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Abstract. We define the transient and recurrent parts of a quantum Markov semigroup T on

a von Neumann algebra A and we show that, when A is σ-finite, we can write T as the sum of

such semigroups. Moreover, if T is the countable direct sum of irreducible semigroups each with

a unique faithful normal invariant state ρn, we find conditions under which any normal invariant

state is a convex combination of ρn’s.

1. Introduction. If P is a Markov chain with finite state space, T is the set of its

transient states and R1, . . . , Rk denote the different classes of recurrent states, then we

can think of P as the sum of its transient part (i.e. the one relative to T ) and its recurrent

part, given by a block-diagonal matrix where any block is irreducible and it corresponds

to a recurrent class Ri.

In their work [6], Evans and Høegh-Krohn have generalized this decomposition for a

positive stochastic map Φ on a finite-dimensional C*-algebra A by introducing a recurrent

and a transient projection in terms of invariant states; they show that the recurrent

projection is subharmonic and that, if Φ is recurrent (i.e. its recurrent projection is equal

to 1), there exists a resolution of the identity {p1, . . . , ps} such that the restriction of Φ

to each of the subalgebras piApi is irreducible.

Our intention here is to extend such results to the case of a quantum Markov semi-

group (QMS) T on a σ-finite von Neumann algebra A. As in [6], we define the fast

recurrent projection pR as the supremum of the supports of the normal invariant states,

but, to distinguish between fast and slow recurrence, we decompose p⊥R further as the sum

of a transient projection pT (determined by range projections of potentials, see [10]) and

a slow recurrent projection pR0
. As in the case of Markov chains with finite state space,

in the finite-dimensional setting we shall have pR0
= 0. Therefore, we shall call a QMS
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transient or recurrent according to pT = 1 or pT = 0, respectively. Further, we show that,

when A is σ-finite, the subalgebra pTApT is invariant under the action of T (see Cor.

11) and its restriction to this subalgebra is a transient semigroup; on the other hand,

the reduced semigroup associated with p⊥T is a recurrent QMS (see Thm. 15). Moreover,

under appropriate conditions, we can decompose the semigroup T pR associated with pR

into the direct sum of irreducible “sub”-QMS’s each one supporting a unique faithful

normal invariant state (Prop. 19).

Finally, in the last part we analyze a typical situation occurring in many examples

known in the literature: we assume that there exists an orthogonal sequence (pn) of

T pR -invariant projections such that the restriction of T pR to the subalgebra pnApn is

irreducible and possesses a (faithful) normal invariant state ρn for all n. Then, under

this hypothesis, we investigate if we can write any normal invariant state as a convex

combination of ρn, and we show that this is equivalent to a condition on the set of fixed

points of T (Thm. 24).

2. Preliminaries. In this paper A is a von Neumann algebra with unit 1 acting on a

complex Hilbert space H. A quantum dynamical semigroup (QDS) is a w∗-continuous

semigroup T = (Tt)t≥0 of normal completely positive maps on A; if Tt(1) = 1 for all

t ≥ 0, then it is Markov (i.e. it is a QMS). The infinitesimal generator of T is the

operator L whit domain D(L) which is the vector space of elements a in A such that

the limt→0 t−1(Tt(a) − a) exists in the weak* topology. For a ∈ D(L), L(a) is defined

as the limit above. In many cases (for instance T uniformly continuous, i.e. such that

there exists limt→0 ‖Tt − T0‖ = 0), the generator L of a QMS T can be represented in

the Lindblad form

L(x) = i[H, x] −
1

2

∑

k

(L∗
kLkx − 2L∗

kxLk + xL∗
kLk),

where H, Lk, G are bounded operators on H, H self-adjoint.

A state ω on A is normal if it is σ-weakly continuous or, equivalently, if ω(supα aα) =

supα ω(aα) for any increasing net (aα)α of positive elements in A with an upper bound;

we denote by A∗ the predual of A, that is the space of all σ-weakly continuous linear

functionals on A. We recall also that ω is a normal state if and only if there exists a

density matrix ρ, that is, a positive trace-class operator of H with a unit trace, such that

ω(a) = tr(ρa) for all a ∈ A.

ω is faithful if ω(a) > 0 for all non-zero positive elements a ∈ A.

For any normal state ω on A, the support projection s(ω) is the smallest projection in

A such that ω(s(ω)a) = ω(as(ω)) = ω(a) for any a ∈ A (cf. [5], Prop. 3); since it is easy

to check that any normal state ω is faithful on s(ω)As(ω), it follows that ω is faithful if

and only if s(ω) = 1.

If T is a QDS on A, its predual semigroup is the semigroup T∗ of operators in A∗

defined by (T∗t(ω)) (a) = ω(Tt(a)) for every a ∈ A and ω ∈ A∗. Since any map T∗t is

clearly weakly continuous on A∗, T∗ is a strongly continuous semigroup in the Banach

space A∗ (see, for instance [3] Cor. 3.1.8); moreover, if T is Markov, T and T∗ are

semigroups of contractions (see [7], Prop. 2.10.3).
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We say that a normal state ω on A is invariant if T∗t(ω) = ω for all t ≥ 0 and we

denote by F(T∗)1 the set of normal invariant states on A.

