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Abstract. We survey results concerning the extent to which information about a convex body’s

projections or sections determine that body. We will see that, if the body is known to be centrally

symmetric, then it is determined by the size of its projections. However, without the symmetry

condition, knowledge of the average shape of projections or sections often determines the body.

Rather surprisingly, the dimension of the projections or sections plays a key role and excep-

tional cases do occur but appear to be sporadic. In a rather different direction, we will see that

combining information about the size of projections or sections with other information such as

Steiner points or centres of gravity also leads to complete determination of the original body.

1. Introduction. This article is a survey of results concerning the determination of a
convex or star-shaped body from data associated with its projections or sections. Perhaps
the result which motivates almost everything presented here is Aleksandrov’s Projection
Theorem [1]. In its most basic form it states that if K1 and K2 are full dimensional
centrally symmetric convex bodies in Ed with Vd−1(K1|u⊥) = Vd−1(K2|u⊥) for all u ∈
Sd−1, then K1 and K2 are the same up to a translation. Thus centrally symmetric bodies
with projections of equal volumes are equal up to translation; a full discussion of this and
related results can be found in Gardner’s book [10].

Not surprisingly, there have been many developments since the time of Aleksandrov’s
work. Here, we will focus primarily on more recent results similar in nature to Aleksan-
drov’s and especially those which attempt to avoid the symmetry hypothesis. We will also
try to emphasize the occasional, and somewhat surprising, interaction between sections
and projections.
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Although our interest is in the geometrical aspects, we will also review the analytical
background, since it is here that we often find the basis for the connections between the
various results. The analytical aspects come primarily in the form of harmonic analysis
and the study of integral operators, on spheres or Grassmannians, which intertwine the
action of a rotation group.

There are many topics which are close to our interests but will not be followed here.
The first of these is stability. Many of the results we mention have stability versions. For
example, Bourgain and Lindenstrauss [3] gave a stability version of Aleksandrov’s result.
This makes precise the statement that, if Vd−1(K1|u⊥) and Vd−1(K2|u⊥) are close for all
u ∈ Sd−1 then K1 and K2 are almost translates of each other. Another is the issue of
inequalities. For example, one might ask what conclusions can be drawn from the hypoth-
esis Vd−1(K1|u⊥) ≥ Vd−1(K2|u⊥) for all u ∈ Sd−1. In fact, this is very closely related
to Shephard’s problem [39]. An analogous problem, for central sections of a star-shaped
body, is called the Busemann-Petty problem. In fact, investigations of these two problems
led to many of the techniques that will be discussed here. However, a detailed discussion
would take us too far from our main topic. The interesting history and resolution of these
problems can be found in the books of Gardner [10], Koldobsky [27] and Schneider [36].

In §2, we will recall the intrinsic volumes which will provide our standard notion of
size. There, we will also put the Cauchy-Kubota and Crofton formulas into the context
of Radon transforms between Grassmannians. In §3, we will review some of the standard
results which have been established for centrally symmetric objects. §4 will comprise some
of the spherical harmonic analysis aspects which underly the results, emphasizing the
aspects which correspond to the symmetry hypotheses in the geometric applications. In
§5 we will move to the study of shapes of sections and projections. In fact, the emphasis
will be on average shapes of sections and projections. Here, again, we will encounter
unexpected interactions between sections and projections. We will also find some results
which fail in certain exceptional dimensions. In §6, we will see how the work of Groemer
[24] and [25] can be put into the general setting of directed data. Finally, §7 will address
some of the possible pairings of data regarding sections and projections that can be used
to determine a body uniquely.

The author thanks the referee for numerous suggestions regarding an earlier version
of this work.

2. Sizes of sections and projections. Our notion of size is based on the intrinsic
volumes V0, . . . , Vd. They may be defined using Steiner’s formula

Vd(K + rBd) =
d∑
j=0

κd−jVj(K)rd−j , (1)

which expresses the volume of the set of points distance at most r ≥ 0 from the convex
body K ⊂ Ed as a polynomial in r. The number κi appearing in the coefficients denotes
the volume of the i-dimensional unit ball. We will use Schneider’s book [36] as a standard
reference for these and other classical notions in convexity. As we shall see, the j-th
intrinsic volume Vj measures j-dimensional size (0 ≤ j ≤ d) in a fairly natural way.
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The fundamental nature of intrinsic volumes lies in the observation that any continuous,
motion invariant valuation defined on convex bodies is a linear combination of intrinsic
volumes. The Cauchy-Kubota formulae provide a very appealing description of the j-th
intrinsic volume of a body K ⊂ Ed in terms of the volumes of its orthogonal projections
K|L onto members L of the Grassmann manifold G(d, j) of j-dimensional subspaces of
Ed. For a convex body K ⊂ Ed and 0 ≤ j ≤ d, they assert that

Vj(K) = cd,j

∫
G(d,j)

Vj(K|L) dL. (2)

Here, and in the following, symbols such as cd,j denote positive constants dependent only
on the dimensions d and j. This describes the j-th intrinsic volume of K as an average
of the j-dimensional volumes of the orthogonal projections of K onto j-dimensional sub-
spaces of Ed, the integration is with respect to the unique rotation invariant probability
measure on G(d, j). The Crofton formulae, on the other hand, express intrinsic volumes
as average sizes of sections. For a convex K ⊂ Ed and 0 ≤ j ≤ k ≤ d, they state

Vd+j−k(K) = cd,j,k

∫
A(d,k)

Vj(K ∩ E) dE; (3)

here, A(d, k) denotes the affine Grassmannian of k-flats in Ed and the integration is
with respect to a suitably normalized motion invariant measure on A(d, k). A convenient
reference for both the Cauchy-Kubota and the Crofton formulae is the book [38] by
Schneider and Weil. The combination of these two formulae provides us with our first
example of an unexpected inter-relationship between average sizes of projections and
sections.

