ω varies in \mathcal{A}_* . Then the subalgebra $p\mathcal{A}p$ is canonically isomorphic to the dual space of $p\mathcal{A}_*p$ and we can identify the normal states on $p\mathcal{A}p$ with the normal states on \mathcal{A} whose support is smaller than p.

Given a subharmonic projection p, we can construct a QMS on the subalgebra $p\mathcal{A}p$ in the following way: since p subharmonic implies that $p\mathcal{A}_*p$ is \mathcal{T}_* -invariant (see Prop. II.1 of [9]), we can restrict \mathcal{T}_* to such a Banach space and obtain a weakly continuous semigroup. If we denote by $\mathcal{T}^p = {\mathcal{T}_t^p}_t$ its dual semigroup, taking $a \in p\mathcal{A}p = (p\mathcal{A}_*p)^*$ and $\omega \in p\mathcal{A}_*p$, we have

$$\omega((\mathcal{T}_{*t|p\mathcal{A}_*p})^*(a)) = (\mathcal{T}_{*t}(\omega))(a) = \omega(\mathcal{T}_t(a)) = \omega(p\mathcal{T}_t(a)p), \quad \forall \ t \ge 0,$$

that is,

(1)
$$\mathcal{T}_t^p(a) = p\mathcal{T}_t(a)p, \quad \forall \ a \in p\mathcal{A}p, \ t \ge 0.$$

 \mathcal{T}^p_t is a QMS on $p\mathcal{A}p$ because any \mathcal{T}^p_t is clearly normal, completely positive and

$$p = p\mathcal{T}_t(\mathbf{1})p \ge p\mathcal{T}_t(p)p \ge p.$$

DEFINITION 1 ([13]). \mathcal{T}^p is called the *reduced semigroup* associated with p.

If $\{p_i\}_i$ is an arbitrary family of projections, then we denote by $\sup_i p_i$ the projection (in \mathcal{A}) onto the closure of the linear space of \mathcal{H} generated by the ranges of p_i 's.

DEFINITION 2 ([13]). The fast recurrent projection associated with a QMS \mathcal{T} is the projection $p_R = \sup_i p_i$ where the p_i 's are the support projections of all invariant states of \mathcal{T} .

THEOREM 2. Let \mathcal{T} be a QMS on \mathcal{A} . Then its fast recurrent projection is subharmonic.

Proof. It follows immediately from the definition, p_R being the least upper bound of subharmonic projections. \blacksquare

We can then consider the reduced semigroup associated with p_R .

We have $p_R = 0$ when the semigroup has no normal invariant states, and $p_R = 1$ when \mathcal{T} has a faithful family of normal invariant states; in particular, if \mathcal{A} is σ -finite, then $p_R = 1$ if and only if there exists a faithful normal invariant state (Corollary 1 of [15]). However, since $\mathcal{F}(\mathcal{T}_*)_1$ is a faithful family on $p_R \mathcal{A} p_R$ and any \mathcal{T} -invariant state is clearly also \mathcal{T}^{p_R} -invariant, the family $\mathcal{F}(\mathcal{T}_*)_1$ is faithful for \mathcal{T}^{p_R} ; so, applying the mean ergodic Thm. of [12] to \mathcal{T}^{p_R} we get the following

THEOREM 3 ([13]). For all $a \in \mathcal{A}$ the limit

$$\mathcal{E}(a) := \mathbf{w}^* - \lim_t \frac{1}{t} \int_0^t p_R \mathcal{T}_s(a) p_R \, ds$$

exists and it defines a $p_R \mathcal{T} p_R$ -invariant normal conditional expectation onto the von Neumann subalgebra $\mathcal{F}(\mathcal{T}^{p_R})$ of $p_R \mathcal{A} p_R$ such that $\mathcal{E} \circ \mathcal{T}_t = \mathcal{E}$ for all $t \ge 0$. A normal state ω on \mathcal{A} is \mathcal{T} -invariant if and only if $\omega \circ \mathcal{E} = \omega$.

We now introduce the projection in which the system spends a small amount of time; for this purpose, we need to define a *potential* associated to \mathcal{T} , which really represents the time of sojourn of a pure state in a projection.

Our reference on quadratic forms is the book of Kato [14].

DEFINITION 3 ([10]). Given a positive operator $x \in \mathcal{A}$ we define the *form-potential of* x as a quadratic form $\mathfrak{U}(x)$ by

$$\mathfrak{U}(x)[u] = \int_0^\infty \langle u, \mathcal{T}_s\left(x\right)u\rangle ds, \quad \forall \ u \in D(\mathfrak{U}(x)),$$

where the domain $D(\mathfrak{U}(x))$ is the set of all $u \in \mathcal{H}$ s.t. $\int_{0}^{\infty} \langle u, \mathcal{T}_{s}(x) u \rangle ds < \infty$.

This is clearly a symmetric and positive form; moreover, by Thm. 3.13a p. 461 and Lemma 3.14a p. 461 of [14] it is also closed. Therefore, when it is densely defined, it is represented by a self-adjoint operator (see Thm.2.1, p. 322, Thm. 2.6, p. 323 and Thm. 2.23 p. 331 of [14]). This motivates the following definition.

DEFINITION 4 ([10]). For all positive $x \in \mathcal{A}$ such that $D(\mathfrak{U}(x))$ is dense, the *potential* of x is the self-adjoint operator $\mathcal{U}(x)$ which represents $\mathfrak{U}(x)$.

We put also $\mathcal{A}_{int} := \{x \in \mathcal{A}_+ : \mathcal{U}(x) \text{ is bounded }\}$ and we call its elements \mathcal{T} -integrable (or integrable).

Since $D(\mathcal{U}(x)^{1/2}) = D(\mathfrak{U}(x))$ by [14] Th. 2.23 p. 331, given $x \in \mathcal{A}_{int}$, we have $D(\mathfrak{U}(x)) = \mathcal{H}$ and then $\langle u, \mathcal{U}(x)u \rangle = \int_0^\infty \langle u, \mathcal{T}_s(x)u \rangle ds$ for all $u \in \mathcal{H}$.

PROPOSITION 4. If \mathcal{T} is a QMS and $x \in \mathcal{A}$ is positive, then the orthogonal projections onto the closure of $D(\mathfrak{U}(x))$ and onto $\mathcal{K}(x) = \{u \in D(\mathfrak{U}(x)) : \mathfrak{U}(x)[u] = 0\}$ are subharmonic.

Proof. See Prop. 2 and 4 of [10].

For each operator x on \mathcal{H} , we call the orthogonal projection onto the closure of $x(\mathcal{H})$ the range projection of x and denote it by [x]; it is well-known that $x \in \mathcal{A}$ implies $[x] \in \mathcal{A}$.