A family G of normal states on A is called faithful if a ∈ A, a positive and ω(a) = 0

for all ω ∈ G implies a = 0; given a family G of normal invariant state and put p =

sup{ s(ω) : ω ∈ G }, then G is faithful on the subalgebra pAp.

We recall that a von Neumann algebra A on H is σ-finite if there exists a countable

subset S of H which is separating for A (i.e. for any a ∈ A, au = 0 for all u ∈ S implies

a = 0).

We shall often make use of the following elementary remark. Given a positive element

x ∈ A and a projection p, then pxp = 0 implies p⊥xp = pxp⊥ = 0 (see Lemma II.1

of [9]).

3. The fast recurrent projection and the transient projection. Following the

theory of classical Markov processes and [6], we first introduce the fast recurrent projec-

tion pR in such a way that the set of fast recurrent states is invariant for the system and

the reduced semigroup is mean ergodic; therefore, pR will be determined by the supports

of the normal invariant states.

We call a positive operator a subharmonic (resp. superharmonic, resp. harmonic) if

Tt(a) ≥ a (resp. Tt(a) ≤ a, resp. Tt(a) = a) for all t ≥ 0; we denote by F(T ) the set of

harmonic elements of T . Subharmonic projections play an important role in the study of

QMSs. For example, we have the following

Proposition 1 ([10]). Let T be a QMS on A. If ω ∈ A∗ is an invariant state, then its

support projection is subharmonic.

Proof. Let ω be a normal invariant state, p := s(ω), and fix t ≥ 0. From the invariance

of ω it follows ω(p − pTt(p)p) = ω(p − Tt(p)) = 0, and then pTt(p)p = p, because

pTt(p)p ≤ p and ω is faithful on pAp. Therefore, the projection p⊥ satisfies pTt(p
⊥)p = 0,

so Tt(p
⊥) = p⊥Tt(p

⊥)p⊥. This implies Tt(p
⊥) ≤ p⊥ and then Tt(p) ≥ p.

Notation. For any ω ∈ A∗ and p projection of A, we denote by pωp the element of A∗

defined as (pωp)(a) = ω(pap) for all a ∈ A, and by pA∗p the set of pωp as ω varies in A∗.

Then the subalgebra pAp is canonically isomorphic to the dual space of pA∗p and we can

identify the normal states on pAp with the normal states on A whose support is smaller

than p.

Given a subharmonic projection p, we can construct a QMS on the subalgebra pAp

in the following way: since p subharmonic implies that pA∗p is T∗-invariant (see Prop.

II.1 of [9]), we can restrict T∗ to such a Banach space and obtain a weakly continuous

semigroup. If we denote by T p = {T p
t }t its dual semigroup, taking a ∈ pAp = (pA∗p)∗

and ω ∈ pA∗p, we have

ω((T∗t|pA∗p)
∗(a)) = (T∗t(ω))(a) = ω(Tt(a)) = ω(pTt(a)p), ∀ t ≥ 0,

that is,

(1) T p
t (a) = pTt(a)p, ∀ a ∈ pAp, t ≥ 0.



418 V. UMANITÀ

T p
t is a QMS on pAp because any T p

t is clearly normal, completely positive and

p = pTt(1)p ≥ pTt(p)p ≥ p.

Definition 1 ([13]). T p is called the reduced semigroup associated with p.

If {pi}i is an arbitrary family of projections, then we denote by supi pi the projection

(in A) onto the closure of the linear space of H generated by the ranges of pi’s.

Definition 2 ([13]). The fast recurrent projection associated with a QMS T is the pro-

jection pR = supi pi where the pi’s are the support projections of all invariant states

of T .

Theorem 2. Let T be a QMS on A. Then its fast recurrent projection is subharmonic.

Proof. It follows immediately from the definition, pR being the least upper bound of

subharmonic projections.

We can then consider the reduced semigroup associated with pR.

We have pR = 0 when the semigroup has no normal invariant states, and pR = 1

when T has a faithful family of normal invariant states; in particular, if A is σ-finite,

then pR = 1 if and only if there exists a faithful normal invariant state (Corollary 1 of

[15]). However, since F(T∗)1 is a faithful family on pRApR and any T -invariant state is

clearly also T pR -invariant, the family F(T∗)1 is faithful for T pR ; so, applying the mean

ergodic Thm. of [12] to T pR we get the following

Theorem 3 ([13]). For all a ∈ A the limit

E(a) := w∗- lim
t

1

t

∫ t

0

pRTs(a)pR ds

exists and it defines a pRT pR-invariant normal conditional expectation onto the von

Neumann subalgebra F(T pR) of pRApR such that E ◦Tt = E for all t ≥ 0. A normal state

ω on A is T -invariant if and only if ω ◦ E = ω.

We now introduce the projection in which the system spends a small amount of time;

for this purpose, we need to define a potential associated to T , which really represents

the time of sojourn of a pure state in a projection.

Our reference on quadratic forms is the book of Kato [14].

