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Abstract. The connectivity and measure theoretic properties of the skeleta of convex bodies
in Euclidean space are discussed, together with some long standing problems and recent results.

In this note, I wish to highlight some unsolved problems relating to the skeleta of
convex bodies. Much of the important work in this area was done in the 1960’s and early
1970’s in response to the interest in polytopes arising from problems in linear program-
ming. So, many of these unsolved problems are approaching their fortieth birthdays.

For a d-polytope P , the k-skeleton (write skelk P ) of P is the union of all faces of P
of dimension at most k.

However, for a d-dimensional convex body C, we have two possible definitions for the
k-skeleton of C. First recall that an exposed face F of C is a subset F of C such that
there exists a supporting hyperplane H to C with H ∩ C = F .

Then, the exposed k-skeleton of C is the union of all exposed faces of C of dimension
at most k.

This is not an easy concept to work with. For example, an exposed face of an exposed
face of C is not necessarily an exposed face of C.

The extreme k-skeleton of C is the set of those points of C which are not the centre
of some k + 1-dimensional ball lying entirely in C.

The extreme k-skeleton, which we will call the k-skeleton skelk C of C, contains the
exposed k-skeleton of C.

How should we measure skelk C? We can, of course, use the k-dimensional Hausdorff
measure Hk(skelk C).

Another measure, introduced by Eggleston, Grünbaum and Klee [2], is

ηk(C) = lim inf
P→C

Hk(skelk P ), P a d-polytope.
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An important unresolved problem is the following:

Conjecture (Rolf Schneider [13], [14]).

ηk(C) = Hk(skelk C).

Geoffrey Burton [1] proved

ηk(C) ≥ Hk(skelk C).

I proved [11]
ηd−2(C) = Hd−2(skeld−2 C),

which, in particular, applies to the 1-skeleton of a 3-dimensional convex body.
For a d-polytope P , Eggleston, Grünbaum and Klee [2] proved that

Ha+b(skela+b P ) ≤ Ha(skela P ).Hb(skelb P ).

So, if s = mr, s,m, r positive integers, s ≤ d

Hs(skels P ) ≤ (Hr(skelr P ))m,

i.e.
(Hs(skels P ))

1
s ≤ (Hr(skelr P ))

1
r .

In the same paper, they posed the general extension of this inequality as a (yet
unresolved) problem:

Problem (E. G. K. 1964 [2]). For given r, s , 1 ≤ r < s ≤ d, does there exist a constant
γ(d, r, s) such that

(Hs(skels P ))
1
s ≤ γ(d, r, s)(Hr(skelr P ))

1
r ?

It is true for s a multiple of r or if s = d − 1 or s = d. Are there analogues for convex
bodies?

In the theory of linear programming, the simplex algorithm has played a pivotal role.
In geometric terms, the simplex algorithm produces, for a given polytope P in Rd, a given
linear functional l on Rd, and a given vertex p of P , a simple path Q such that

(i) Q consists only of edges of P .
(ii) On Q, l(x) is strictly increasing from its starting point p to its finishing point q (a

vertex of P ) where l(q) = maxx∈P l(x).

We can easily show geometrically that such a path Q exists. Suppose we are in Rd

and the linear functional l corresponds to the hyperplane xd = 0. Consider the set U of
unit directions, lying in the hyperplane xd = 0 which are parallel to a line segment [a, b]
on the boundary ∂C of C, where

l(p) < l(a) < max
x∈P

l(x).

For any particular facet D of P , these directions D(l) have zero (d − 2)-measure.
Consequently U has zero (d− 2)-measure.

So, choosing any direction u in {xd = 0}, but not in U , from which p “can be seen”
the result follows by induction by producing the path on the projection of P in direction
u then lifting that path onto P .
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There are two other simple but important results for d-polytopes:

(i) The 1-skeleton of a d-polytope is d-connected.
(ii) The 1-skeleton of a d-polytope contains a refinement of the complete graph on d+1

vertices.