Inspired by the notion of transient QMS given in [10] we give the following

DEFINITION 5. The transient projection associated with the QMS \mathcal{T} is the projection p_T in \mathcal{A} defined by $p_T := \sup_{p \in \mathcal{P}} p$, where $\mathcal{P} = \{ [\mathcal{U}(x)] : x \in \mathcal{A}_{int} \}.$

This definition is original, as are all the next results.

The transient projection is orthogonal to p_R , indeed

PROPOSITION 5. If \mathcal{T} is a QMS on \mathcal{A} , then $p_T \leq p_R^{\perp}$.

Proof. Let ω be a normal invariant state and put $p = [\mathcal{U}(x)]$ with $x \in \mathcal{A}_{int}$; then

$$\int_0^\infty \omega(x) ds = \int_0^\infty \omega(\mathcal{T}_s(x)) ds = \omega(\mathcal{U}(x)) \le \|\omega\| \cdot \|\mathcal{U}(x)\|$$

implies $\omega(\mathcal{U}(x)) = 0$. But ω is faithful on the subalgebra $s(\omega)\mathcal{A}s(\omega)$, so that this means $s(\omega)\mathcal{U}(x) = 0$, i.e. $\overline{\mathcal{U}(x)(\mathcal{H})} \subseteq \ker s(\omega)$; from the arbitrariness of ω it follows $p(\mathcal{H}) \subseteq \ker p_R$, so $p \leq p_R^{\perp}$ for all $p \in \mathcal{P}$. Hence $p_T \leq p_R^{\perp}$.

By Prop. 4 any projection $[\mathcal{U}(x)]$ with x integrable is superharmonic, but it is not clear whether the supremum of a family of superharmonic projections is still superharmonic. However, when \mathcal{A} is σ -finite, we will prove that p_T is superharmonic because we can write it as the supremum of an increasing sequence of superharmonic projections. We shall make use of the following

LEMMA 6. If $e \in p_T(\mathcal{H})$, then there exists $x \in \mathcal{A}_{int}$ such that $e \in \overline{\operatorname{Ran}(\mathcal{U}(x))}$.

Proof. By definition of p_T , for any $n \ge 1$ there exists $u_n \in p_n(\mathcal{H})$, $p_n = [\mathcal{U}(x_n)]$ $(x_n \in \mathcal{A}_{int})$, such that $||e - u_n|| < n^{-1}$; therefore, if we put

$$x := \sum_{n \ge 1} 2^{-n} (\|x_n\| + \|\mathcal{U}(x_n)\| + 1)^{-1} x_n$$

we obtain an integrable element with $\ker \mathcal{U}(x) = \bigcap_{n \ge 1} \ker \mathcal{U}(x_n)$ and $p := \sup_n p_n = [\mathcal{U}(x)]$. Moreover, since $u_n \in p(\mathcal{H})$, we get

$$||e - pe|| \le ||e - u_n|| + ||pu_n - pe|| < 2n^{-1} \quad \forall \ n \ge 1,$$

which implies $e \in p(\mathcal{H})$.

THEOREM 7. Suppose \mathcal{A} is σ -finite and let \mathcal{T} be a QMS on \mathcal{A} . Then there exists an increasing sequence $(p_n)_{n\geq 0}$ in \mathcal{P} such that $p_T = \sup_{n\geq 0} p_n$. Moreover $p_T \in \mathcal{P}$.

Proof. Let $\{e_n\}_{n\geq 0}$ be a countable subset of \mathcal{H} which is separating for \mathcal{A} ; then, for all $n \geq 0$ there exists $x_n \in \mathcal{A}_{int}$ such that $p_T e_n \in \overline{\operatorname{Ran}(\mathcal{U}(x_n))}$ (see Lemma 6). If $y_n := \sum_{k=0}^n x_k$ and $p_n := [\mathcal{U}(y_n)]$ ($n \geq 0$), we obtain an increasing sequence $(p_n)_{n\geq 0}$ in \mathcal{P} with $p_T e_n \in \overline{\mathcal{U}(x_n)(\mathcal{H})} \subseteq \overline{\mathcal{U}(y_n)(\mathcal{H})} = p_n(\mathcal{H})$; therefore we have $(p_T - \sup_{m\geq 0} p_m)p_T e_n =$ 0 for all $n \geq 0$, so $p_T = \sup_{n\geq 0} p_n$ because $\{p_T e_n\}_{n\geq 0}$ is separating for $p_T \mathcal{A} p_T$ and $p_T - \sup_{n>0} p_n \in p_T \mathcal{A} p_T$.

Finally, put

$$y := \sum_{n \ge 0} 2^{-n} (\|y_n\| + \|\mathcal{U}(y_n)\| + 1)^{-1} y_n,$$

it is clear that $y \in \mathcal{A}_{int}$ and $\ker \mathcal{U}(y) = \bigcap_{n \ge 0} \ker \mathcal{U}(y_n) = \ker p_T$, so that $[\mathcal{U}(y)] = p_T$, i.e. $p_T \in \mathcal{P}$.

COROLLARY 8. If \mathcal{A} is σ -finite and \mathcal{T} is a QMS on \mathcal{A} , then its transient projection p_T is superharmonic. In particular, the subalgebra $p_T \mathcal{A} p_T$ is \mathcal{T} -invariant.

We put $\mathcal{T}^T := \mathcal{T}_{|_{p_T \mathcal{A}_{p_T}}}$; then it is a submarkovian QDS on $p_T \mathcal{A} p_T$. If $(p_n)_{n \geq 0}$ is a sequence of projections as in Thm. 7, then the map $t \mapsto \langle u, \mathcal{T}_t(p_n)u \rangle$ is integrable on $[0, \infty)$ for all $u \in \mathcal{H}$; this implies that $\mathcal{T}_t(p_n)$ is strongly convergent to 0 as $t \to \infty$. Using this fact and the uniform boundeness in t of \mathcal{T}_t we can easily show that \mathcal{T}^T has no normal invariant states.

DEFINITION 6. The projection $p_{R_0} = p_R^{\perp} - p_T$ is called *slow recurrent projection* associated with the QMS \mathcal{T} .

4. Decomposition of QMSs

Definition 7. We call a QMS \mathcal{T}

- 1. *irreducible* if it has no non-trivial subharmonic projections;
- 2. transient if $p_T = 1$;
- 3. recurrent if $p_T = 0$;
- 4. fast recurrent if $p_R = 1$;
- 5. slow recurrent if $p_{R_0} = \mathbf{1}$.