Definition 3 ([10]). Given a positive operator x ∈ A we define the form-potential of x

as a quadratic form U(x) by

U(x)[u] =

∫ ∞

0

〈u, Ts (x)u〉ds, ∀ u ∈ D(U(x)),

where the domain D(U(x)) is the set of all u ∈ H s.t.
∫ ∞

0
〈u, Ts (x)u〉ds < ∞.

This is clearly a symmetric and positive form; moreover, by Thm. 3.13a p. 461 and

Lemma 3.14a p. 461 of [14] it is also closed. Therefore, when it is densely defined, it

is represented by a self-adjoint operator (see Thm.2.1, p. 322, Thm. 2.6, p. 323 and

Thm. 2.23 p. 331 of [14]). This motivates the following definition.
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Definition 4 ([10]). For all positive x ∈ A such that D(U(x)) is dense, the potential

of x is the self-adjoint operator U(x) which represents U(x).

We put also Aint := {x ∈ A+ : U(x) is bounded } and we call its elements T -integrable

(or integrable).

Since D(U(x)1/2) = D(U(x)) by [14] Th. 2.23 p. 331, given x ∈ Aint, we have

D(U(x)) = H and then 〈u,U(x)u〉 =
∫ ∞

0
〈u, Ts(x)u〉ds for all u ∈ H.

Proposition 4. If T is a QMS and x ∈ A is positive, then the orthogonal projections

onto the closure of D(U(x)) and onto K(x) = {u ∈ D(U(x)) : U(x)[u] = 0} are subhar-

monic.

Proof. See Prop. 2 and 4 of [10].

For each operator x on H, we call the orthogonal projection onto the closure of x(H)

the range projection of x and denote it by [x]; it is well-known that x ∈ A implies [x] ∈ A.

Inspired by the notion of transient QMS given in [10] we give the following

Definition 5. The transient projection associated with the QMS T is the projection pT

in A defined by pT := supp∈P p, where P = { [U(x)] : x ∈ Aint }.

This definition is original, as are all the next results.

The transient projection is orthogonal to pR, indeed

Proposition 5. If T is a QMS on A, then pT ≤ p⊥R.

Proof. Let ω be a normal invariant state and put p = [U(x)] with x ∈ Aint; then
∫ ∞

0

ω(x)ds =

∫ ∞

0

ω(Ts(x))ds = ω(U(x)) ≤ ‖ω‖ · ‖U(x)‖

implies ω(U(x)) = 0. But ω is faithful on the subalgebra s(ω)As(ω), so that this means

s(ω)U(x) = 0, i.e. U(x)(H) ⊆ ker s(ω); from the arbitrariness of ω it follows p(H) ⊆

ker pR, so p ≤ p⊥R for all p ∈ P. Hence pT ≤ p⊥R.

By Prop. 4 any projection [U(x)] with x integrable is superharmonic, but it is not clear

whether the supremum of a family of superharmonic projections is still superharmonic.

However, when A is σ-finite, we will prove that pT is superharmonic because we can

write it as the supremum of an increasing sequence of superharmonic projections. We

shall make use of the following

Lemma 6. If e ∈ pT (H), then there exists x ∈ Aint such that e ∈ Ran(U(x)).

Proof. By definition of pT , for any n ≥ 1 there exists un ∈ pn(H), pn = [U(xn)] (xn ∈

Aint), such that ‖e − un‖ < n−1; therefore, if we put

x :=
∑

n≥1

2−n(‖xn‖ + ‖U(xn)‖ + 1)−1xn,

we obtain an integrable element with kerU(x) =
⋂

n≥1 kerU(xn) and p := supn pn =

[U(x)]. Moreover, since un ∈ p(H), we get

‖e − pe‖ ≤ ‖e − un‖ + ‖pun − pe‖ < 2n−1 ∀ n ≥ 1,

which implies e ∈ p(H).
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Theorem 7. Suppose A is σ-finite and let T be a QMS on A. Then there exists an

increasing sequence (pn)n≥0 in P such that pT = supn≥0 pn. Moreover pT ∈ P.

Proof. Let {en}n≥0 be a countable subset of H which is separating for A; then, for

all n ≥ 0 there exists xn ∈ Aint such that pT en ∈ Ran(U(xn)) (see Lemma 6). If

yn :=
∑n

k=0 xk and pn := [U(yn)] (n ≥ 0), we obtain an increasing sequence (pn)n≥0 in P

with pT en ∈ U(xn)(H) ⊆ U(yn)(H) = pn(H); therefore we have (pT −supm≥0 pm)pT en =

0 for all n ≥ 0, so pT = supn≥0 pn because {pT en}n≥0 is separating for pTApT and

pT − supn≥0 pn ∈ pTApT .

Finally, put

y :=
∑

n≥0

2−n(‖yn‖ + ‖U(yn)‖ + 1)−1yn,

it is clear that y ∈ Aint and kerU(y) =
⋂

n≥0 kerU(yn) = ker pT , so that [U(y)] = pT ,

i.e. pT ∈ P.

Corollary 8. If A is σ-finite and T is a QMS on A, then its transient projection pT

is superharmonic. In particular, the subalgebra pTApT is T -invariant.

