THE VON NEUMANN ALGEBRA ASSOCIATED WITH AN INFINITE NUMBER OF t-FREE NONCOMMUTATIVE GAUSSIAN RANDOM VARIABLES

JANUSZ WYSOCZAŃSKI
Institute of Mathematics, Wroctaw University
Pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland E-mail: jwys@math.uni.wroc.pl

Abstract

We show that the von Neumann algebras generated by an infinite number of t deformed free gaussian operators are factors of type I_{∞}.

1. Introduction. In [6] we constructed, for each positive real number t, families of non-commutative random variables associated with the central limit measures for t transformed classical and free convolutions. In this paper we shall study the families related to t-transformed free convolution, in the von Neumann algebras' framework. Let us briefly recall the constructions.

For $t \geq 0$ and a given separable Hilbert space \mathcal{H}, (being the complexification of a real Hilbert space $\mathcal{H}_{\mathbb{R}}$), with the scalar product $\langle\cdot \mid \cdot\rangle$, we consider the Fock space

$$
\mathcal{F}_{t}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes n}
$$

completed with respect to the following scalar product $\langle\cdot \mid \cdot\rangle_{t}$:

$$
\left\langle x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n} \mid y_{1} \otimes y_{2} \otimes \ldots \otimes y_{k}\right\rangle_{t}=\delta_{n, k} \cdot t^{n-1} \cdot \prod_{j=1}^{n}\left\langle x_{j} \mid y_{j}\right\rangle, \quad\langle\Omega \mid \Omega\rangle_{t}=1
$$

Now, given a vector $f \in \mathcal{H}_{\mathbb{R}}$, we define a creation operator $B_{t}(f)$ and annihilation operator $A_{t}(f)$ on $\mathcal{F}_{t}(\mathcal{H})$. For arbitrary $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{H}$ we put

$$
B_{t}(f) x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}=f \otimes x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}, \quad B_{t}(f) \Omega=f
$$

2000 Mathematics Subject Classification: 47C15, 60F05.
Key words and phrases: t-deformation, free convolution, von Neumann factors.
Research partially supported by KBN grant 2P03A00723 and by EU Network "QP-Applications", contract HPRN-CT-2002-00279.

The paper is in final form and no version of it will be published elsewhere.
where $n \geq 1$, and

$$
\begin{gathered}
A_{t}(f) \Omega=0, \quad A_{t}(f) x_{1}=\left\langle x_{1} \mid f\right\rangle \Omega \\
A_{t}(f) x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}=t \cdot\left\langle x_{1} \mid f\right\rangle x_{2} \otimes \ldots \otimes x_{n}
\end{gathered}
$$

where $n \geq 2$. Then for every $f \in \mathcal{H}_{\mathbb{R}}$ the operators $A_{t}(f)$ and $B_{t}(f)$ are bounded by $\max \{1, \sqrt{t}\} \cdot\|f\|$, and are adjoint to each other and we shall consider the self-adjoint operators $G_{t}(f)=A_{t}(f)+B_{t}(f)$, which are thus bounded by $2 \cdot \max \{1, \sqrt{t}\}\|f\|$.

Definition 1.1. By \mathcal{M}_{t} we shall denote the von Neumann algebra generated by the set $\left\{G_{t}(f): f \in \mathcal{H}\right\}$, that is its double commutant in $\mathcal{B}\left(\mathcal{F}_{t}(\mathcal{H})\right)$, the C^{*}-algebra of all bounded operators on \mathcal{H} :

$$
\mathcal{M}_{t}:=\left\{G_{t}: f \in \mathcal{H}\right\}^{\prime \prime} \subset \mathcal{B}\left(\mathcal{F}_{t}(\mathcal{H})\right)
$$

For $t=1$, which is the case of free convolution, it was shown by Voiculescu that $\mathcal{M}_{1}=V N\left(\mathbb{F}_{k}\right)$ is the von Neumann type II_{1} factor of the free group \mathbb{F}_{k} on k free generators. We shall show that for $t \neq 1$ the situation is quite different, if the number of operators $G_{t}(f)$ is infinite.
2. Main result. Our main result is the following.

Theorem 2.1. For $0<t \neq 1$ the von Neumann algebra \mathcal{M}_{t} is the type I_{∞} factor $\mathcal{M}_{t}=$ $\mathcal{B}\left(\mathcal{F}_{t}(\mathcal{H})\right)$.

