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Abstract. We consider the problem of classifying the convex bodies in the 3-dimensional space

depending on the differentiability of their associated quermassintegrals with respect to the one-

parameter-depending family given by the inner/outer parallel bodies. It turns out that this

problem is closely related to some behavior of the roots of the 3-dimensional Steiner polynomial.

1. Introduction. The Hadwiger problem. Let Kn be the set of all convex bodies,
i.e., compact convex sets in the n-dimensional Euclidean space Rn. The subset of Kn
consisting of all convex bodies with non-empty interior is denoted by Kn0 . Let Bn be the
n-dimensional unit ball, and Sn−1 the (n − 1)-dimensional unit sphere. The volume of
a set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by V(M), and its
boundary by bdM . We write κn = V(Bn).

For a convex body K ∈ Kn and a non-negative real number ρ the outer parallel body
of K at distance ρ is the Minkowski sum K + ρBn. On the other hand, for 0 ≤ ρ ≤ r(K)
the inner parallel body of K at distance ρ is the set

K ∼ ρBn = {x ∈ Rn : ρBn + x ⊂ K},

where r(K) denotes the inradius of K, i.e., the radius of one of the biggest balls contained
in K (see [2, p. 59]). Clearly if ρ = 0 the original body K is obtained. Notice that
K ∼ r(K)Bn is the set of incenters of K, usually called the kernel of K and denoted
by ker(K). The dimension of ker(K) is strictly less than n (see [2, p. 59]). The inner
parallel bodies and their properties were studied mainly by Bol [1], Dinghas [3] (see also
[5] and [6]) and later by Sangwine-Yager [9].
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Fig. 1. The inner and the outer parallel body of a trapezoid

The full system of parallel bodies of K is defined by

(1) Kρ :=

{
K ∼ (−ρ)Bn for − r(K) ≤ ρ ≤ 0,

K + ρBn for 0 ≤ ρ <∞,

and it is a concave family, i.e., it satisfies

(2) (1− λ)Kρ + λKσ ⊂ K(1−λ)ρ+λσ

for λ ∈ [0, 1] and ρ, σ ∈ [−r(K),∞) (see [11, p. 135]).
The so called Steiner formula [12] states that the volume of the outer parallel body

K + ρBn at distance ρ ≥ 0 is a polynomial of degree n in ρ,

(3) V(K + ρBn) =
n∑
i=0

(
n

i

)
Wi(K)ρi.

The coefficients Wi(K) are called the quermassintegrals of K, for which we refer to [4,
s. 6.4]. In particular, W0 = V is the volume (the area A in the planar case), nW1 = S is
the surface area (the perimeter p in the plane), nW2 = M is the so called integral mean
curvature and Wn = κn is the volume of the n-dimensional unit ball. Thus the Steiner
polynomial for a 3-dimensional convex body K ∈ K3 is written in terms of the volume
V, the surface area S and the integral mean curvature M of K:

fK(ρ) := V(K) + S(K)ρ+ M(K)ρ2 +
4
3
πρ3.

In [5] Hadwiger posed the problem of studying the differentiability of the coefficients of
the Steiner polynomial, V, S and M, with respect to the parameter ρ of the full system
of parallel bodies. Next we describe this question in a precise way.

From (2) and the general Brunn-Minkowski theorem, which states that V1/3, S1/2

and M are concave functions (see e.g. [11, p. 339]), it is easy to see that

(4) i) ′V(ρ) ≥ V′(ρ) ≥ S(ρ), ii) ′S(ρ) ≥ S′(ρ) ≥ 2M(ρ), iii) ′M(ρ) ≥ M′(ρ) ≥ 4π,

where ′F and F ′ denote, respectively, the left and right derivatives of the function F (ρ) =
F (Kρ) for fixed K ∈ K3 and −r(K) ≤ ρ < ∞. Hadwiger classified the convex bodies
in three different classes, namely Rα, Rβ and Rγ , depending on wether equalities hold,
respectively, in i), i) and ii), or i), ii) and iii). It is well known (see e.g. [1]) that the
volume is always differentiable and V′(ρ) = S(ρ), which is equivalent to Rα = K3. So the
question arises to characterize the convex bodies belonging to the classes Rβ and Rγ .
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Clearly Rγ ⊂ Rβ ⊂ Rα, and all these inclusions are strict, as follows from Theorem 2
and Remark 1.