We put T T := T|pT ApT
; then it is a submarkovian QDS on pTApT . If (pn)n≥0 is a

sequence of projections as in Thm. 7, then the map t 7→ 〈u, Tt(pn)u〉 is integrable on

[0,∞) for all u ∈ H; this implies that Tt(pn) is strongly convergent to 0 as t → ∞. Using

this fact and the uniform boundeness in t of Tt we can easily show that T T has no normal

invariant states.

Definition 6. The projection pR0
= p⊥R − pT is called slow recurrent projection associ-

ated with the QMS T .

4. Decomposition of QMSs

Definition 7. We call a QMS T

1. irreducible if it has no non-trivial subharmonic projections;

2. transient if pT = 1;

3. recurrent if pT = 0;

4. fast recurrent if pR = 1;

5. slow recurrent if pR0
= 1.

Notice that we can also define pT , pR and pR0
for a QDS T on A such that Tt(1) ≤ 1

for all t ≥ 0; since it is easy to check that these projections satisfy the same properties,

we can introduce the concepts of transience and recurrence for such semigroups too.

Proposition 9. Let T be a QMS on A. If T is irreducible, then it is either transient,

or fast recurrent, or slow recurrent.

Proof. If T is irreducible, since pT is superharmonic we have either pT = 1 or pT = 0,

that is, T is either transient or recurrent. On the other hand, if pT = 0, since pR is

subharmonic we get either pR = 1 or pR = 0, that is, T is either fast or slow recurrent.

Instead, in general a QMS T is not type 2, 3, 4, 5 but, if A is σ-finite, we can write it

as a sum of a transient and a recurrent semigroup. Indeed, we have the following
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Theorem 10. If A is σ-finite and T is a QMS on A, then T T is a transient QDS on

pTApT , while T p⊥

T is a recurrent QMS on p⊥T Ap⊥T . Moreover T pR is a fast recurrent

semigroup on pRApR.

We refer to Thm. 9 of [15] for the proof.

It is not yet clear if we can associate a semigroup with the slow recurrent projection

pR0
(we don’t know if pR0

is superharmonic or subharmonic) and, in this case, if such a

semigroup is slow recurrent.

Since, for all projections p ∈ A, U(p)[u] =
∫ ∞

0
〈u, Ts(p)u〉ds represents the time of

sojourn of the state tr(|u〉〈u|·) (‖u‖ = 1) in p (see [10]) and any normal state ω is defined

by a density matrix
∑

k λk|ek〉〈ek| with ek ∈ s(ω)(H), we can read the above theorem as

follows:

• starting from a transient state (support in pTApT ), the semigroup T∗ spends a finite

or an infinite amount of time in pT but, if it leaves pT to come into p⊥T (i.e. its support

is in p⊥T Ap⊥T ), it stays there forever;

• starting from a recurrent state, the semigroup T∗ cannot leave p⊥T .

In particular, starting from a fast recurrent state, the semigroup T∗ cannot leave pR.

We want now to decompose pR as a sum of an arbitrary family of orthogonal T pR-

invariant projections {pi} such that any restriction of T pR to the subalgebra piApi is

irreducible; such a decomposition is given in [6] for finite-dimensional algebras. We prove

that this is possible if and only if there exists a faithful family of extremal states of F(T∗)1
with orthogonal supports. In this case, since piApi is T pR -invariant, the equation

T pR

t (x) = piT
pR

t (x)pi = piTt(x)pi = T pi

t (x)

holds for all x ∈ piApi, so that the restriction of T pR to piApi is the reduced semigroup

T pi for all i. Moreover, given ω ∈ F(T∗)1 with ω(pi) 6= 0, we have that

(piωpi)(T
pi

t (x)) = ω(Tt(x)) = ω(x)

for all x ∈ piApi. Hence, ωi := ω(pi)
−1piωpi is a normal T pi -invariant state; also, from

the irreducibility of T pi , it follows that ωi is faithful on piApi, so that it is the unique

normal invariant state on piApi by Thm. 1 of [11]. As a consequence, T pR is the direct

sum of the irreducible “sub-QMS” T pi each one supporting a unique faithful normal

invariant state.

Lemma 11. Let T be a QMS on A; if ω is a normal state on A and p is a subharmonic

projection such that p ≥ s(ω), then:

1. ω is T -invariant if and only if ω is T p-invariant;

2. ω is extremal in F(T∗)1 if and only if ω is extremal in F(T p
∗ )1.

Theorem 12. Let T be a QMS on A. The following facts are equivalent:

1. there exists a set {pi}i∈I of pairwise orthogonal projections such that:

a) pR =
∑

i∈I pi;

b) T pR

t (pi) = pi for all i ∈ I;

c) the restriction of T pR to the subalgebra piApi is irreducible for all i ∈ I.
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2. there exists a faithful family of normal invariant states {ωi}i∈I such that:

a′) each ωi is an extremal point of F(T∗)1;

b′) s(ωj)s(ωi) = 0 for i 6= j, i, j ∈ I.

Proof. 1 ⇒ 2. Fix i ∈ I; by the above remarks, there exists a unique faithful normal

T pi -invariant state ωi on piApi. Since ωi must be extremal in F(T pi
∗ )1 by Thm. 1 of [11],

we can conclude the proof by virtue of Lemma 11.