Both the path produced by the simplex method and the d-connectedness of the 1-
skeleton can be extended, see [8], to the 1-skeletons of the convex bodies in Rd. However,
we can only

Conjecture. The 1-skeleton of a convex body in Rd contains the refinement of the
complete graph on d+1 vertices.

This conjecture is true in R3 but remains an important obstacle to proving other
connectivity properties of the 1-skeleton.

An important tool in extending the connectivity results on the 1-skeletons of convex
polytopes to the 1-skeletons of convex bodies is the sharpness of shadow boundaries which
we now explain:

Shadow boundaries. In Rd, let Γ(l) denote the set of l-dimensional subspaces of Rd

equipped with the Haar measure γ(l), normalised so that γ(l)(Γ(l)) = 1. For a convex
body C in Rd and X in Γ(l), let S(C,X) denote the shadow boundary in direction
X⊥, i.e. if πX denotes the orthogonal projection of Rd onto X, then S(C,X) is the set
π−1

X (relbdy πX(C)) ∩ C. S(C,X) is also the set of points c on ∂C such that

(c+X⊥) ∩ intC = ∅.

We will say S(C,X) is sharp if for all c ∈ S(C,X), (c+X⊥) ∩ ∂C is a single point c.
For a d-polytope P , S(P,X) will be sharp provided X⊥ is not parallel to some facet

F of P , i.e. a translate of X⊥ is not in aff F .
So, since the set of X ∈ Γ(l) such that X⊥ is parallel to some facet of P has measure

zero in Γ(l), S(P,X) is almost always sharp, i.e. sharp except on a set of γ(l) measure
zero.

In 1970 Ewald, Larman and Rogers [3] proved the same result for general convex
bodies C, i.e.

S(C,X) is almost always sharp. (1)

Of course, for a d-polytope P , a sharp S(P,X) has finite Hausdorff H l−1 measure,
and it was conjectured that for general d-convex bodies S(C,X) almost always has finite
H l−1 measure. (More on this later.)

Using (1) with l = d− 1, the shadow boundaries S(C,X) are almost always paths on
the 1-skeleton of C, and this gives us a tool to create paths in the 1-skeleton of C.

Returning to the d-polytopes it is easy to see that the 1-skeleton of a d-polytope is
d-connected in the sense that if d−1 vertices V are removed, the remaining vertices can be
connected, in pairs, in the 1-skeleton of P , by paths which do not pass through any vertex
of V . Consequently, using Menger’s theorem, given 2d vertices a1, . . . , ad; b1, . . . , bd in a
d-polytope P , there exist d disjoint paths L1, . . . , Ld joining ai to some bj(i), i = 1, . . . , d.
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We can apply the same methods, which only depend on almost all d−1 shadow boun-
daries being sharp to prove a similar result for 2d exposed points a1, . . . , ad; b1, . . . , bd of
a d-convex body C, see D. G. Larman and C. A. Rogers [8].

However, it is not always possible to ensure that ai is joined to bi, i = 1, . . . , d. This
is most easily seen by taking diagonal pairs on a facet of a 3-cube C. Any path joining
one diagonal pair intersects any path joining the other pair. A (d− 3)-fold pyramid over
the 3-cube gives a similar example in d dimensions.

These results extend to infinite-dimensional convex bodies C in a Banach space
(D. G. Larman [10]). For example, given any two exposed points a, b of C and any
positive integer n, there exist n paths P1, . . . , Pn in the 1-skeleton of C, each joining a to
b and Pi ∩ Pj = a ∪ b, i 6= j.