In proving the theorem the crucial role is played by the fact that the orthogonal projection P onto the vacuum Ω is in \mathcal{M}_{t}. This follows from the following:

Lemma 2.2. Let $S_{t}:=t \cdot I+(1-t) \cdot P$, where P is the orthogonal projection onto the vacuum Ω and I is the identity operator in $\mathcal{B}\left(\mathcal{F}_{t}(\mathcal{H})\right)$. Let $G_{i}:=G_{t}\left(x_{i}\right)$, where $\left\{x_{i}: i \geq 1\right\}$ is an orthonormal basis in \mathcal{H}, be a sequence of operators in \mathcal{M}_{t}. Then the sequence

$$
K_{n}:=\frac{1}{n} \sum_{i=0}^{n}\left(G_{i}\right)^{2}
$$

converges to S_{t} in the strong operator topology, when $n \rightarrow \infty$.
Proof. Since the operators G_{i} are all uniformly bounded, it is sufficient to show that $K_{n}(y) \rightarrow S_{t}(y)$ for any simple tensor of the form $y=x_{j_{1}} \otimes \ldots \otimes x_{j_{m}}$, with $m \geq 1$, or $y=\Omega$. It follows directly from the definition of the creation and annihilation operators $B_{t}\left(x_{i}\right)$ and $A_{t}\left(x_{i}\right)$ that:

$$
K_{n} \Omega=\Omega+\frac{1}{n} \sum_{i=0}^{n} x_{i} \otimes x_{i} \rightarrow \Omega
$$

the convergence being in the norm of $\mathcal{F}_{t}(\mathcal{H})$. On the other hand, in computing the limit of $\frac{1}{n} \sum_{i=0}^{n}\left(G_{i}\right)^{2}(y)$ we consider only the simple tensors $y \in \mathcal{F}_{t}(\mathcal{H})$ of the form $y=x_{j_{1}} \otimes$ $\ldots \otimes x_{j_{m}}, m \geq 1$, in which case $\frac{1}{n} \sum_{i=0}^{j_{1}}\left(G_{i}\right)^{2}(y) \rightarrow 0$ in norm, and $\frac{1}{n} \sum_{i=j_{1}+1}^{n}\left(G_{i}\right)^{2}(y)=$ $\frac{1}{n} \sum_{i=j_{1}+1}^{n}\left(t y+x_{i} \otimes x_{i} \otimes y\right) \rightarrow t y$ in the norm of $\mathcal{F}_{t}(\mathcal{H})$. Hence the lemma follows.

It follows from the lemma that $S_{t} \in \mathcal{M}_{t}$, hence also $\left(S_{t}\right)^{2}-t S_{t}=(1-t) P \in \mathcal{M}_{t}$. Now we shall show that the vacuum vector Ω is cyclic for \mathcal{M}_{t}. This will yield that the commutant \mathcal{M}_{t}^{\prime} is trivial.
Lemma 2.3. The vacuum vector Ω is cyclic for the von Neumann algebra \mathcal{M}_{t}, which means that the linear span of the vectors $\left\{G_{t}(f) \Omega: f \in \mathcal{H}_{\mathbb{R}}\right\}$ is dense in $\mathcal{F}_{t}(\mathcal{H})$.
Proof. This follows the well known scheme used in the free case, since for any finite sequence of indices $i_{1}, i_{2}, \ldots i_{m}$ we have the formula

$$
y=G_{i_{1}} G_{i_{2}} \ldots G_{i_{m}} \Omega=x_{i_{1}} \otimes x_{i_{2}} \otimes \ldots \otimes x_{i_{m}}+\sum_{j=0}^{m-1} y_{j}
$$

where y_{j} is the orthogonal projection of y onto the subspace $\mathcal{H}^{\otimes j}$ of $\mathcal{F}_{t}(\mathcal{H})$, spanned by tensors of length j (i.e. tensors of the form $x_{i_{1}} \otimes x_{i_{2}} \otimes \ldots \otimes x_{i_{j}}$). It follows by induction on m that each tensor $x_{i_{1}} \otimes x_{i_{2}} \otimes \ldots \otimes x_{i_{m}}$ can be expressed as a linear combination of vectors of the form $G_{r_{1}} G_{r_{2}} \ldots G_{r_{s}} \Omega$. This proves that Ω is cyclic.