2 ⇒ 1. Define pi := s(ωi) (i ∈ I); we obtain a set of pairwise orthogonal T pR-harmonic

projections, ωi being a faithful invariant state on piApi and pi subharmonic. Moreover,

since ωj(pR −
∑

i∈I pi) = 0 for all j ∈ I and {ωi}i∈I is faithful, we get pR =
∑

i∈I pi.

Finally, for i ∈ I, ωi is extremal in F(T pi
∗ )1 by virtue of Lemma 11 and T pi = T pR

|piApi

is irreducible by Thm. 1 of [11].

Remark 1. If A is σ-finite, then we have card(I) ≤ ℵ0 by virtue of Prop. 2.5.6 of [3].

Therefore, in this case, T pR is a countable direct sum of irreducible semigroups.

We find now some conditions under which such a decomposition holds.

Proposition 13. Let T be a QMS on A. The equivalent conditions of Thm. 12 are

satisfied if at least one of the following assumptions holds:

• F(T∗) is finite dimensional,

• A is commutative and the family of extremal states of F(T∗)1 is faithful on pRApR.

Proof. Let {ωi}i∈I be a maximal family of extremal states of F(T∗)1 with pairwise or-

thogonal supports. Set q :=
∑

i∈I s(ωi), which is majorized by pR, and define q′ := pR−q.

If q 6= pR we show that there exists an extremal state σ of F(T∗)1 such that s(σ)s(ωi) = 0

for all i ∈ I. Since this contradicts the maximality of {ωi}i∈I , we would obtain that q = pR

(and then (ωi)i∈I is a faithful family of extremal points of F(T∗)1).

Let ρ ∈ F(T∗)1 be such that ρ(q′) 6= 0. Since T pR(q′Aq′) ⊆ q′Aq′ and s(ρ) ≤ pR, we

have

q′ρq′(Tt(a)) = ρ(T pR

t (q′aq′)) = ρ(Tt(q
′aq′)) = q′ρq′(a)

for all a ∈ A, t ≥ 0, that is, ω := ρ(q′)−1q′ρq′ is a normal invariant state. Therefore, if

F(T∗) is finite-dimensional, and since ω is a convex combination of extremal points of

F(T∗)1 by Thm. 2.3.15 of [3], we have q′ ≥ s(ω) ≥ s(σ) for some σ extremal in F(T∗)1,

which means s(σ)s(ωi) = 0 for all i ∈ I.

On the other hand, if A commutative and the family of extremal states of F(T∗)1 is

faithful on pRApR, we can choose an extremal state ρ such that ρ(q′) 6= 0. Fix i ∈ I:

the condition [s(ωi), s(ρ)] = 0 implies s(ωi) ∧ s(ρ) = s(ωi)s(ρ); since s(ωi)∧ s(ρ) ≤ s(ωi)

is T s(ωi)-invariant and ωi, ρ are extremal, by Thm. 1 of [11] we have that T s(ωi) is

irreducible, so s(ωi) ∧ s(ρ) = 0, for s(ωi) ≤ q. This means s(ρ)s(ωi) = 0.

5. The finite-dimensional case. If A acts on a finite-dimensional Hilbert space H,

as in the case of Markov chains with finite state space, we get pR 6= 0 and pR0
= 0.

Moreover, pT is integrable.

Proposition 14. Suppose dimH < +∞. If T is a QMS on A, then its fast recurrent

projection pR is not zero.
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Proof. It is a trivial consequence of the Markov-Kakutani Theorem.

Corollary 15. If T is an irreducible QMS on A and H is finite-dimensional, then T

is fast recurrent.

Proof. Since T is irreducible, it can be either transient, or fast or slow recurrent by

Prop. 9; but Prop. 14 implies pR 6= 0, so that pR = 1, i.e. T is fast recurrent.

Lemma 16. If dimH < +∞ and T is a QMS on A, then p⊥R ∈ Aint. In particular,

Tt(p
⊥
R)

t→∞
→ 0.

Proof. Let x0 ∈ p⊥RAp⊥R be the positive limit of the decreasing net {Tt(p
⊥
R)}t≥0 (p⊥R is

superharmonic); therefore x0 is harmonic. If we put

S(ω) = lim
n

1

n

n∑

k=1

T∗k(ω)

for all ω ∈ A∗ = A∗, then S(ω) ∈ F(T∗)+, so s(S(ω)) ≤ pR. Hence

ω(x0) = lim
n

1

n

n∑

k=1

ω(T k
1 (x0)) = S(ω)(x0) = S(ω)(s(S(ω))x0) = 0,

so that x0 = 0. But H finite-dimensional implies that Tt(p
⊥
R) is also norm-convergent

to 0, and then there exists t0 > 0 such that ‖Tt0(p
⊥
R)‖ < 1; therefore, by ‖Tt(p

⊥
R)‖ ≤

‖Tt0(p
⊥
R)‖ < 1 for all t ≥ t0, it follows that ‖Tt(p

⊥
R)‖ ≤ c exp(−tα) for some α > 0, c > 0,

and for all t ≥ t0, so that finally
∫ ∞

0

‖Tt(p
⊥
R)‖dt ≤ t0 +

∫ ∞

t0

‖Tt(p
⊥
R)‖dt < ∞,

i.e. p⊥R is integrable.

