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Abstrat. We alulate the moments mk,0 of the measure orthogonalizing the 2-dimensionalChebyshev polynomials introdued by Koornwinder.In [K℄ Koornwinder introdued a two-dimensional analogue of the lassial Chebyshevpolynomials of the seond kind. They are de�ned by the following reurrene relations:

P
−1,l(z, z̄) = 0, Pk,−1(z, z̄) = 0

P0,0(z, z̄) = 1,

P1,0(z, z̄) = z, P0,1(z, z̄) = z̄,

z Pk,l(z, z̄) = Pk+1,l(z, z̄) + Pk−1,l+1(z, z̄) + Pk,l−1(z, z̄),(1)
z̄ Pk,l(z, z̄) = Pk,l+1(z, z̄) + Pk+1,l−1(z, z̄) + Pk−1,l(z, z̄)(2)The total degree of Pk,l(z, z̄) is thus k + l. For general properties of multidimensionalorthogonal polynomials see for instane [DX℄.Those polynomials form a system orthonormal with respet to the weight funtion

µ(z, z̄) =
1

2π2

√

−z2 z̄2 + 4 z3 − 4 z̄3 + 18 z z̄ − 27over the region S inside the Steiner's hypoyloid ∂S:
∂S(θ) = 2 ei θ + e−2 i θ, 0 ≤ θ < 2π.2000 Mathematis Subjet Classi�ation: 60E99.Key words and phrases: moments, Chebyshev polynomials, multidimensional polynomials.Partially sponsored with KBN grant no 2P03A00723 and RTN HPRN-CT-2002-00279.The author wishes to thank Philippe Biane for help and disussion.The paper is in �nal form and no version of it will be published elsewhere.
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430 Ł. J. WOJAKOWSKIthat is, satisfy the following relation:
∫∫

S

Pm,n(z, z̄) Pk,l(z, z̄) µ(z, z̄) dx dy = δm,k δn,l.We are onerned with the problem of alulating the moments mk,l of the measure
µ(z, z̄) dx dy :

mk,l =

∫∫

S

zk z̄l µ(z, z̄) dx dy.We limit ourselves to the spei� ase of mk,0:
mk,0 =

∫∫

S

zk µ(z, z̄) dx dy.Then, using the reurrene relations, we an write (omitting for simpliity the expliitdependene of Pk,l on (z, z̄)):
zk = zk−1 (z P0,0)

= zk−1 P1,0 = zk−2 (z P1,0)

= zk−2 (P2,0 + P0,1) = zk−3 (z P2,0 + z P0,1)

= zk−3 (P3,0 + P1,1 + P1,1 + P0,0)

= . . . = z0
∑

i

Pui(k),vi(k) =
∑

i

Pui(k),vi(k).We see that every multipliation by z of the initial zk an be eliminated by appliationof the formula (1). Eah use of this formula replaes every orthonormal polynomial Pu,vby the respetive sum of three others (or fewer, should any of the indies go negative).Eventually, when all multipliations by z are exhausted, we are left with a sum of or-thonormal polynomials Pui(k),vi(k), where i runs from 1 to the number of polynomialswith nonnegative indies and k means that k appliations of formula (1) have been made.In order to alulate the moments mk,0 we have now
mk,0 =

∫∫

S

∑

i

Pui(k),vi(k) µ dx dy =
∑

i

∫∫

S

P0,0Pui(k),vi(k) µ dx dy.Beause of the orthogonality relations we see now that the moment is equal to the numberof pairs of indies ui(k), vi(k) suh that ui(k) = vi(k) = 0:
mk,0 = ♯{i : ui(k) = vi(k) = 0}.If we take a look at one partiular polynomial Pui(k),vi(k) of the above sum, we an �ndto it a unique predeessor at the step k−1, say Pui(k−1),vi(k−1). We an ontinue and even-tually get bak to the original P0,0 = Pui(0),vi(0). Thus, the points {i : ui(k) = vi(k) = 0}an be identi�ed with distint paths in a two-dimensional lattie, starting and terminat-ing at the origin, omposed of edges e1 = (1, 0), e2 = (−1, 1), e3 = (0,−1), in aordanewith the reurrene relations, and never leaving the non-negative quadrant. This is inanalogy to the lassial Chebyshev polynomials of the seond kind and their orthogo-nalizing measure, where the task of alulating the moments amounts to alulating thedistint paths in the one-dimensional lattie, starting and terminating at the origin, om-posed of positive and negative unit steps, and never leaving the non-negative semi-axis,