It would be interesting to investigate whether n can be replaced by ∞.
Returning to polytopes, we can ask for the largest number g(d) such that if we have

g(d) pairs of distinct vertices [b2i−1, b2i]
g(d)
i=1 on a d-polytope P then b2i−1 can be joined

to b2i by a path Li in the 1-skeleton of P, i = 1, . . . , g(d) and the Li’s are disjoint.
Of course, the (d− 3)-fold pyramid over the square yields g(d) ≤ [d

2 ] and Peter Mani
and I [6] conjectured that g(d) = [d

2 ]. We proved that g(d) ≥ [ 1
3 (d + 1)] but S. Gallivan

[4] gave an example which showed g(d) ≤ [ 2(d+2)
5 ]. So there is still a considerable gap to

be filled.
Our proof of g(d) ≥ [ 1

3 (d + 1)] used, as a giant ‘fly over’ system, the existence of
the refinement of a complete d+1 graph in the 1-skeleton of a d-polytope. As previously
mentioned, I believe that the 1-skeleton of a d-convex body must contain the refinement
of a complete d+1 graph and, if true we would also have g(d) ≥ [ 1

3 (d+1)] for all d-convex
bodies.

Increasing paths. If we think of Rd as Rd−1 × R, with the last coordinate giving a
sense of height, there exists in the 1-skeleton of any d-polytope P a strictly increasing
path going from the bottom of P to the top of P . This is easily seen via the simplex
algorithm or the shadow boundary argument used earlier. The same result is true for all
d-convex bodies and follows from the following theorem of Rogers and myself [9].

Theorem. The directions of the line segments on the boundary of a d-convex body C,
parallel to a fixed hyperplane H and not lying in the two corresponding support hyperplanes
to C, parallel to H, have zero (d− 2)-measure.

Wv-Paths. Let F be a face of a d-convex body C and let Q be a path in the 1-skeleton
of C. Then F ∩Q consists of connected components which we call visits of Q to F .

Klee [5] made the following conjecture, which is true in three dimensions but still
unresolved in higher dimensions.

Conjecture. If P is a d-polytope, then any two vertices of P can be joined by an
edge path which visits every face of P at most once. He called such a path a Wv-path.

Klee’s conjecture implies the famous Hirsch Conjecture, i.e. that any two vertices of
a d-polytope with n facets can be joined by a wedge path of length at most n − d. The
implication is simple: every time a W − v-path leaves a vertex it leaves at least one facet,
never to return. As the end vertex is in at least d facets, the path length is at most n−d.
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In three dimensions, the shortest Euclidean path along the 1-skeleton of a Schlegel
Diagram of a 3-polytope is a Wv-path.

I proved [6] that there exists a path which visits each face at most 2d−3 times, which
trivially produces the bound 2d−3n in the Hirsch conjecture.

Problem. Between any two extreme points of a d-convex body C, is there a path
in the 1-skeleton of C which visits each face of C at most 2d−3 times? (or even, at most
once?).

In all of the above problems/results for convex bodies, the analogues for convex poly-
topes have paths of finite length. I would conjecture that most of the results for convex
bodies are also true with the extra condition that the paths have finite length.

The first step would be to improve the result of Ewald, Larman and Rogers [3] from
almost all shadow boundaries being sharp, to almost all shadow boundaries having finite
measure.

This was a well known conjecture in the 1970’s and recently P. Mani and myself [12]
have been able to establish that this is indeed the case.

Whilst the technical details are complicated, the basic idea is quite simple. If γ(l)
denotes the Haar measure of l-dimensional subspaces of Rd, P a d-polytope in Rd and
X an l-dimensional subspace of Rd, let S(P,X) denote the shadow boundary of P in
’direction’ X⊥. It is readily seen that∫

Γ(l)

H l−1(S(P,X))dγ(l)(X) = α(l, d)Wd−l+1(P )

where H l−1 is Hausdorff l− 1 measure and Wd−l+1(P ) is the l− d+ 1 Quermass integral
of P .

Then, for a general d-convex body C we take a sequence of polytopes approaching C
and, avoiding a certain set X ∈ γ(l) of zero Haar measure, we use a lower semi-continuity
argument to establish∫

Γ(l)

H l−1(S(C,X))dγ(l)(X) ≤ α(l, d)Wd−l+1(C).
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