Notice that we can also define p_T, p_R and p_{R_0} for a QDS \mathcal{T} on \mathcal{A} such that $\mathcal{T}_t(\mathbf{1}) \leq \mathbf{1}$ for all $t \geq 0$; since it is easy to check that these projections satisfy the same properties, we can introduce the concepts of transience and recurrence for such semigroups too.

PROPOSITION 9. Let \mathcal{T} be a QMS on \mathcal{A} . If \mathcal{T} is irreducible, then it is either transient, or fast recurrent, or slow recurrent.

Proof. If \mathcal{T} is irreducible, since p_T is superharmonic we have either $p_T = \mathbf{1}$ or $p_T = 0$, that is, \mathcal{T} is either transient or recurrent. On the other hand, if $p_T = 0$, since p_R is subharmonic we get either $p_R = \mathbf{1}$ or $p_R = 0$, that is, \mathcal{T} is either fast or slow recurrent.

Instead, in general a QMS \mathcal{T} is not type 2, 3, 4, 5 but, if \mathcal{A} is σ -finite, we can write it as a sum of a transient and a recurrent semigroup. Indeed, we have the following

THEOREM 10. If \mathcal{A} is σ -finite and \mathcal{T} is a QMS on \mathcal{A} , then \mathcal{T}^T is a transient QDS on $p_T \mathcal{A} p_T$, while $\mathcal{T}^{p_T^{\perp}}$ is a recurrent QMS on $p_T^{\perp} \mathcal{A} p_T^{\perp}$. Moreover \mathcal{T}^{p_R} is a fast recurrent semigroup on $p_R \mathcal{A} p_R$.

We refer to Thm. 9 of [15] for the proof.

It is not yet clear if we can associate a semigroup with the slow recurrent projection p_{R_0} (we don't know if p_{R_0} is superharmonic or subharmonic) and, in this case, if such a semigroup is slow recurrent.

Since, for all projections $p \in \mathcal{A}$, $\mathfrak{U}(p)[u] = \int_0^\infty \langle u, \mathcal{T}_s(p)u \rangle ds$ represents the time of sojourn of the state $tr(|u\rangle\langle u|\cdot)$ (||u|| = 1) in p (see [10]) and any normal state ω is defined by a density matrix $\sum_k \lambda_k |e_k\rangle\langle e_k|$ with $e_k \in s(\omega)(\mathcal{H})$, we can read the above theorem as follows:

• starting from a transient state (support in $p_T \mathcal{A} p_T$), the semigroup \mathcal{T}_* spends a finite or an infinite amount of time in p_T but, if it leaves p_T to come into p_T^{\perp} (i.e. its support is in $p_T^{\perp} \mathcal{A} p_T^{\perp}$), it stays there forever;

• starting from a recurrent state, the semigroup \mathcal{T}_* cannot leave p_T^{\perp} .

In particular, starting from a fast recurrent state, the semigroup \mathcal{T}_* cannot leave p_R .

We want now to decompose p_R as a sum of an arbitrary family of orthogonal \mathcal{T}^{p_R} invariant projections $\{p_i\}$ such that any restriction of \mathcal{T}^{p_R} to the subalgebra $p_i \mathcal{A} p_i$ is irreducible; such a decomposition is given in [6] for finite-dimensional algebras. We prove that this is possible if and only if there exists a faithful family of extremal states of $\mathcal{F}(\mathcal{T}_*)_1$ with orthogonal supports. In this case, since $p_i \mathcal{A} p_i$ is \mathcal{T}^{p_R} -invariant, the equation

$$\mathcal{T}_t^{p_R}(x) = p_i \mathcal{T}_t^{p_R}(x) p_i = p_i \mathcal{T}_t(x) p_i = \mathcal{T}_t^{p_i}(x)$$

holds for all $x \in p_i \mathcal{A} p_i$, so that the restriction of \mathcal{T}^{p_R} to $p_i \mathcal{A} p_i$ is the reduced semigroup \mathcal{T}^{p_i} for all *i*. Moreover, given $\omega \in \mathcal{F}(\mathcal{T}_*)_1$ with $\omega(p_i) \neq 0$, we have that

$$(p_i \omega p_i)(\mathcal{T}_t^{p_i}(x)) = \omega(\mathcal{T}_t(x)) = \omega(x)$$

for all $x \in p_i \mathcal{A} p_i$. Hence, $\omega_i := \omega(p_i)^{-1} p_i \omega p_i$ is a normal \mathcal{T}^{p_i} -invariant state; also, from the irreducibility of \mathcal{T}^{p_i} , it follows that ω_i is faithful on $p_i \mathcal{A} p_i$, so that it is the unique normal invariant state on $p_i \mathcal{A} p_i$ by Thm. 1 of [11]. As a consequence, \mathcal{T}^{p_R} is the direct sum of the irreducible "sub-QMS" \mathcal{T}^{p_i} each one supporting a unique faithful normal invariant state.

LEMMA 11. Let \mathcal{T} be a QMS on \mathcal{A} ; if ω is a normal state on \mathcal{A} and p is a subharmonic projection such that $p \geq s(\omega)$, then:

- 1. ω is \mathcal{T} -invariant if and only if ω is \mathcal{T}^p -invariant;
- 2. ω is extremal in $\mathcal{F}(\mathcal{T}_*)_1$ if and only if ω is extremal in $\mathcal{F}(\mathcal{T}^p_*)_1$.

THEOREM 12. Let \mathcal{T} be a QMS on \mathcal{A} . The following facts are equivalent:

1. there exists a set $\{p_i\}_{i \in I}$ of pairwise orthogonal projections such that:

a)
$$p_R = \sum_{i \in I} p_i;$$

- b) $\mathcal{T}_t^{p_R}(p_i) = p_i \text{ for all } i \in I;$
- c) the restriction of \mathcal{T}^{p_R} to the subalgebra $p_i \mathcal{A} p_i$ is irreducible for all $i \in I$.

- 2. there exists a faithful family of normal invariant states $\{\omega_i\}_{i \in I}$ such that:
 - a') each ω_i is an extremal point of $\mathcal{F}(\mathcal{T}_*)_1$;
 - b') $s(\omega_j)s(\omega_i) = 0$ for $i \neq j, i, j \in I$.

Proof. $1 \Rightarrow 2$. Fix $i \in I$; by the above remarks, there exists a unique faithful normal \mathcal{T}^{p_i} -invariant state ω_i on $p_i \mathcal{A} p_i$. Since ω_i must be extremal in $\mathcal{F}(\mathcal{T}_*^{p_i})_1$ by Thm. 1 of [11], we can conclude the proof by virtue of Lemma 11.