Now a standard argument shows that if the orthogonal projection onto a cyclic vector for a von Neumann algebra belongs to the algebra, then its commutant is trivial.

Proposition 2.4. The commutant \mathcal{M}_{t}^{\prime} of \mathcal{M}_{t} in $\mathcal{B}\left(\mathcal{F}_{t}(\mathcal{H})\right)$ consists only of multiples of identity.
Proof. For a given $K \in \mathcal{M}_{t}^{\prime}$ we have $K \Omega=K P \Omega=P K \Omega$, so $K \Omega$ is invariant for the orthogonal projection P onto Ω. Thus $K \Omega=c \Omega$ for some constant c.

Now, for a vector $f \in \mathcal{F}_{t}(\mathcal{H})$ there exists a sequence $G_{n} \in \mathcal{M}_{t}$ such that $f=\lim _{n} G_{n} \Omega$. Then

$$
K(f)=\lim _{n} K G_{n} \Omega=\lim _{n} G_{n}(K \Omega)=\lim _{n} G_{n}(c \Omega)=c \lim _{n} G_{n} \Omega=c \cdot f
$$

which proves that $K=c \cdot I$. Since K was chosen arbitrary, it follows that $\mathcal{M}_{t}^{\prime}=\{c \cdot I\}$ is trivial.

Proof of Theorem 2.1. Since in \mathcal{M}_{t} there is the orthogonal projection P onto the vector Ω cyclic for \mathcal{M}_{t}, it follows from the above Lemmas and Proposition that $\mathcal{M}_{t}=\left(\left(\mathcal{M}_{t}\right)^{\prime}\right)^{\prime}=$ $\mathcal{B}\left(\mathcal{F}_{t}(\mathcal{H})\right)$. This proves the theorem.

3. Final remarks

Remark 3.1. The natural vacuum state φ_{t} on \mathcal{M}_{t}, defined as $\varphi_{t}(K)=(K \Omega \mid \Omega)_{t}$ for $K \in \mathcal{M}_{t}$, is not tracial, since, for example, $\varphi_{t}\left(\left(G_{i}\right)^{2}\left(G_{j}\right)^{2}\right)=1$ while $\varphi_{t}\left(G_{i}\left(G_{j}\right)^{2} G_{i}\right)=t$. Of course, in general there is no trace on \mathcal{M}_{t} if $\mathcal{M}_{t}=\mathcal{B}\left(\mathcal{F}_{t}(\mathcal{H})\right)$. Moreover, this state is not faithful on \mathcal{M}_{t}, since for $Y=1-P=Y^{*}$ we have $\varphi_{t}\left(Y^{*} Y\right)=\varphi_{t}(1-P)=0$.
Remark 3.2. Quanhua Xu [8] showed a general fact, that in the interacting Fock space determined by a sequence $\left(\lambda_{n}\right)_{n=0}^{\infty}$ the vacuum state is tracial if and only if the sequence is constant.

Remark 3.3. Recently Eric Ricard [7] has given the description of the von Neumann algebras generated by finite number of the t-gaussian operators.

References

[1] L. Accardi and M. Bożejko, Interacting Fock spaces and gaussianization of probability measures, IDAQPRT 1 (1998), 663-670.
[2] L. Accardi, Y. G. Lu and I. Volovich, Interacting Fock spaces and Hilbert module extensions of the Heisenberg commutation relations, Publications of IIAS (Kyoto), 1997.
[3] M. Bożejko, M. Leinert and M. R. Speicher, Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175 (1996), 357-388.
[4] M. Bożejko and R. Speicher, Interpolation between bosonic and fermionic relations given by generalized Brownian motions, Math. Zeit. 222 (1996), 135-160.
[5] M. Bożejko and J. Wysoczański, New examples of convolutions and non-commutative central limit theorems, Banach Center Publ. 43 (1998), 95-103.
[6] M. Bożejko and J. Wysoczański, Remarks on t-transformations of measures and convolutions, Ann. I. H. Poincaré - PR 37 (2001), 737-761.
[7] E. Ricard, Remarks on t-gaussian, preprint, 2005.
[8] Q. Xu, Remarks on interacting Fock spaces, preprint, 1999.