Theorem 17. If dimH < +∞ and T is a QMS on A, then pR0
= 0.

Proof. Since by virtue of Lemma 16 p⊥R is integrable, we have pT + pR0
= p⊥R ≤ [U(p⊥R)]

≤ pT , i.e. pR0
= 0.

Corollary 18. Suppose dimH < +∞. If T is a QMS on A, then its transient projection

pT is integrable.

We conclude this section with an application to a physical model: this is the open

BCS model, where the system is described by spin variables and the reservoir is given in

terms of bosonic operators (see [2]). It is contained in a box with N sites.

We show first some preliminary results which will be very useful to analyze the open

BCS model.

We recall that, given a QMS T on a von Neumann algebra A, we can consider the

subalgebra

N (T ) =
⋂

t≥0

{ a ∈ A : Tt(a
∗a) = Tt(a

∗)Tt(a), Tt(aa∗) = Tt(a)Tt(a
∗) }.

If A = B(H), T is uniformly continuous and its generator is represented in the Lindblad

form, we have N (T ) = {Lk, L∗
k : k ≥ 0}′ (see Prop. 2.33 of [8]); moreover, if there exists
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a faithful normal invariant state, Prop. 2.32 of [8] implies that F(T ) = {Lk, L∗
k, H : k ≥

0}′ ⊆ N (T ). We shall use these facts in the following

Proposition 19. Let A = M2(C)⊗
N

, with N ≥ 1. If ω1, . . . , ωN are faithful states on

M2(C), then ω1 ⊗ . . . ⊗ ωN is a faithful state on A.

Proof. We denote by E1 and E2 the partial traces over (C2)⊗
(N−1)

and C2 respectively.

It is clear that (ω1⊗. . .⊗ωN )(1) = (ω1⊗. . .⊗ωN )(1⊗. . .⊗1) = 1. We prove by induction

on N that ω1 ⊗ . . . ⊗ ωN is positive and faithful: for N = 1, it is trivial. Suppose now

ω2 ⊗ . . .⊗ ωN positive and faithful on M2(C)⊗
N−1

, and denote by ρ its density; hence, if

we denote by tr, tr1 and tr2 the normalized traces on the Hilbert spaces (C2)⊗
N

, C2 and

(C2)⊗
(N−1)

respectively, we have

(2) (ω2 ⊗ . . . ⊗ ωN )(b) = tr2(ρb) = tr2(ρ
1/2bρ1/2)

for all b ∈ M2(C)⊗
N−1

. Let F be the (ω1 ⊗ . . . ⊗ ωN )-preserving conditional expectation

onto M2(C) given by

F : M2(C) ⊗ M2(C)⊗
N−1

→ M2(C) ⊗ C

a ⊗ b 7→ (ω2 ⊗ . . . ⊗ ωN )(b) a ⊗ 1.

Therefore, identifying M2(C) ⊗ C with M2(C), we have

(ω1 ⊗ . . . ⊗ ωN )(a) = ω1(F (a))

for all a ∈ A. In particular, if a is positive, F (a) is also positive in M2(C), so that

ω1 ⊗ . . . ⊗ ωN is a positive functional on A.

Assume now that (ω1 ⊗ . . . ⊗ ωN )(a) = 0, a ∈ A+. With the identification C ⊗

M2(C)⊗
(N−1)

≃ M2(C)⊗
(N−1)

, the faithfulness of ω1 and (2) imply

0 = F (a) = E2((1⊗ ρ1/2)a(1⊗ ρ1/2)).

Since (1⊗ ρ1/2)a(1⊗ ρ1/2) is positive and E2 is faithful, we obtain that (1⊗ ρ1/2)a(1⊗

ρ1/2) = 0, and so

0 = tr((1⊗ ρ)a) = tr2(ρE1(a)) = (ω2 ⊗ . . . ⊗ ωN )(E1(a)).

Due to the faithfulness of ω2 ⊗ . . . ⊗ ωN and E1, we have a = 0. This proves that

ω1 ⊗ . . . ⊗ ωN is a faithful state on A.

Proposition 20. Let A = M2(C)⊗
N

and L be the linear map on A given by

(3) L(x1 ⊗ . . . ⊗ xN ) =

N∑

j=1

x1 ⊗ . . . ⊗ Lj(xj)
︸ ︷︷ ︸

j

⊗ . . . xN ∀ xi ∈ M2(C),

where each Lj is the generator of a uniformly continuous QMS T (j) on M2(C). Then L

generates a uniformly continuous QMS T on A defined by

(4) Tt(x1 ⊗ . . . ⊗ xN ) = T
(1)

t (x1) ⊗ . . . ⊗ T
(N)

t (xN ).