 $2 \Rightarrow 1$. Define $p_i := s(\omega_i)$ $(i \in I)$; we obtain a set of pairwise orthogonal \mathcal{T}^{p_R} -harmonic projections, ω_i being a faithful invariant state on $p_i \mathcal{A} p_i$ and p_i subharmonic. Moreover, since $\omega_j (p_R - \sum_{i \in I} p_i) = 0$ for all $j \in I$ and $\{\omega_i\}_{i \in I}$ is faithful, we get $p_R = \sum_{i \in I} p_i$.

Finally, for $i \in I$, ω_i is extremal in $\mathcal{F}(\mathcal{T}^{p_i}_*)_1$ by virtue of Lemma 11 and $\mathcal{T}^{p_i} = \mathcal{T}^{p_R}_{|_{p_i \mathcal{A} p_i}}$ is irreducible by Thm. 1 of [11].

REMARK 1. If \mathcal{A} is σ -finite, then we have $\operatorname{card}(I) \leq \aleph_0$ by virtue of Prop. 2.5.6 of [3]. Therefore, in this case, \mathcal{T}^{p_R} is a countable direct sum of irreducible semigroups.

We find now some conditions under which such a decomposition holds.

PROPOSITION 13. Let \mathcal{T} be a QMS on \mathcal{A} . The equivalent conditions of Thm. 12 are satisfied if at least one of the following assumptions holds:

- $\mathcal{F}(\mathcal{T}_*)$ is finite dimensional,
- \mathcal{A} is commutative and the family of extremal states of $\mathcal{F}(\mathcal{T}_*)_1$ is faithful on $p_R \mathcal{A} p_R$.

Proof. Let $\{\omega_i\}_{i\in I}$ be a maximal family of extremal states of $\mathcal{F}(\mathcal{T}_*)_1$ with pairwise orthogonal supports. Set $q := \sum_{i\in I} s(\omega_i)$, which is majorized by p_R , and define $q' := p_R - q$. If $q \neq p_R$ we show that there exists an extremal state σ of $\mathcal{F}(\mathcal{T}_*)_1$ such that $s(\sigma)s(\omega_i) = 0$ for all $i \in I$. Since this contradicts the maximality of $\{\omega_i\}_{i\in I}$, we would obtain that $q = p_R$ (and then $(\omega_i)_{i\in I}$ is a faithful family of extremal points of $\mathcal{F}(\mathcal{T}_*)_1$).

Let $\rho \in \mathcal{F}(\mathcal{T}_*)_1$ be such that $\rho(q') \neq 0$. Since $\mathcal{T}^{p_R}(q'\mathcal{A}q') \subseteq q'\mathcal{A}q'$ and $s(\rho) \leq p_R$, we have

$$q'\rho q'(\mathcal{T}_t(a)) = \rho(\mathcal{T}_t^{p_R}(q'aq')) = \rho(\mathcal{T}_t(q'aq')) = q'\rho q'(a)$$

for all $a \in \mathcal{A}, t \geq 0$, that is, $\omega := \rho(q')^{-1}q'\rho q'$ is a normal invariant state. Therefore, if $\mathcal{F}(\mathcal{T}_*)$ is finite-dimensional, and since ω is a convex combination of extremal points of $\mathcal{F}(\mathcal{T}_*)_1$ by Thm. 2.3.15 of [3], we have $q' \geq s(\omega) \geq s(\sigma)$ for some σ extremal in $\mathcal{F}(\mathcal{T}_*)_1$, which means $s(\sigma)s(\omega_i) = 0$ for all $i \in I$.

On the other hand, if \mathcal{A} commutative and the family of extremal states of $\mathcal{F}(\mathcal{T}_*)_1$ is faithful on $p_R \mathcal{A} p_R$, we can choose an extremal state ρ such that $\rho(q') \neq 0$. Fix $i \in I$: the condition $[s(\omega_i), s(\rho)] = 0$ implies $s(\omega_i) \wedge s(\rho) = s(\omega_i)s(\rho)$; since $s(\omega_i) \wedge s(\rho) \leq s(\omega_i)$ is $\mathcal{T}^{s(\omega_i)}$ -invariant and ω_i, ρ are extremal, by Thm. 1 of [11] we have that $\mathcal{T}^{s(\omega_i)}$ is irreducible, so $s(\omega_i) \wedge s(\rho) = 0$, for $s(\omega_i) \leq q$. This means $s(\rho)s(\omega_i) = 0$.

5. The finite-dimensional case. If \mathcal{A} acts on a finite-dimensional Hilbert space \mathcal{H} , as in the case of Markov chains with finite state space, we get $p_R \neq 0$ and $p_{R_0} = 0$. Moreover, p_T is integrable.

PROPOSITION 14. Suppose dim $\mathcal{H} < +\infty$. If \mathcal{T} is a QMS on \mathcal{A} , then its fast recurrent projection p_R is not zero.

Proof. It is a trivial consequence of the Markov-Kakutani Theorem.

COROLLARY 15. If \mathcal{T} is an irreducible QMS on \mathcal{A} and \mathcal{H} is finite-dimensional, then \mathcal{T} is fast recurrent.

Proof. Since \mathcal{T} is irreducible, it can be either transient, or fast or slow recurrent by Prop. 9; but Prop. 14 implies $p_R \neq 0$, so that $p_R = \mathbf{1}$, i.e. \mathcal{T} is fast recurrent.

LEMMA 16. If dim $\mathcal{H} < +\infty$ and \mathcal{T} is a QMS on \mathcal{A} , then $p_R^{\perp} \in \mathcal{A}_{int}$. In particular, $\mathcal{T}_t(p_R^{\perp}) \xrightarrow{t \to \infty} 0$.

Proof. Let $x_0 \in p_R^{\perp} A p_R^{\perp}$ be the positive limit of the decreasing net $\{\mathcal{T}_t(p_R^{\perp})\}_{t\geq 0}$ $(p_R^{\perp}$ is superharmonic); therefore x_0 is harmonic. If we put

$$S(\omega) = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} T_{*k}(\omega)$$

for all $\omega \in \mathcal{A}_* = \mathcal{A}^*$, then $\mathcal{S}(\omega) \in \mathcal{F}(\mathcal{T}_*)_+$, so $s(\mathcal{S}(\omega)) \leq p_R$. Hence

$$\omega(x_0) = \lim_n \frac{1}{n} \sum_{k=1}^n \omega(\mathcal{T}_1^k(x_0)) = \mathcal{S}(\omega)(x_0) = \mathcal{S}(\omega)(s(\mathcal{S}(\omega))x_0) = 0,$$

so that $x_0 = 0$. But \mathcal{H} finite-dimensional implies that $\mathcal{T}_t(p_R^{\perp})$ is also norm-convergent to 0, and then there exists $t_0 > 0$ such that $\|\mathcal{T}_{t_0}(p_R^{\perp})\| < 1$; therefore, by $\|\mathcal{T}_t(p_R^{\perp})\| \le$ $\|\mathcal{T}_{t_0}(p_R^{\perp})\| < 1$ for all $t \ge t_0$, it follows that $\|\mathcal{T}_t(p_R^{\perp})\| \le c \exp(-t\alpha)$ for some $\alpha > 0, c > 0$, and for all $t \ge t_0$, so that finally

$$\int_0^\infty \|\mathcal{T}_t(p_R^{\perp})\| dt \le t_0 + \int_{t_0}^\infty \|\mathcal{T}_t(p_R^{\perp})\| dt < \infty,$$

i.e. p_R^{\perp} is integrable.