It is convenient to express some of our results in the language of Radon transforms.
For 1 ≤ j < k ≤ d− 1, these are mappings

Rj,k : C(G(d, j))→ C(G(d, k))

defined by

(Rj,kf)(L) =
∫

M∈G(d,j)
M⊂L

f(M) dM,

where the integration is with respect to the unique invariant probability measure on the
j-dimensional subspaces of L ∈ G(d, k). In this terminology, the Cauchy-Kubota formulae
can be reformulated as stating that

(Rj,kVj(K|·))(L) = cd,j,kVj(K|L),

for 1 ≤ j < k ≤ d− 1 and L ∈ G(d, k).
Of course, we can also study the Radon transforms

Rk,j : C(G(d, k))→ C(G(d, j))

defined by

(Rk,jf)(L) =
∫

M∈G(d,k)
M⊃L

f(M) dM,
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for 1 ≤ j < k ≤ d − 1. Applying this transform to intrinsic volumes yields another
incidence of the relationship between projections and sections. We have

(Rk,jVk(K|·))(L) = cd,j,k

∫
L

Vk−j(K ∩ (L⊥ + x)) dx

where the integration is with respect to Lebesgue measure in L; see Goodey, Schneider
and Weil [17]. In fact, this result can be used to prove the Crofton formula (3). We note
that Rj,k, for j < k is injective precisely when j+k ≤ d, whereas, for j > k, it is injective
precisely when j + k ≥ d.

3. Centrally symmetric bodies. It is a classical result of Aleksandrov [1] that a
centrally symmetric convex body is determined, up to translation, by the size of its
projections. To be precise, he showed that if K1 and K2 are centrally symmetric d-
dimensional convex bodies in Ed then

Vd−1(K1|u⊥) = Vd−1(K2|u⊥) for all u ∈ Sd−1 ⇔ K1 = K2 + t, for some t ∈ Ed.

We note that this result shows that, in the presence of central symmetry, equality of
the sizes of projections is equivalent to equality of the shape (and orientation) of the
bodies. The result can be proved using the injectivity properties of the cosine transform
C : C(Sd−1)→ C(Sd−1) defined by

(Cf)(u) =
∫
Sd−1

|〈u, v〉|f(v) dv for u ∈ Sd−1;

here 〈x, y〉 denotes the scalar product of the vectors x, y ∈ Ed. As we will explain in the
next section, the kernel of C comprises the odd functions. Thus, if f and g are even with
Cf = Cg then f = g. It is clear that C can be extended to measures µ on Sd−1 by

(Cµ)(u) =
∫
Sd−1

|〈u, v〉|µ(dv) for u ∈ Sd−1.

Thus, measures are mapped to (continuous) functions and Fubini’s theorem shows that
the above definition is consistent with the standard extension from functions to measures
given by ∫

Sd−1
f(u) (Cµ)(du) =

∫
Sd−1

(Cf)(v)µ(dv) for all f ∈ C(Sd−1).

The image of, Ce(Sd−1), the even continuous functions on the sphere under C is dense in
Ce(Sd−1) and so, if µ and ν are even measures with Cµ = Cν then µ = ν. Aleksandrov’s
result makes use of the notion of surface area measure, see [36]. These can be viewed as
local versions of the intrinsic volumes defined in (1). Instead of measuring the set of all
points within a certain distance of the body K, we only measure certain parts of this set.
To describe this we recall that, for any x ∈ Ed, there is a unique nearest point p(K,x) of
K to x. For any Borel set ω ⊂ Sd−1 and any r > 0, we put

Ur(K,ω) =
{
x ∈ (K + rBd)\K : (x− p(K,x))/‖x− p(K,x)‖ ∈ ω

}
.
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In analogy with (1), we find that the volume of this set is also a polynomial in r. We
write this as

Vd(Ur(K,ω)) =
1
d

d−1∑
j=0

rd−j
(
d

j

)
Sj(K;ω). (4)

For each j = 1, . . . , d− 1, Sj(K; ·) is a Borel measure on Sd−1 which determines K up to
translation if dimK ≥ j + 1. It is called the j-th surface area measure of K. Comparing
(1) and (4), one easily sees that the total measures are multiples of the intrinsic volumes,
to be precise,

1
d

(
d

j

)
Sj(K;Sd−1) = κd−jVj(K).

It is also easy to deduce that K is centrally symmetric if and only if Sj(K; ·) is an even
measure (assuming dimK ≥ j + 1).

The relevance of these measures to Aleksandrov’s result comes from the representation

Vd−1(K|u⊥) =
1
2

∫
Sd−1

|〈u, v〉|Sd−1(K; dv) =
1
2

(CSd−1(K; ·))(u) (u ∈ Sd−1).

Thus Vd−1(K1|u⊥) = Vd−1(K2|u⊥) for all u ∈ Sd−1, if and only if Sd−1(K1; ·) and
Sd−1(K2; ·) have the same cosine transform. In the presence of central symmetry, we now
see that the measures must be the same and therefore the bodies are translations of one
another. In fact, the same argument gives a stronger result. In general, for 1 ≤ j ≤ d− 1,
we have

Vj(K1|u⊥) = Vj(K2|u⊥)⇔ CSj(K1; ·) = CSj(K2; ·).