Moreover, if we assume that:

1. each T (j) is irreducible and it possesses a (unique) faithful invariant state ωj,

2. N (T (j)) = F(T (j)) for all j = 1, . . . , N ,

then T is irreducible and ω1 ⊗ . . . ⊗ ωN is the unique faithful invariant state of T .
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Proof. If

Lj(x) =
1

2

(∑

k≥0

(L
(j)
k )∗L

(j)
k x − 2

∑

k≥0

(L
(j)
k )∗xL

(j)
k +

∑

k≥0

xL
(j)∗
k L

(j)
k

)

+ i[H(j), x]

is the Lindblad form of Lj , then L can be represented in the Lindblad form too taking

Lj,k = 1⊗ . . . ⊗ L
(j)
k

︸︷︷︸

j

⊗ . . .1,

H =

N∑

i=1

1 ⊗ . . . ⊗ H(i) ⊗ . . . ⊗ 1,

for all j = 1, . . . , N and k ≥ 0. Therefore L generates a uniformly continuous QMS T on

A; it is easy to prove that T is given by (4) and

(5) L∗(σ1 ⊗ . . . ⊗ σN ) =
N∑

j=1

σ1 ⊗ . . . ⊗ Lj∗(σj)
︸ ︷︷ ︸

j

⊗ . . . σN ∀ σi ∈ M2(C).

Suppose now that conditions 1, 2 hold. Hence ω1 ⊗ . . . ⊗ ωN is a faithful T -invariant

state thanks to (5) and Proposition 19. To conclude, it is enough to prove that F(T ) = C1:

indeed, in this case, since ω1 ⊗ . . . ⊗ ωN is a faithful T -invariant state, Thm. 1 and

Lemma 2 of [11] imply that T is irreducible and ω1 ⊗ . . . ⊗ ωN is the unique invariant

state.

If x ∈ F(T ), then in particular x commutes with each Lj,k, so that

2∑

ij ,kj=1

x(i1,k1),...,(ij ,kj),...,(iN ,kN )E
kj

ij
∈ {L

(j)
k , L

(j)∗
k : k ≥ 0}′ = N (T (j))

for all j = 1, . . . , N ; since N (T (j)) = F(T (j)) and this last space is equal to C1 by Thm.

1 and Lemma 2 of [11], this means that x(i1,k1),...,(iN ,kN ) = 0 for ij 6= kj and

x(i1,k1),...(1, 1
︸︷︷︸

j

),...,(iN ,kN ) = x(i1,k1),...,(2, 2
︸︷︷︸

j

),...,(iN ,kN )

for all j = 1, . . . , N . Therefore, we get x(i1,i1),...,(iN ,iN ) = x(k1,k1),...,(kN ,kN ) for all ij , kj ∈

{1, 2} and j = 1, . . . , N , i.e. F(T ) = C(1⊗ . . . ⊗ 1) = C1.

Example 1. Let H = (C2)⊗N , N ≥ 1, and A = B(H) ≃ M2(C)⊗N ; denote σǫ
i =

1⊗ . . . ⊗ 1⊗ σǫ
︸︷︷︸

i

⊗1⊗ . . . ⊗ 1, where ǫ = 0,±, i = 1, . . . , N and

σ0 =

(
1 0

0 −1

)

, σ+ =

(
0 1

0 0

)

, σ− =

(
0 0

1 0

)

.

We recall that [σ+
i , σ−

j ] = δijσ
0
i and [σ±

i , σ0
j ] = ∓2δijσ

±
i . The index i represents the

discrete values of the momentum that an electron in a fixed volume can have, σ+
i creates

a Cooper pair with given momentum while σ−
i annihilates the same pair.

We define

L(x) =

N∑

j=1

∑

α=0,±

{Γα[ρj
α, x]ρj∗

α + Λα[ρj∗
α , x]ρj

α − Γαρj
α[ρj∗

α , x] − Λαρj∗
α [ρj

α, x]}
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for all x ∈ A, where Γα, Λα ∈ C, ℜΓα,ℜΛα > 0, and ρj
α = 1⊗ . . .⊗ 1⊗ ρα

︸︷︷︸

j

⊗1⊗ . . .⊗ 1

with

ρ0 =
g2S+

ω2
(2S−σ+ + S0σ0 + 2S+σ−),

ρ+ =
gS+

ω2

(

gS−ω − gS0

ω + gS0
σ+ +

ω − gS0

2
σ0 − gS+σ−

)

,

ρ− =
gS+

ω2

(

gS−ω + gS0

ω − gS0
σ+ −

ω + gS0

2
σ0 − gS+σ−

)

,

ω, S0 ∈ R, S+, S− ∈ C, ω ± gS0, S+, S−, ω 6= 0; −g < 0 is the interaction close to the

Fermi surface.

Notice that L assumes the form (3) with Lk = L̃ for all k = 1, . . . , N and

L̃(x) :=
∑

α=0,±

{
Γα[ρα, x]ρ∗α + Λα[ρ∗α, x]ρα − Γαρα[ρ∗α, x] − Λαρ∗α[ρα, x]

}

for any x ∈ M2(C). Since L̃ can be represented in the Lindblad form taking

L1,α =
√

2ℜΓαρ∗α, L2,α =
√

2ℜΛαρα

for all α = 0,± and H = 0, it is the generator of a uniformly continuous QMS T̃ .

Therefore, it follows from Prop. 20 that L generates a uniformly continuous QMS T on

A. We want to prove that T̃ satisfies conditions 1, 2 of the same Proposition, so that T

is irreducible and it possesses a unique faithful normal invariant state.