THEOREM 17. If dim $\mathcal{H} < +\infty$ and \mathcal{T} is a QMS on \mathcal{A} , then $p_{R_0} = 0$.

Proof. Since by virtue of Lemma 16 p_R^{\perp} is integrable, we have $p_T + p_{R_0} = p_R^{\perp} \leq [\mathcal{U}(p_R^{\perp})] \leq p_T$, i.e. $p_{R_0} = 0$.

COROLLARY 18. Suppose dim $\mathcal{H} < +\infty$. If \mathcal{T} is a QMS on \mathcal{A} , then its transient projection p_T is integrable.

We conclude this section with an application to a physical model: this is the open BCS model, where the system is described by spin variables and the reservoir is given in terms of bosonic operators (see [2]). It is contained in a box with N sites.

We show first some preliminary results which will be very useful to analyze the open BCS model.

We recall that, given a QMS ${\mathcal T}$ on a von Neumann algebra ${\mathcal A},$ we can consider the subalgebra

$$\mathcal{N}(\mathcal{T}) = \bigcap_{t \ge 0} \{ a \in \mathcal{A} : \mathcal{T}_t(a^*a) = \mathcal{T}_t(a^*)\mathcal{T}_t(a), \ \mathcal{T}_t(aa^*) = \mathcal{T}_t(a)\mathcal{T}_t(a^*) \}.$$

If $\mathcal{A} = \mathcal{B}(\mathcal{H})$, \mathcal{T} is uniformly continuous and its generator is represented in the Lindblad form, we have $\mathcal{N}(\mathcal{T}) = \{L_k, L_k^* : k \ge 0\}'$ (see Prop. 2.33 of [8]); moreover, if there exists

a faithful normal invariant state, Prop. 2.32 of [8] implies that $\mathcal{F}(\mathcal{T}) = \{L_k, L_k^*, H : k \geq 0\}' \subseteq \mathcal{N}(\mathcal{T})$. We shall use these facts in the following

PROPOSITION 19. Let $\mathcal{A} = M_2(\mathbb{C})^{\otimes^N}$, with $N \geq 1$. If $\omega_1, \ldots, \omega_N$ are faithful states on $M_2(\mathbb{C})$, then $\omega_1 \otimes \ldots \otimes \omega_N$ is a faithful state on \mathcal{A} .

Proof. We denote by E_1 and E_2 the partial traces over $(\mathbb{C}^2)^{\otimes^{(N-1)}}$ and \mathbb{C}^2 respectively. It is clear that $(\omega_1 \otimes \ldots \otimes \omega_N)(\mathbf{1}) = (\omega_1 \otimes \ldots \otimes \omega_N)(\mathbf{1} \otimes \ldots \otimes \mathbf{1}) = 1$. We prove by induction on N that $\omega_1 \otimes \ldots \otimes \omega_N$ is positive and faithful: for N = 1, it is trivial. Suppose now $\omega_2 \otimes \ldots \otimes \omega_N$ positive and faithful on $M_2(\mathbb{C})^{\otimes^{N-1}}$, and denote by ρ its density; hence, if we denote by tr, tr₁ and tr₂ the normalized traces on the Hilbert spaces $(\mathbb{C}^2)^{\otimes^N}$, \mathbb{C}^2 and $(\mathbb{C}^2)^{\otimes^{(N-1)}}$ respectively, we have

(2)
$$(\omega_2 \otimes \ldots \otimes \omega_N)(b) = \operatorname{tr}_2(\rho b) = \operatorname{tr}_2(\rho^{1/2}b\rho^{1/2})$$

for all $b \in M_2(\mathbb{C})^{\otimes^{N-1}}$. Let F be the $(\omega_1 \otimes \ldots \otimes \omega_N)$ -preserving conditional expectation onto $M_2(\mathbb{C})$ given by

$$F: M_2(\mathbb{C}) \otimes M_2(\mathbb{C})^{\otimes^{N-1}} \to M_2(\mathbb{C}) \otimes \mathbb{C}$$
$$a \otimes b \mapsto (\omega_2 \otimes \ldots \otimes \omega_N)(b) a \otimes \mathbf{1}.$$

Therefore, identifying $M_2(\mathbb{C}) \otimes \mathbb{C}$ with $M_2(\mathbb{C})$, we have

$$(\omega_1 \otimes \ldots \otimes \omega_N)(a) = \omega_1(F(a))$$

for all $a \in \mathcal{A}$. In particular, if a is positive, F(a) is also positive in $M_2(\mathbb{C})$, so that $\omega_1 \otimes \ldots \otimes \omega_N$ is a positive functional on \mathcal{A} .

Assume now that $(\omega_1 \otimes \ldots \otimes \omega_N)(a) = 0$, $a \in \mathcal{A}_+$. With the identification $\mathbb{C} \otimes M_2(\mathbb{C})^{\otimes^{(N-1)}} \simeq M_2(\mathbb{C})^{\otimes^{(N-1)}}$, the faithfulness of ω_1 and (2) imply

 $0 = F(a) = E_2((\mathbf{1} \otimes \rho^{1/2})a(\mathbf{1} \otimes \rho^{1/2})).$

Since $(\mathbf{1} \otimes \rho^{1/2})a(\mathbf{1} \otimes \rho^{1/2})$ is positive and E_2 is faithful, we obtain that $(\mathbf{1} \otimes \rho^{1/2})a(\mathbf{1} \otimes \rho^{1/2}) = 0$, and so

$$0 = \operatorname{tr}((\mathbf{1} \otimes \rho)a) = \operatorname{tr}_2(\rho E_1(a)) = (\omega_2 \otimes \ldots \otimes \omega_N)(E_1(a)).$$

Due to the faithfulness of $\omega_2 \otimes \ldots \otimes \omega_N$ and E_1 , we have a = 0. This proves that $\omega_1 \otimes \ldots \otimes \omega_N$ is a faithful state on \mathcal{A} .