Thus, if K1, K2 ⊂ Ed are centrally symmetric convex bodies of dimension at least j + 1
and if, for some 1 ≤ j ≤ d − 1, Vj(K1|u⊥) = Vj(K2|u⊥) for all u ∈ Sd−1 then K1 and
K2 are translates of one another. The combination of this version of Aleksandrov’s result
with the Cauchy-Kubota formulas (2) shows that, for any 1 ≤ j ≤ d− 1,

Vj(K1|E) = Vj(K2|E) for all E ∈ G(d, j)⇔ K1 = K2 + t, for some t ∈ Ed,

again assuming that K1 and K2 are centrally symmetric and of dimension at least j + 1.
It is natural, therefore, to ask for analogous results for sets which are not centrally

symmetric. In order to discuss this further, we define the i-th projection class (1 ≤ i ≤
d− 1) of a convex body K ⊂ Ed to be the set of all convex bodies K ′ ⊂ Ed such that

Vi(K ′|E) = Vi(K|E) for all E ∈ G(d, i).

In this context, Aleksandrov’s result can be interpreted as saying that there is at most
one (up to translation) centrally symmetric body in any projection class.

The cases i = 1, d− 1 deserve special mention since, here, there are certain additivity
properties. The first of these arises from the fact that V1(λK1 + µK2) = λV1(K1) +
µV1(K2) for any convex bodies K1, K2 and any λ, µ ≥ 0. In particular

V1(K) = V1

(
1
2
K +

1
2

(−K)
)

and so every first projection class contains a centrally symmetric member. The same
observation is true for (d − 1)-st projection classes. However, this observation relies on
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the notion of Blaschke summation K1#K2 of convex bodies K1, K2. Minkowski showed
that a measure µ on Sd−1 is the (d − 1)-st surface area measure of a full dimensional
convex body precisely when its centroid is the origin and it is not supported on a great
subsphere; see [36], for example. It follows that, if K1, K2 are full dimensional then there
is a convex body K1#K2, defined, up to translation, by

Sd−1(K1#K2; ·) = Sd−1(K1; ·) + Sd−1(K2; ·).

From this, one can deduce that the (d − 1)-st projection class of K always contains the
centrally symmetric body (1/2)1/(d−1)(K#(−K)).

However, it was shown in [17] that, for 1 < i < d− 1, there are non-symmetric (and
symmetric) bodies, K such that the i-th projection class contains only K and −K, the
reflection of K in the origin. Chakerian and Lutwak [5] proved that, if an i-th projection
class contains a centrally symmetric body, that body, uniquely, has maximum volume
amongst all bodies in the projection class. Using this and the Cauchy-Kubota formulas,
it follows that a centrally symmetric body is determined (amongst all convex bodies) by
any two of its projection classes. Campi [4], on the other hand, showed that there are
convex bodies that are not determined even by knowledge of all their projection functions.

The analogue, for sections, of Aleksandrov’s result states that two centred star-shaped
bodies having central sections of equal volumes are the same. To be precise, if the bodies
are centred at the origin then

Vd−1(K1 ∩ u⊥) = Vd−1(K2 ∩ u⊥) for all u ∈ Sd−1 ⇔ K1 = K2.

In terms of the radial function rK of a star-shaped body this states that∫
Sd−1∩u⊥

rd−1
K1

(v) dv =
∫
Sd−1∩u⊥

rd−1
K2

(v) dv for all u ∈ Sd−1 ⇔ K1 = K2.

The proof makes use of the spherical Radon transform (which is a variant of R1,d−1)
R : C(Sd−1)→ C(Sd−1) given by

(Rf)(u) =
∫
Sd−1∩u⊥

f(v) dv (u ∈ Sd−1),

and the fact that it is injective on even functions; see [23], for example. More generally,
if K is star-shaped about o and i > 0, the i-th chordal function of K is the function
riK(u) + riK(−u) (u ∈ Sd−1). Two star-shaped bodies having equal i-th chordal functions
are not necessarily equal, unless they are centrally symmetric. However, Gardner and
Volc̆ic̆ [11] show that if i 6= j and K1 and K2 have equal i-th and j-th chordal functions
then K1 = K2 if one of them is centrally symmetric. In a different direction Falconer [8]
and Gardner [12] independently show that if p1 6= p2 are interior points of a convex body
K ⊂ Ed then K is determined by knowledge of the (d − 1)-dimensional volumes of the
sections of K through p1 and p2. This result has recently by generalized by Koldobsky
and Shane [29]. They consider the volumes of sections through a single interior point p.
They show that, if −1 < q < d−1 is not an integer then the body is uniquely determined
by knowledge of the derivative, of order q, of parallel section functions at p. In the case
0 ≤ q < d− 1 is an integer then derivatives of order q at two different interior points are
required (except when q = d − 2 is odd). As has been noted by Falconer [8] and others,
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a convex body is determined, up to reflection in p, by the volumes of sections through
the boundary point p; this can be deduced from the injectivity of the spherical Radon
transform, mentioned above.

Further results regarding sections can be found in [10].

4. Analytical aspects. We have already alluded to the roles played by the cosine
transform and the spherical Radon transform. Here we will give a brief outline of the
harmonic analysis underlying these and subsequent comments. We assume that the map-
ping I : C∞(Sd−1) → C∞(Sd−1) is linear and intertwines the group action of SO(d)
in the sense that (If)ρ = Ifρ for each f ∈ C∞(Sd−1) and each ρ ∈ SO(d); here, fρ is
defined by fρ(u) = f(ρ−1u) for u ∈ Sd−1. The spaces Hdn (n = 0, 1, . . . ) of d-dimensional
spherical harmonics of degree n are the irreducible invariant subspaces of C∞(Sd−1). It
therefore follows from Schur’s Lemma that I acts as a multiple of the identity on any one
of these spaces. Thus, for each n, there are numbers (the multipliers, or eigenvalues, of
I) αd,n such that If = αd,nf if f ∈ Hdn.