Denote by pR the fast recurrent projection of T̃ and analyze the subharmonic pro-

jections of this semigroup; notice that, if p is such a projection, then pLj,αp = Lj,αp for

j = 1, 2 means pραp = ραp and pρ∗αp = ρ∗αp, α = 0,±, that is,

p ∈ {ρα, ρ∗α}
′ = {Lj,α, L∗

j,α : j = 1, 2, α = 0,±}′ = N (T̃ ).

But H = 0 implies N (T̃ ) = F(T̃ ), so that any subharmonic (and therefore superhar-

monic) projection is harmonic; in particular, the non-zero superhamonic projections are

not integrable. As a consequence, since pT is superharmonic and integrable (because H

is finite-dimensional), we get pT = 0 and then pR = p⊥T = 1, i.e. T̃ is fast recurrent.

In particular there exists a faithful T̃ -invariant state ω (Corollary 1 of [15], M2(C) be-

ing a σ-finite algebra). Since a straightforward calculation shows that F(T̃ ) = C1, this

implies that T̃ is irreducible and ω is its unique normal invariant state by virtue of

Thm. 1 and Lemma 2 of [11]. We have thus proved that conditions 1, 2 of Prop. 20

are fulfilled; therefore, T is irreducible and its unique faithful normal invariant state is

ω ⊗ . . . ⊗ ω
︸ ︷︷ ︸

N times

.

6. Characterization of normal invariant states. In this section we analyze a clas-

sical situation: assume that there exists a set {pn}n∈N , N ⊂ N, of orthogonal projections

which satisfy:

1.
∑

n∈N pn = 1,

2. Tt(pn) = pn for all n ∈ N ,
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3. the restriction of T to the subalgebra pnApn is irreducible for all n ∈ N ,

4. there exists a normal invariant state ρn with s(ρn) ≤ pn.

Since ρn is clearly also T|pnApn
-invariant, s(ρn) is a subharmonic projection for the irre-

ducible semigroup T|pnApn
(see Prop. 1), so that ρn is faithful on pnApn (i.e. s(ρn) = pn);

moreover, it is the unique normal invariant state on pnApn by Thm. 1 of [11].

This implies that
∑

n∈N 2−nρn is a faithful normal invariant state on A and then

pR = 1, so there exists a T -invariant normal conditional expectation E onto F(T ) by

Thm. 3.

We wish now to determine when it is possible to write every normal invariant state

in the form
∑

n∈N λnρn for some positive λn such that
∑

n∈N λn = 1.

In general, this is not the case, as the following example shows: take A = B(H), H sep-

arable with {em}m≥1 a orthonormal basis, and Tt the identity map. Then, {|em〉〈em|}m≥1

is a sequence of orthogonal projections which fulfills the above properties by letting

ρm = |em〉〈em|, every state is invariant, yet not every normal state can be expressed as
∑

m≥1 λm|em〉〈em|.

Theorem 21. Let (pn)n∈N be a set of orthogonal projections with card (N) ≤ ℵ0. If

(pn)n∈N satisfies 1-4, then the following conditions are equivalent:

1. any normal invariant states on A has the form
∑

n∈N λnρn for some λn ≥ 0 with
∑

n∈N λn = 1;

2. F(T ) = span{pn : n ∈ N}.

Proof. 1 ⇒ 2. Let ω be a normal invariant state on A; since ω(a) =
∑

i,j∈N ω(piapj) for

all a ∈ A, and pnωpn = ω(pn)ρn by Thm. 1 of [11] (because pnωpn is a normal invariant

functional on pnApn), it is enough to prove that E(piapj) = 0 for all i, j ∈ N , i 6= j, for

ω = ω ◦ E by Thm. 3.

So, fix a ∈ A and i 6= j: since E(piapj) = limk xk with xk ∈ span{pn : n ∈ N}, we

have plE(piapj)pn = 0 for all l 6= n, and also plE(piapj)pl = E(plpiapjpl) = 0 for all

l ∈ N , for pl = E(pl) and i 6= j. Therefore, E(piapj) = 0, as claimed.

2 ⇒ 1. Let x ∈ F(T ), which is an algebra. Thus, pnxpn ∈ F(T ), so that pnxpn ∈

F(T|pnApn
); but F(T|pnApn

) = Cpn by virtue of Thm. 1 of [11], so pnxpn = ρn(x)pn for

all n ∈ N . We want to prove that pixpj = 0 for i, j ∈ N , i 6= j.

Fix i 6= j and ω ∈ A∗ a state: since (t−1
∫ t

0
T∗s(ω)ds)t≥0 is weakly convergent to a

normal invariant state by Thm. 2.1 of [13], there exists a sequence {λn}n∈N of positive

numbers such that
∑

n∈N λn = 1 and

1

t

∫ t

0

T∗s(ω)(pixpj)ds →
∑

n≥0

λnρn(pixpj) = 0.

But this means ω(pixpj) = 0, because pixpj also belongs to F(T ), and finally pixpj = 0

by the arbitrariness of ω. Therefore,

x =
∑

n∈N

pnxpn =
∑

n∈N

ρn(x)pn ∈ span{pn : n ∈ N}.
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