PROPOSITION 20. Let $\mathcal{A} = M_2(\mathbb{C})^{\otimes^N}$ and \mathcal{L} be the linear map on \mathcal{A} given by

(3)
$$\mathcal{L}(x_1 \otimes \ldots \otimes x_N) = \sum_{j=1}^N x_1 \otimes \ldots \otimes \underbrace{\mathcal{L}_j(x_j)}_j \otimes \ldots x_N \quad \forall \ x_i \in M_2(\mathbb{C}),$$

where each \mathcal{L}_j is the generator of a uniformly continuous QMS $\mathcal{T}^{(j)}$ on $M_2(\mathbb{C})$. Then \mathcal{L} generates a uniformly continuous QMS \mathcal{T} on \mathcal{A} defined by

(4)
$$\mathcal{T}_t(x_1 \otimes \ldots \otimes x_N) = \mathcal{T}_t^{(1)}(x_1) \otimes \ldots \otimes \mathcal{T}_t^{(N)}(x_N)$$

Moreover, if we assume that:

1. each $\mathcal{T}^{(j)}$ is irreducible and it possesses a (unique) faithful invariant state ω_j , 2. $\mathcal{N}(\mathcal{T}^{(j)}) = \mathcal{F}(\mathcal{T}^{(j)})$ for all j = 1, ..., N,

then \mathcal{T} is irreducible and $\omega_1 \otimes \ldots \otimes \omega_N$ is the unique faithful invariant state of \mathcal{T} .

Proof. If

$$\mathcal{L}_{j}(x) = \frac{1}{2} \left(\sum_{k \ge 0} (L_{k}^{(j)})^{*} L_{k}^{(j)} x - 2 \sum_{k \ge 0} (L_{k}^{(j)})^{*} x L_{k}^{(j)} + \sum_{k \ge 0} x L_{k}^{(j)*} L_{k}^{(j)} \right) + i[H^{(j)}, x]$$

is the Lindblad form of \mathcal{L}_i , then \mathcal{L} can be represented in the Lindblad form too taking

$$L_{j,k} = \mathbf{1} \otimes \ldots \otimes \underbrace{L_k^{(j)}}_{j} \otimes \ldots \mathbf{1},$$
$$H = \sum_{i=1}^N \mathbf{1} \otimes \ldots \otimes H^{(i)} \otimes \ldots \otimes \mathbf{1},$$

for all j = 1, ..., N and $k \ge 0$. Therefore \mathcal{L} generates a uniformly continuous QMS \mathcal{T} on \mathcal{A} ; it is easy to prove that \mathcal{T} is given by (4) and

(5)
$$\mathcal{L}_*(\sigma_1 \otimes \ldots \otimes \sigma_N) = \sum_{j=1}^N \sigma_1 \otimes \ldots \otimes \underbrace{\mathcal{L}_{j*}(\sigma_j)}_j \otimes \ldots \sigma_N \quad \forall \ \sigma_i \in M_2(\mathbb{C}).$$

Suppose now that conditions 1, 2 hold. Hence $\omega_1 \otimes \ldots \otimes \omega_N$ is a faithful \mathcal{T} -invariant state thanks to (5) and Proposition 19. To conclude, it is enough to prove that $\mathcal{F}(\mathcal{T}) = \mathbb{C}\mathbf{1}$: indeed, in this case, since $\omega_1 \otimes \ldots \otimes \omega_N$ is a faithful \mathcal{T} -invariant state, Thm. 1 and Lemma 2 of [11] imply that \mathcal{T} is irreducible and $\omega_1 \otimes \ldots \otimes \omega_N$ is the unique invariant state.

If $x \in \mathcal{F}(\mathcal{T})$, then in particular x commutes with each $L_{j,k}$, so that

$$\sum_{i_j,k_j=1}^2 x_{(i_1,k_1),\dots,(i_j,k_j),\dots,(i_N,k_N)} E_{i_j}^{k_j} \in \{L_k^{(j)}, L_k^{(j)*} : k \ge 0\}' = \mathcal{N}(\mathcal{T}^{(j)})$$

for all j = 1, ..., N; since $\mathcal{N}(\mathcal{T}^{(j)}) = \mathcal{F}(\mathcal{T}^{(j)})$ and this last space is equal to $\mathbb{C}\mathbf{1}$ by Thm. 1 and Lemma 2 of [11], this means that $x_{(i_1,k_1),...,(i_N,k_N)} = 0$ for $i_j \neq k_j$ and

$$x_{(i_1,k_1),\dots,\underbrace{(1,1)}_{j},\dots,(i_N,k_N)} = x_{(i_1,k_1),\dots,\underbrace{(2,2)}_{j},\dots,(i_N,k_N)}$$

for all $j = 1, \ldots, N$. Therefore, we get $x_{(i_1, i_1), \ldots, (i_N, i_N)} = x_{(k_1, k_1), \ldots, (k_N, k_N)}$ for all $i_j, k_j \in \{1, 2\}$ and $j = 1, \ldots, N$, i.e. $\mathcal{F}(\mathcal{T}) = \mathbb{C}(\mathbf{1} \otimes \ldots \otimes \mathbf{1}) = \mathbb{C}\mathbf{1}$.

EXAMPLE 1. Let $\mathcal{H} = (\mathbb{C}^2)^{\otimes N}$, $N \geq 1$, and $\mathcal{A} = \mathcal{B}(\mathcal{H}) \simeq M_2(\mathbb{C})^{\otimes N}$; denote $\sigma_i^{\epsilon} = \mathbf{1} \otimes \ldots \otimes \mathbf{1} \otimes \underbrace{\sigma_i^{\epsilon}}_{i} \otimes \mathbf{1} \otimes \ldots \otimes \mathbf{1}$, where $\epsilon = 0, \pm, i = 1, \ldots, N$ and

$$\sigma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \sigma^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

We recall that $[\sigma_i^+, \sigma_j^-] = \delta_{ij}\sigma_i^0$ and $[\sigma_i^\pm, \sigma_j^0] = \pm 2\delta_{ij}\sigma_i^\pm$. The index *i* represents the discrete values of the momentum that an electron in a fixed volume can have, σ_i^+ creates a Cooper pair with given momentum while σ_i^- annihilates the same pair.