The archetypal example of such an intertwining operator is the spherical Laplacian
∆0. For a function f ∈ C∞(Sd−1), we denote by F the homogeneous degree 0 extension
of f to Ed. Then ∆0f is the restriction of ∆F to Sd−1. The name spherical harmonic
arises from the fact that Hdn is the restriction to the sphere of the set of homogeneous
degree n harmonic polynomials on Ed; see [23], for example. We also have

∆0f = −n(n+ d− 2)f for f ∈ Hdn.

If the |αd,n| are bounded as functions of n, the mapping I may be extended to I :
L2(Sd−1) → L2(Sd−1) and this mapping is injective precisely when αd,n 6= 0 for all n.
Both the spherical Radon and the cosine transforms can be viewed this way and their
multipliers are non-zero precisely when n is even. Specifically, we have

Rf = (−1)n(d− 1)κd−1
1.3 . . . (2n− 1)

(d− 1)(d+ 1) . . . (d+ 2n− 3)
f for f ∈ Hd2n, (5)

(Rf = (d− 1)κd−1f for f ∈ Hd0) and

Cf = 2(−1)n−1κd−1
1.3 . . . (2n− 3)

(d− 1)(d+ 1) . . . (d+ 2n− 1)
f for f ∈ Hd2n,

(Cf = 2κd−1f for f ∈ Hd0 and Cf = (2/(d+ 1))κd−1f for f ∈ Hd2).
It is easy to see that the odd multipliers are all zero. It follows that these transforms

are injective on even functions. This can be re-phrased by saying that the spherical
Radon and cosine transforms provide the even information about functions to which
they are applied. Schneider [33] used observations such as these to show the denseness of
C(Ce(Sd−1)) in Ce(Sd−1) mentioned above.

The hemispherical transform τ : L2(Sd−1)→ L2(Sd−1), given by

(τf)(u) =
∫
Sd−1∩u+

f(v) dv, u ∈ Sd−1,
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provides another well-known intertwining mapping. Its multipliers vanish for all even
n 6= 0 and so τf retains the odd information about the function f . Specifically, we have

τf = (−1)nκd−1
1.3 . . . (2n− 1)

(d+ 1)(d+ 3) . . . (d+ 2n− 1)
f for f ∈ Hd2n+1.

In addition, τf = (dκd/2)f for f ∈ Hd0, τf = κd−1f for f ∈ Hd1 and all the other even
multipliers are zero.

The values of the multipliers given above, together with the detailed spherical har-
monic analysis associated with them, can be found in Groemer’s book [23].

We will often be in the situation where our mapping I can be extended to measures
or distributions on the sphere. The injectivity properties of these extensions are also
obtained from the multipliers.

Many of the results mentioned already, as well as those in the sequel, are obtained by
associating with the geometrical problem an intertwining operator I and ascertaining its
injectivity properties from the values of its multipliers or estimates thereof. In the sequel
we will find instances when all the multipliers are non-zero and thus we will be able to
deduce that the bodies are determined by the corresponding data. In the later sections
we will work with pairs of operators with one determining the even part of the function
and the other the odd part, such would be the case if the operators were the Radon and
hemispherical transforms, for example.

5. Average shape of sections and projections. We recall that any convex body
K ⊂ Ed is uniquely determined by its support function h(K; ·) defined by

h(K,x) = max
k∈K
〈x, k〉 (x ∈ Ed);

we will occasionally denote the support function of K by hK . Any subadditive, homoge-
neous degree 1 function on Ed is a support function. Analogously, any star-shaped (about
o) body is determined by its radial function and any positive function in C(Sd−1) is a
radial function.

The support function of the projection of a convex body K onto a subspace E of Ed is
just the restriction of hK to E. Similarly the radial function of a section of a star-shaped
(about o) body K by a subspace E is the restriction of rK to E. It follows that if we
know the support function of all projections of a convex body then we know the body,
and analogous statements hold for sections of star-shaped bodies. We will therefore focus
our attention on certain averages of shapes of projections or sections.

For 1 ≤ k ≤ d− 1 and K ⊂ Ed convex, we define the body Pk(K) by

h(Pk(K), u) =
∫
G(d,k)

h(K|L, u) dL.

The characteristic properties of support functions show that this does define a convex
body Pk(K). It is also reasonable to refer to this as the average of k-dimensional pro-
jections of K. However, it should be noted that, in general, dimPk(K) = d. These
bodies were first introduced by Schneider [35]. His interest was in the possibility that
Pd−1K = cK for some c > 0; in fact he showed that this only happens when K is a
ball. Our interest is in the question as to whether the body K is determined by Pk(K).
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It is fairly easy to show that P1(K) only determines the central symmetrand of K.
Spriestersbach [40] showed that Pd−1(K) determines K uniquely. Goodey [12] extended
her techniques to show that Pk(K) determines K uniquely if k ≥ d/2. He also showed
that P2(K) determines K in all dimensions except 14, where it does not determine K.
In joint work with Jiang [15], it was further shown that P3(K) determines K uniquely.
However, not much is known about the situation 4 ≤ k < d/2 except for a striking result
of Kiderlen [26] who showed that K is determined by knowledge of Pk(K) for any two
values of k.