2-DIMENSIONAL CHEBYSHEV POLYNOMIALS 431known as Dyk or Catalan paths. A method of alulating these numbers is to shift thepaths upwards by one, thus getting an equivalent requirement on the paths to start andterminate at the point 1 and never to pass through the point 0. A re�etion argumentan then be easily applied.We shall extend the latter observation to the two-dimensional ase. Due to the sym-metry properties of the problem, the lattie is best presented as a triangular tesselationof the plane. The non-negative quadrant orresponds thus to the region limited by the
x and y axes. The edges e1, e2 and e3 oinide now with suitably oriented walls of thetesselation triangles. We an restate our problem, similarly as in the one-dimensionalase, by requiring our paths to start at the point A = (1, 1) and never to touh the wallsof the non-negative region.
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Fig. 1. The lattie with a sample path (e1, e1, e1, e2, e2, e3, e3, e2, e3)In the sequel we shall need the symbol d(x, y, n) de�ned as the number of distintpaths from the point (x, y) to the point A = (1, 1), omposed of exatly n edges and nevertouhing the walls of the positive region. It is straightforward to observe that d(x, y, n)is determined by the following reurrene relations
d(1, 1, 0) = 1,

d(x, y, 0) = 0, x 6= 1 or y 6= 1,

d(0, y, n) = 0,(3)
d(x, 0, n) = 0,

d(x, y, n) = d(x + 1, y, n − 1) + d(x − 1, y + 1, n − 1) + d(x, y − 1, n − 1),and that mk,0 = d(1, 1, k).



432 Ł. J. WOJAKOWSKIWe denote by Rn(X; Y ) the set of distint paths from the point X to the point Y , inexatly n steps, without any restrition on touhing the walls and by
Rn(X; Y ) = ♯Rn(X; Y )its ardinality.Lemma 1. Let X = (x, y) and Y = (ξ, η) be any points of the lattie. Let

(eι(1), eι(2), . . . , eι(n)), ι(i) = 1, 2, 3be a path from Rn(X; Y ). Then for every suh path the numbers of edges of the threekinds,
k1 = ♯{i | ι(i) = 1}, k2 = ♯{i | ι(i) = 2}, k3 = ♯{i | ι(i) = 3}are the same and an be determined from n, X and Y .Proof. Any path (eι(1) eι(2) . . . eι(n)) starting at X = (x, y) an be seen to terminate at

(x + k1 − k2, y + k2 − k3). We have thus the following equation system:
k1 − k2 = ξ − x,

k2 − k3 = η − y,

k1 + k2 + k3 = n,whih gives the solution
k2 =

n + x − ξ + η − y

3
,

k1 = k2 + ξ − x,

k3 = k2 + y − η.Clearly if k2 is not an integer, suh paths do not exist.We are now in a position to present the main theorem.Theorem 2. For x, y ≥ 0

d(x, y, n) = Rn((x, y); A) − Rn((x, y); B)

+ Rn((x, y); C) − Rn((x, y); D)

+ Rn((x, y); E)− Rn((x, y); F ).Proof. Let us write K = n+x−y

3 . Then with the use of Lemma 1 the right hand side anbe seen to be:
rhs =

(

n

K

) (

n − K

K − y + 1

)

−

(

n

K − 1

) (

n − K + 1

K − y + 1

)

+

(

n

K − 1

) (

n − K + 1

K − y

)

−

(

n

K

) (

n − K

K − y − 1

)

+

(

n

K + 1

) (

n − K − 1

K − y − 1

)

−

(

n

K + 1

) (

n − K − 1

K − y

)

where (

a
b

)

= 0 for b < 0 or b > a. All the de�ning reurrene relations for d(x, y, n)de�ned in equations (3) an be seen to be satis�ed by rhs by diret omputation.



2-DIMENSIONAL CHEBYSHEV POLYNOMIALS 433Corollary 3. Sine mn,0 = d(1, 1, n) we get
m3k,0 =

2 (3 k)!

k! (k + 1)! (k + 2)!
=

2

k (k + 1) (k + 2)

(

3 k

k

)(

2 k

k + 1

)

,moreover, mn,0 = 0 for n 6= 3k.Remark 4. We have not been able to �nd a losed form expression for the general ase
mk,l, and leave it as an open question.
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