We define

$$\mathcal{L}(x) = \sum_{j=1}^{N} \sum_{\alpha=0,\pm} \{ \Gamma_{\alpha}[\rho_{\alpha}^{j}, x] \rho_{\alpha}^{j*} + \Lambda_{\alpha}[\rho_{\alpha}^{j*}, x] \rho_{\alpha}^{j} - \overline{\Gamma}_{\alpha} \rho_{\alpha}^{j}[\rho_{\alpha}^{j*}, x] - \overline{\Lambda}_{\alpha} \rho_{\alpha}^{j*}[\rho_{\alpha}^{j}, x] \}$$

for all $x \in \mathcal{A}$, where $\Gamma_{\alpha}, \Lambda_{\alpha} \in \mathbb{C}, \ \Re\Gamma_{\alpha}, \Re\Lambda_{\alpha} > 0$, and $\rho_{\alpha}^{j} = \mathbf{1} \otimes \ldots \otimes \mathbf{1} \otimes \underbrace{\rho_{\alpha}}_{i} \otimes \mathbf{1} \otimes \ldots \otimes \mathbf{1}$ with

$$\begin{split} \rho_{0} &= \frac{g^{2}S^{+}}{\omega^{2}} (2S^{-}\sigma^{+} + S^{0}\sigma^{0} + 2S^{+}\sigma^{-}), \\ \rho_{+} &= \frac{gS^{+}}{\omega^{2}} \left(gS^{-}\frac{\omega - gS^{0}}{\omega + gS^{0}}\sigma^{+} + \frac{\omega - gS^{0}}{2}\sigma^{0} - gS^{+}\sigma^{-} \right), \\ \rho_{-} &= \frac{gS^{+}}{\omega^{2}} \left(gS^{-}\frac{\omega + gS^{0}}{\omega - gS^{0}}\sigma^{+} - \frac{\omega + gS^{0}}{2}\sigma^{0} - gS^{+}\sigma^{-} \right), \end{split}$$

 $\omega, S^0 \in \mathbb{R}, S^+, S^- \in \mathbb{C}, \ \omega \pm gS^0, S^+, S^-, \omega \neq 0; -g < 0$ is the interaction close to the Fermi surface.

Notice that \mathcal{L} assumes the form (3) with $\mathcal{L}_k = \tilde{\mathcal{L}}$ for all $k = 1, \ldots, N$ and

$$\tilde{\mathcal{L}}(x) := \sum_{\alpha=0,\pm} \left\{ \Gamma_{\alpha}[\rho_{\alpha}, x] \rho_{\alpha}^{*} + \Lambda_{\alpha}[\rho_{\alpha}^{*}, x] \rho_{\alpha} - \overline{\Gamma}_{\alpha} \rho_{\alpha}[\rho_{\alpha}^{*}, x] - \overline{\Lambda}_{\alpha} \rho_{\alpha}^{*}[\rho_{\alpha}, x] \right\}$$

for any $x \in M_2(\mathbb{C})$. Since $\tilde{\mathcal{L}}$ can be represented in the Lindblad form taking

$$L_{1,\alpha} = \sqrt{2\Re\Gamma_{\alpha}}\rho_{\alpha}^*, \quad L_{2,\alpha} = \sqrt{2\Re\Lambda_{\alpha}}\rho_{\alpha}$$

for all $\alpha = 0, \pm$ and H = 0, it is the generator of a uniformly continuous QMS T. Therefore, it follows from Prop. 20 that \mathcal{L} generates a uniformly continuous QMS \mathcal{T} on \mathcal{A} . We want to prove that $\tilde{\mathcal{T}}$ satisfies conditions 1, 2 of the same Proposition, so that \mathcal{T} is irreducible and it possesses a unique faithful normal invariant state.

Denote by p_R the fast recurrent projection of $\tilde{\mathcal{T}}$ and analyze the subharmonic projections of this semigroup; notice that, if p is such a projection, then $pL_{i,\alpha}p = L_{i,\alpha}p$ for j = 1, 2 means $p\rho_{\alpha}p = \rho_{\alpha}p$ and $p\rho_{\alpha}^*p = \rho_{\alpha}^*p$, $\alpha = 0, \pm$, that is,

$$p \in \{\rho_{\alpha}, \rho_{\alpha}^*\}' = \{L_{j,\alpha}, L_{j,\alpha}^* : j = 1, 2, \ \alpha = 0, \pm\}' = \mathcal{N}(\tilde{\mathcal{T}}).$$

But H = 0 implies $\mathcal{N}(\tilde{\mathcal{T}}) = \mathcal{F}(\tilde{\mathcal{T}})$, so that any subharmonic (and therefore superharmonic) projection is harmonic; in particular, the non-zero superhamonic projections are not integrable. As a consequence, since p_T is superharmonic and integrable (because \mathcal{H} is finite-dimensional), we get $p_T = 0$ and then $p_R = p_T^{\perp} = \mathbf{1}$, i.e. $\tilde{\mathcal{T}}$ is fast recurrent. In particular there exists a faithful \tilde{T} -invariant state ω (Corollary 1 of [15], $M_2(\mathbb{C})$ being a σ -finite algebra). Since a straightforward calculation shows that $\mathcal{F}(\mathcal{T}) = \mathbb{C}\mathbf{1}$, this implies that $\tilde{\mathcal{T}}$ is irreducible and ω is its unique normal invariant state by virtue of Thm. 1 and Lemma 2 of [11]. We have thus proved that conditions 1, 2 of Prop. 20 are fulfilled; therefore, \mathcal{T} is irreducible and its unique faithful normal invariant state is $\underbrace{\omega \otimes \ldots \otimes \omega}_{N \text{ times}}.$

6. Characterization of normal invariant states. In this section we analyze a classical situation: assume that there exists a set $\{p_n\}_{n\in N}$, $N \subset \mathbb{N}$, of orthogonal projections which satisfy:

1.
$$\sum_{n \in N} p_n = \mathbf{1}$$
,
2. $\mathcal{T}_t(p_n) = p_n$ for all $n \in N$,

426

- 3. the restriction of \mathcal{T} to the subalgebra $p_n \mathcal{A} p_n$ is irreducible for all $n \in N$,
- 4. there exists a normal invariant state ρ_n with $s(\rho_n) \leq p_n$.

Since ρ_n is clearly also $\mathcal{T}_{|p_n \mathcal{A} p_n}$ -invariant, $s(\rho_n)$ is a subharmonic projection for the irreducible semigroup $\mathcal{T}_{|p_n \mathcal{A} p_n}$ (see Prop. 1), so that ρ_n is faithful on $p_n \mathcal{A} p_n$ (i.e. $s(\rho_n) = p_n$); moreover, it is the unique normal invariant state on $p_n \mathcal{A} p_n$ by Thm. 1 of [11].

This implies that $\sum_{n \in \mathbb{N}} 2^{-n} \rho_n$ is a faithful normal invariant state on \mathcal{A} and then $p_R = \mathbf{1}$, so there exists a \mathcal{T} -invariant normal conditional expectation \mathcal{E} onto $\mathcal{F}(\mathcal{T})$ by Thm. 3.