An analogous construction, based on sections, was earlier considered by Goodey and
Weil [18]. For 1 ≤ k ≤ d− 1 they introduced the mean section bodies Mk(K) defined by

h(Mk(K), ·) =
∫
A(d,k)

h(K ∩ E, ·) dE.

In this case, M1(K) is always a ball with radius determined by the volume of K. They
showed that M2(K) always determines the body K but rather little is known in the case
2 < k ≤ d− 1. Goodey [13] showed that, if K1, K2 are centrally symmetric bodies with
Mk(K1) = Mk(K2) for any 2 ≤ k ≤ d− 1 then K1 = K2.

A (possibly) less obvious sectional analogue of Pk(K) was discussed by Goodey,
Kiderlen and Weil [16]. This construction makes use of (d− 1)-st surface area measures
of convex bodies K ⊂ Ed. Using Minkowski’s characterization of these measures they
introduced the sets Bk(K) defined, up to translation, by

Sd−1(Bk(K); ·) =
∫
G(d,k)

∫
L⊥

S′k−1(K ∩ (L+ x); ·) dx dL,

here S′k−1(K∩(L+x); ·) denotes the surface area measure of K∩(L+x) calculated in the
k-dimensional space L+x. This can be described as the Blaschke average of k-dimensional
sections of K. It was shown in [16] that Bk has exactly the same injectivity properties
as Pk. In fact rather more is true. As described in the previous section, we can define an
intertwining integral operator pk : C(Sd−1)→ C(Sd−1) such that

h(Pk(K); ·) = pkh(K : ·) for each convex K ⊂ Ed

and, for the Bk, an intertwining operator bk :M(Sd−1)→M(Sd−1) such that

Sd−1(Bk(K); ·) = bkSd−1(K; ·) for each convex K ⊂ Ed;

hereM(Sd−1) denotes the signed measures on the sphere. Use of Radon-Nikodym deriva-
tives allows one to view C(Sd−1) as a subspace of M(Sd−1). A surprising observation,
from [16] is that pk is precisely the restriction of bk to C(Sd−1). In fact, this is perhaps
most easily seen by calculating their multipliers. So these apparently disparate geometric
constructions are essentially the same from the analytic point of view.

6. Directed section and projection functions. A brief overview of the results de-
scribed so far shows that average sizes of projections or sections determine the shape
of centrally symmetric bodies and that, in many cases, the average shape of projections
or sections determines an arbitrary body. Our plan in this and the subsequent section
is to survey some results which attempt to bridge the gap by taking different measure-
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ments of the projections or sections and use these to determine a body without symmetry
constraints.

Our approach, here, is to use what we will call directional data. This is motivated by
the results of Groemer [24], [25]. For 1 ≤ j ≤ d− 1, we put

Hd
j =

{
L ∩ u+ : L ∈ G(d, j), u ∈ Sd−1 ∩ L

}
,

and refer to it as the manifold of all j-dimensional half-spaces of Ed. If K, M are star-
shaped about the origin and Vj(K ∩ H) = Vj(M ∩ H) for all H ∈ Hd

j then one can
deduce that K = M . To see this, note that we clearly have Vj(K ∩ L) = Vj(M ∩ L) for
all L ∈ G(d, j). Thus our earlier observations show that the radial functions of K and
M have the same even part. On the other hand, for fixed L ∈ G(d, j) the restrictions of
rK and rM to L have the same odd part since they they have the same hemispherical
transform. Thus rK = rL in Ed. However, it seems that the body K is over-determined
by the map Hd

j → R given by H 7→ Vj(K ∩H).
To investigate this further, we put, for u ∈ Sd−1 and 1 ≤ j ≤ d− 1,

H(u)
j =

{
L ∩ u+ : u ∈ L ∈ G(d, j)

}
,

and refer to it as the set of j-dimensional half-spaces with pole u. For a body K which is
star shaped with respect to the origin, let

sj(K,u) =
∫

H(u)
j

Vj(K ∩H) dH.

We will refer to this as the j-th average directed section function of K. In case j = 1, it
is just the usual radial function. Goodey and Weil [19] considered the extent to which K
is determined by its j-th average directed section function. These functions are averages
of the functions discussed above. They showed that, if K,M are star-shaped bodies in
Ed with

sj(K,u) = sj(M,u) for all u ∈ Sd−1

for some j with j ≤ (d+ 2)/2 or j > (2d+ 1)/3, then K = M . However, this implication
fails for some j, for example j = (2d+ 1)/3.

The same authors studied an analogous notion for projections. For 1 ≤ i < j ≤ d− 1
we put

vi,j(K;L, u) = S′i(K|L;u+) (u ∈ L ∈ G(d, j))

and

vi,j(K;u) =
∫
u∈L∈G(d,j)

vi,j(K;L, u) dL.

Once again, it was shown that the function vi,j (over-)determines convex bodies up to
translation, for much the same reasons as above. It is therefore of interest to study the
average directed projection functions vi,j . The cases i > 1 result in non-linear problems
which seem to be difficult to handle in the general setting. However, Goodey and Weil
[20] showed that, if K, M are centrally symmetric convex bodies of dimension at least
i + 1 with vi,j(K; ·) = vi,j(M ; ·) then K and M are translates of one another. It was
also shown, for centrally symmetric K, that v1,j(K; ·) is itself a support function, though
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this is not true in general. The main result of [20] is that, for convex bodies K,M of
dimension at least j + 1 with

v1,j(K;u) = v1,j(M ;u) for all u ∈ Sd−1

for some j with 2 ≤ j ≤ (2d−3)/5 or (d−2)/2 ≤ j ≤ d−1, we have K = M . Again, this
implication fails for some j, in particular j = (2d− 3)/5. Three dimensional variations of
the above results were studied by Groemer [24], [25].

As mentioned in §4, one proves results, such as those for v1,j by studying the mul-
tipliers of an associated analytical mapping. In the case of v1,j , the odd multipliers are
given by

γd,j,2n+1 =
n−1∑
k=0

(−1)n−k+1 2(n− k)(2n− 2k + j)
j − 1

(
1
2

)
n−k(

j + 1
2

)
n−k

cd,j2n+1,k.

where

cd,jn,k =
(2(n− 2k) + j − 2)n!

(j − 2)k!(n− 2k)!

(
d− 2

2

)
n−k

(
d− j

2

)
k

(j − 2)n−2k(
j

2

)
n−k

(d− 2)n
;

here, we have used the Pochhammer symbol

(a)n = a(a+ 1) . . . (a+ n− 1), for a ∈ R;

we also put (a)0 = 1, for all a ∈ R. The issue is to show that these multipliers are
all non-zero. The fact that the even multipliers are non-zero follows from geometric re-
sults concerning centrally symmetric sets. The study of the odd multipliers seems quite
formidable. However, we were able to obtain a rather complex recursion formula by ap-
plying an algorithm of Zeilberger. We used the Mathematica package zb.m available via
http://www.cis.upenn.edu/∼wilf/AeqB.html. It contains an implementation of Zeil-
berger’s Fast Algorithm by Paule, Schorn and Riese, see [31]. This recursion formula
allowed us to show that the multipliers are non-zero subject to the dimensional hypothe-
ses described above.

The above average directed projection functions made use of surface area measures
and thus required i < j. This excludes what is geometrically the most interesting case,
namely i = j. In [21], another directed projection function was studied. For u ∈ Sd−1

and L ∈ G(d, j) with u ∈ L we put

p1,j(K;L, u) =
∫
u+∩L∩Sd−1

h(K; v) dv

and

p1,j(K;u) =
∫
u∈L∈G(d,j)

p1,j(K;L, u) dL.
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Analytically, this is the same as the average directed section function sj(K; ·). Conse-
quently, if K,M ⊂ Ed are convex bodies with

p1,j(K,u) = p1,j(M,u) for all u ∈ Sd−1

for j with j ≤ (d+ 2)/2 or j > (2d+ 1)/3, then K = M . However, the above implication
fails for some j, for example j = (2d+ 1)/3.

As we have seen, there are incidences of non-injectivity (or non-determination) in the
above results. A closer analysis of the methods behind Zeilberger’s algorithm seems to
indicate that these exceptional cases correspond to the occurrence of integer points on
algebraic curves. For example, in dimension d = 27, p1,j is not injective for j = 17. This
happens because (17, 27) is an integer point on the non-singular cubic curve

15 + 138d− 133j − 224jd+ 104d2 + 105j2 + 70j2y + 16d3 − 35j3 = 0.

If our suspicions, regarding the correspondence between exceptional cases and integer
points on singular curves, is correct then the classical results of number theory concerning
rational points on non-singular curves show that there are only sporadic pairs (j, d) where
determination fails.

7. Data pairs derived from sections and projections. We now turn our attention
to results in which pairs of data from sections or projections are used to determine a
body. A good example of this can be found in the work of Böröczky and Schneider [2].
They consider a star-shaped body K in Ed and show that if the volumes and centroids of
all the central sections of K are known then K is determined uniquely. The original result
of this form is due to Schneider [37]. It involves projections and their Steiner points. We
recall that the Steiner point z(K) of a convex body K ⊂ Ed is the only motion covariant,
continuous vector valued function satisfying

z(K + L) = z(K) + z(L).

It is defined by

z(K) =
1
κd

∫
Sd−1

uh(K;u) du.

Schneider [37] showed that if, for each u ∈ Sd−1, we know V1(K|u⊥) and z(K|u⊥) then
K is determined uniquely.

Underlying the results of Schneider and those of Böröczky and Schneider is the spher-
ical Radon transform and the fact that it is injective on even functions.

Building on the ideas of Koldobsky, see [27] for example, Goodey, Yaskin and Yaskina
[22], find pairings of integral transforms, one injective on even functions and the other
on odd functions using Fourier transforms. For f ∈ C∞(Sd−1) and p ∈ Z, we denote by
fp the homogeneous degree −d+ p extension of f to Ed\o. We then restrict the Fourier
transform f̂p to Sd−1. For appropriate p, the mapping f 7→ f̂p provides an injective map
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Ip : C∞(Sd−1)→ C∞(Sd−1). In the cases p = −1, 0, 1, 2, for example, we have

f̂−1(ξ) = −π
2

∫
Sn−1

|〈u, ξ〉|f(u) du

− i
∫
Sn−1

(1 + Γ′(1)− ln |〈u, ξ〉|)〈u, ξ〉f(u) du,

f̂0(ξ) =
∫
Sn−1

(Γ′(1)− ln |〈u, ξ〉|)f(u) du

+ iπ

(
1
2

∫
Sn−1

f(u) du−
∫
Sn−1∩ξ+

f(u) du
)
,

f̂1(ξ) = π

∫
Sn−1∩ξ⊥

f(u) du− i
∫ 1

−1

t−1(Fξ(t)− Fξ(0)) dt,

f̂2(ξ) = −
∫ 1

−1

t−2(Fξ(t)− Fξ(0)− tF ′ξ(0)) dt+ 2
∫
Sn−1∩ξ⊥

f(u) du

− iπ
∫
Sn−1∩ξ⊥

〈∇fn+1(u), ξ〉 du.