We wish now to determine when it is possible to write every normal invariant state in the form $\sum_{n \in N} \lambda_n \rho_n$ for some positive λ_n such that $\sum_{n \in N} \lambda_n = 1$.

In general, this is not the case, as the following example shows: take $\mathcal{A} = \mathcal{B}(\mathcal{H}), \mathcal{H}$ separable with $\{e_m\}_{m\geq 1}$ a orthonormal basis, and \mathcal{T}_t the identity map. Then, $\{|e_m\rangle\langle e_m|\}_{m\geq 1}$ is a sequence of orthogonal projections which fulfills the above properties by letting $\rho_m = |e_m\rangle\langle e_m|$, every state is invariant, yet not every normal state can be expressed as $\sum_{m\geq 1} \lambda_m |e_m\rangle\langle e_m|$.

THEOREM 21. Let $(p_n)_{n \in N}$ be a set of orthogonal projections with card $(N) \leq \aleph_0$. If $(p_n)_{n \in N}$ satisfies 1-4, then the following conditions are equivalent:

1. any normal invariant states on \mathcal{A} has the form $\sum_{n \in N} \lambda_n \rho_n$ for some $\lambda_n \ge 0$ with $\sum_{n \in N} \lambda_n = 1$;

2.
$$\mathcal{F}(\mathcal{T}) = \overline{\operatorname{span}\{p_n : n \in N\}}.$$

Proof. $1 \Rightarrow 2$. Let ω be a normal invariant state on \mathcal{A} ; since $\omega(a) = \sum_{i,j\in N} \omega(p_i a p_j)$ for all $a \in \mathcal{A}$, and $p_n \omega p_n = \omega(p_n)\rho_n$ by Thm. 1 of [11] (because $p_n \omega p_n$ is a normal invariant functional on $p_n \mathcal{A} p_n$), it is enough to prove that $\mathcal{E}(p_i a p_j) = 0$ for all $i, j \in N, i \neq j$, for $\omega = \omega \circ \mathcal{E}$ by Thm. 3.

So, fix $a \in \mathcal{A}$ and $i \neq j$: since $\mathcal{E}(p_i a p_j) = \lim_k x_k$ with $x_k \in \text{span}\{p_n : n \in N\}$, we have $p_l \mathcal{E}(p_i a p_j) p_n = 0$ for all $l \neq n$, and also $p_l \mathcal{E}(p_i a p_j) p_l = \mathcal{E}(p_l p_i a p_j p_l) = 0$ for all $l \in N$, for $p_l = \mathcal{E}(p_l)$ and $i \neq j$. Therefore, $\mathcal{E}(p_i a p_j) = 0$, as claimed.

 $2 \Rightarrow 1$. Let $x \in \mathcal{F}(\mathcal{T})$, which is an algebra. Thus, $p_n x p_n \in \mathcal{F}(\mathcal{T})$, so that $p_n x p_n \in \mathcal{F}(\mathcal{T}_{|_{p_n \mathcal{A}p_n}})$; but $\mathcal{F}(\mathcal{T}_{|_{p_n \mathcal{A}p_n}}) = \mathbb{C}p_n$ by virtue of Thm. 1 of [11], so $p_n x p_n = \rho_n(x)p_n$ for all $n \in N$. We want to prove that $p_i x p_j = 0$ for $i, j \in N, i \neq j$.

Fix $i \neq j$ and $\omega \in \mathcal{A}_*$ a state: since $(t^{-1} \int_0^t \mathcal{T}_{*s}(\omega) ds)_{t\geq 0}$ is weakly convergent to a normal invariant state by Thm. 2.1 of [13], there exists a sequence $\{\lambda_n\}_{n\in N}$ of positive numbers such that $\sum_{n\in N} \lambda_n = 1$ and

$$\frac{1}{t} \int_0^t \mathcal{T}_{*s}(\omega)(p_i x p_j) ds \to \sum_{n \ge 0} \lambda_n \rho_n(p_i x p_j) = 0.$$

But this means $\omega(p_i x p_j) = 0$, because $p_i x p_j$ also belongs to $\mathcal{F}(\mathcal{T})$, and finally $p_i x p_j = 0$ by the arbitrariness of ω . Therefore,

$$x = \sum_{n \in N} p_n x p_n = \sum_{n \in N} \rho_n(x) p_n \in \overline{\operatorname{span}\{p_n : n \in N\}}. \quad \blacksquare$$

References

- [1] W. B. Averson, Subalgebras of C^{*}-algebras, Acta Math. 123 (1969), 141–224.
- F. Bagarello, The stochastic limit in the analysis of the open BCS model, J. Phys. A 37 (2004), 1537–1548.
- [3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [4] C. Dellacherie and P. A. Meyer, Probabilités et potentiel. Chapitres XII-XVI, second edition, Hermann, Paris, 1987.
- [5] J. Dixmier, Les C^{*}-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969.
- [6] D. E. Evans and R. Høegh-Krohn, Spectral properties of positive maps on C*-algebras, J. London Math. Soc. (2) 17 (1978), 345–355.
- [7] F. Fagnola, Quantum Markov semigroups and quantum flows, Proyectiones 18 (1999), 1–144.
- [8] F. Fagnola and R. Rebolledo, Lectures on the qualitative analysis of quantum Markov semigroups, in: Quantum Interacting Particle Systems (Trento, 2000), QP-PQ Quantum Probab. White Noise Anal. 14, World Scientific, Singapore, 2002, 1–192.
- F. Fagnola and R. Rebolledo, Subharmonic projections for a quantum semigroups, J. Math. Phys. 43 (2002), 1074–1082.
- [10] F. Fagnola and R. Rebolledo, Transience and recurrence of quantum Markov semigroups, Probab. Theory and Relat. Fields 126 (2003), 289–306.
- [11] A. Frigerio, Quantum dynamical semigroups and approach to equilibrium, Lett. Math. Phys. 2 (1977), 79–87.
- [12] A. Frigerio, Stationary states of quantum dynamical semigroups, Comm. Math. Phys. 63 (1978), 269–276.
- [13] A. Frigerio and M. Verri, Long-time asymptotic properties of dynamical semigroups on W^{*}-algebras, Math. Z. 180 (1982), 275–286.
- [14] T. Kato, Perturbation Theory for Linear Operators, Corr. printing of the 2nd ed., Springer-Verlag, New York, 1980.
- [15] V. Umanità, Classification and decomposition of quantum Markov semigroups, Probab. Theory and Relat. Fields, 2004, to appear.