In the above, Fξ is defined by

Fξ(t) = (1− t2)(n−3)/2

∫
Sn−1∩ξ⊥

f(t ξ +
√

1− t2 ζ) dζ.

In addition, if p is a non-positive even integer and f ∈ C∞(Sn−1) is odd,

f̂p(ξ) = −i(−1)−p/2
π

(−p)!

∫
Sn−1∩ξ+

|〈u, ξ〉|−pf(u) du, (6)

whereas, if p is a negative odd integer and f is even,

f̂p(ξ) = (−1)(p−1)/2 π

2(−p)!

∫
Sn−1

|〈u, ξ〉|−pf(u) du. (7)

For even f , many of the transforms above can be found in [27] and the papers referenced
there. The real part of f̂−1 was established in [28] and used to provide a Fourier transform
solution to the Shephard problem [39]. The most significant feature of the imaginary part
of f̂0 is the hemispherical transform, which plays an important role in some of Schneider’s
geometrical applications [34] and in Groemer’s work [24], [25]. Its real part was calculated
by Yaskin and Yaskina in their work on centroid bodies [41]. The real part of f̂1 is the
spherical Radon transform which has numerous geometric applications, see Gardner [10]
and Groemer [23]. The imaginary part of f̂1 may be thought of as a reciprocal cosine
transform. We will discuss it in some applications below. The imaginary part of f̂2 will
be used in the discussion of average heights of shadow boundaries of convex bodies. The
integral transforms in (6) and (7) appear in the work of Falconer [7], where he discusses
the floating body problem of Ulam. They also play a central role in the study of Lévy
representations [30]. More recently, they appeared in [14] in the context of processes of
flats in Ed and in [32] in the context of Firey projections of convex bodies.
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It is shown in [22] that the mapping Ip : C∞(Sn−1)→ C∞(Sn−1) is injective for real
p with −1 ≤ p < n. Indeed this is an intertwining operator with multipliers

λn(d, p) =
2pπd/2(−1)n/2Γ((n+ p)/2)

Γ((d+ n− p)/2)
if (p, n) 6= (−1, 1) or (0, 0). (8)

The shadow boundary of the convex body K ⊂ Ed in the direction ξ ∈ Sd−1 comprises
those points of the boundary of K which project into a boundary point of K|ξ⊥. It follows
that it is also the set of all boundary points of K at which there are support lines of K
parallel to ξ. It is easy to see that the average width of a shadow boundary is just the
mean width of the corresponding projection. The average height of the shadow boundary
in direction ξ of a strictly convex body is defined by

HK(ξ) =
1

(d− 1)κd−1

∫
Sd−1∩ξ⊥

〈∇hK(u), ξ〉 du.

To see why this definition makes sense, we recall that, for a smooth (and therefore strictly
convex) body, the point of contact of the support plane with outer normal u is ∇hK(u).
So the integrand measures the height, above ξ⊥, of a point of the shadow boundary of
K in direction ξ. Of course, we can define the average height of the shadow boundary
in any direction for which the shadow boundary is sharp. It is a well-known (and deep)
result of Ewald, Larman and Rogers [6] that the shadow boundary of an arbitrary convex
body is sharp for almost all ξ ∈ Sd−1. Thus HK exists, as an L2 function, for all convex
bodies K. In [22], this was used together with the real part of f̂1 and the imaginary part
of f̂2, in the case f is a support function, to prove that a convex body is determined by
knowledge of the average widths and average heights of all its shadow boundaries.

Our next application will involve the real and imaginary parts of f̂1 in case f is a
support function. In the case of support functions f = hK , it is possible to evaluate f̂1
without further smoothness conditions. This is already clear for the real part of f̂1. To
deal with the imaginary part, we note that, for ξ ∈ Sd−1 and u ∈ Sd−1\ξ⊥,

1
2
hK(u)− hK(−u)

〈u, ξ〉
is the average of the heights of the intersection of the support planes with outward normals
±u with the line, [ξ], through the origin parallel to ξ. Consequently it makes sense to
refer to

SK(ξ) =
1

2(d− 1)κd−1

∫ 1

−1

∫
Sd−1∩(ξ⊥+tξ)

hK(u)− hK(−u)
〈u, ξ〉

du dt (9)

as the average height of the intersection of support planes to K with [ξ], assuming this
integral exists. We will now explain briefly why the integral (9) exists for all convex
bodies K in Ed and ξ ∈ Sd−1 without any smoothness conditions. For t ∈ (0, 1] and
ζ ∈ ξ⊥ ∩ Sd−1, we note that the difference quotients

hK(tξ +
√

1− t2ζ)− hK(ζ)
t

are increasing with t. Their limit, as t ↘ 0, is the directional derivative h′K(ζ, ξ), see
[36, Theorem 1.7.2] for example. This, in turn, is the support function of the support set
K ∩{x ∈ Ed : 〈x, ζ〉 = hK(ζ)}, evaluated at ξ. It follows that, for fixed ζ, these difference
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quotients are integrable with respect to t ∈ [0, 1] and that their integral, as a function of
ζ, is bounded. Consequently, SK(ξ) exists for all K ⊂ Ed and all ξ ∈ Sd−1.

A first application of these average heights SK is in the spirit of Schneider’s original
results [34]. A convex body K is centrally symmetric if and only if SK (or HK) is a linear
function. Equivalently, SK(ξ) = 〈x, ξ〉 (or HK(ξ) = 〈x, ξ〉) if and only if K is centrally
symmetric with respect to x. Again this result arises from a study of the multipliers
associated with the map f 7→ f̂1 (or f 7→ f̂2).

Using both the real and imaginary parts of f̂1, we deduce that a convex body K ⊂ Ed
is completely determined by knowledge of the integrals∫

Sd−1∩ξ⊥
hK(u) du and

∫ 1

−1

∫
Sd−1∩(ξ⊥+tξ)

hK(u)− hK(−u)
〈u, ξ〉

du dt

for all ξ ∈ Sd−1. Thus, K is determined by knowledge of the mean widths of all projections
onto hyperplanes and of all the average heights SK(ξ).

The work of Schneider [37] and of Schneider and Böröczky [2] involved the determi-
nation of a function f ∈ C(Sd−1) from certain integrals. The integrals they used were
the spherical Radon transforms of f and of the products 〈ξ, ·〉f for each ξ ∈ Sn−1. The
former integrals determine the even part of f and the latter, the even part of 〈ξ, ·〉f or,
equivalently, the odd part of f . The combination of the two provides unique determina-
tion of the function f . Their results had elegant geometric interpretations and allowed
them to show, on the one hand, that convex bodies are determined by the mean width
and Steiner points of their projections and, on the other, a star body is determined by
the volumes and centroids of its central sections. In fact, the major part of their work
was devoted to establishing stability versions of these results for convex bodies. In this
context, we note that knowledge of the spherical Radon transform Rf of f ∈ C(Sd−1) is
equivalent to knowing∫

Sd−1
g(u)(Rf)(u) du for all g ∈ Ce(Sd−1),

or equivalently ∫
Sd−1

g(u)f(u) du for all g ∈ Ce(Sd−1).

Analogously, knowledge of the spherical Radon transforms of all products 〈ξ, ·〉f is equiv-
alent to knowing∫

Sn−1
g(u)〈ξ, u〉f(u) du for all g ∈ Ce(Sn−1) and all ξ ∈ Sd−1.

However, it follows from the formula for f̂−1, that the odd part of f is determined by
knowledge of ∫

Sd−1
(Γ′(1)− ln |〈u, ξ〉|)〈u, ξ〉f(u) du for all ξ ∈ Sd−1.

Unfortunately, we have not yet found any natural geometric interpretation of these inte-
grals when f is a support function.
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Nevertheless, there is a connection between these approaches. We will show that it is
sufficient to know, for each ξ ∈ Sd−1, the average of the scalar products 〈z(K|v⊥), ξ〉 over
all v ∈ ξ⊥, in order to determine the odd part of hK . This is the average component, in
direction ξ, of the Steiner points of the projections of K onto hyperplanes parallel to ξ.
For a support function f , this average is (a multiple of)∫

Sd−1∩ξ⊥

∫
Sd−1∩v⊥

〈w, ξ〉f(w) dw dv.

It is easy to see that the mapping J : C∞(Sd−1)→ C∞(Sd−1) given by

(Jf)(ξ) =
∫
Sd−1∩ξ⊥

∫
Sd−1∩v⊥

〈w, ξ〉f(w) dw dv (ξ ∈ Sd−1)

is intertwining. As explained in §4, we can therefore deduce that J acts as a multiple,
µd,n, of the identity on the space Hdn of spherical harmonics. In order to determine the
value of µd,n, it suffices to evaluate Jf for one specific f ∈ Hdn. To this end, we recall,
see [23] for example, that Hdn is spanned by functions of the form P dn(〈·, u〉), (u ∈ Sd−1),
where P dn is the Legendre polynomial of degree n in dimension d. Thus, for any ξ ∈ Sd−1,

µd,2n+1 = µd,2n+1P
d
2n+1(〈ξ, ξ〉) = (JP d2n+1(〈·ξ〉))(ξ)

=
∫
Sd−1∩ξ⊥

∫
Sd−1∩v⊥

〈w, ξ〉P d2n+1(〈w, ξ〉) dw dv. (10)

Using a standard recursion formula for Legendre polynomials together with (5) and (10)
gives

µd,2n+1 =
1

4n+ d

∫
Sd−1∩ξ⊥

∫
Sd−1∩v⊥

〈w, ξ〉((2n+ d− 1)P d2n+2(〈w, ξ〉)

+ (2n+ 1)P d2n(〈w, ξ〉)) dw dv

=
2n+ d− 1

4n+ d
(d− 1)2κ2

d−1

(
1.3. . . . (2n+ 1)

(d− 1)(d+ 1) . . . (d+ 2n− 1)

)2

+
2n+ 1
4n+ d

(d− 1)2κ2
d−1

(
1.3. . . . (2n− 1)

(d− 1)(d+ 1) . . . (d+ 2n− 3)

)2

=
2n+ 1

2n+ d− 1
(d− 1)2κ2

d−1

(
1.3 . . . (2n− 1)

(d− 1)(d+ 1) . . . (d+ 2n− 3)

)2

. (11)

The combination of (8) and (11), shows that

λ2n+1(d, 0)λ2n+1(d, 2) =
(
π(d− 1)
d+ 1

)2

µd,2n+1.

It therefore follows that, for odd f ∈ C∞(Sd−1), we have

I0I2f =
(
π(d− 1)
d+ 1

)2

Jf.

Consequently, the average component, in direction ξ, of the Steiner points of the projec-
tions of K onto hyperplanes parallel to ξ is a multiple of the hemispherical transform
(τHK)(ξ). It follows that this determines the odd part of hK .
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