In this paper we will make first a brief survey on the known results regarding this
problem (see Section 2): Theorem 1 is the classical result by Hadwiger, which provides a
characterization of the values which can be the volume, surface area and integral mean
curvature of some convex body in each class; Theorem 2 characterizes completely the
class Rγ ; Theorem 3 and Theorem 4 state necessary conditions for a convex body to lie
in Rβ , which allows to exclude families of convex bodies from this class (see Corollary 1
and Remark 1). Next, due to the close relation between the above defined classes and the
behavior of the roots of the 3-dimensional Steiner polynomial, Section 3 is devoted to the
study of this polynomial. Finally in Section 4 we obtain two new results (see Theorem 6
and Theorem 7) providing further necessary conditions for a convex body to lie in Rβ
but now in terms of the roots of the Steiner polynomial. Using them it will be possible
to determine convex bodies not belonging to Rβ (see Example 1 and Example 2).

2. Known results. In [5] Hadwiger gave a partial solution to this problem, in the
sense of proving a characterization, not of the convex bodies, but of the triples of values
(V,S,M) which can be, respectively, the volume, the surface area and the integral mean
curvature, of some convex body in each class:

Theorem 1 ([5, s. 29]). Three positive real numbers V, S, M are respectively the volume,
surface area and integral mean curvature of some convex body belonging to:

i) the class Rβ if, and only if, they satisfy the inequalities

V ≤ S2

3M
and

V ≥ 1
24π2

[
6πMS−M3 − π(12− π2)

(
M2 − 4πS
π2 − 8

)3/2
]

;

ii) the class Rγ if, and only if, they satisfy the inequalities

V ≤ 1
24π2

[
6πMS−M3 + (M2 − 4πS)3/2

]
and

V ≥ 1
24π2

[
6πMS−M3 − π(12− π2)

(
M2 − 4πS
π2 − 8

)3/2
]
.

This theorem assures that for a convex body lying in one of the classes the corre-
sponding inequalities on V, S and M hold. On the other hand, given a triple (V,S,M)
satisfying the inequalities in i) or ii), there will exist a convex body K with V(K) = V,
S(K) = S and M(K) = M lying in the class Rβ or Rγ , respectively. It does not assure
however (in fact it is not true) that any convex body with those values (V,S,M) for
the respective magnitudes lies in the corresponding class; notice that, in general, to each
triple (V,S,M) correspond many different convex bodies.

In [8] the general n-dimensional problem is studied, where n classes appear, the so
called Rp classes. There, one of the non-trivial classes is characterized, and necessary
conditions for a convex body to belong to the others are stated. Particular families of
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convex bodies, e.g. polytopes and tangential-bodies, are also considered. Here we collect
some of the above mentioned results in the particular case of the 3-dimensional space,
which provide partial answers to the original question by Hadwiger in R3.

The following result characterizes the class Rγ :

Theorem 2 ([8, Theorem 1.1]). The only convex bodies lying in Rγ are the outer parallel
bodies of planar convex bodies, i.e.,

Rγ =
{
K + ρB3 : K a planar convex body

}
.

Hence, in the 3-dimensional case, only the class Rβ remains unknown. For this class,
necessary conditions for a convex body to lie in it are stated in terms of the support
function h of the so called form body of Kρ and the set of 0 and 1-extreme normal
vectors of Kρ, which we define next.

Since our work is developed in R3, all definitions will be stated just in dimension 3,
although all of them have their analog in arbitrary dimension. As usual in the literature,
we denote by h(K,u) = sup

{
〈x, u〉 : x ∈ K

}
, u ∈ R3, the support function of K ∈ K3 (see

e.g. [11, s. 1.7]). We write N(K,x) to denote the normal cone of K ∈ K3 at x ∈ bdK,
i.e., the set of all outer normal vectors of K at x (with the zero vector). A vector u ∈ S2

is an r-extreme normal vector of K, r = 0, 1, 2, if we cannot write u = u1 + · · · + ur+2,
with ui linearly independent normal vectors at one and the same boundary point of K
(see e.g. [11, pp. 74–77]). We denote the set of r-extreme normal vectors of K by Ur(K).
Clearly U0(K) ⊂ U1(K) ⊂ U2(K). On the other hand, the form body of a convex body
K ∈ K3

0, denoted by K∗, is defined as

K∗ =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ 1

}
.

The following theorem provides necessary conditions for a convex body to lie in Rβ .
For the sake of brevity, from now on we write r = r(K).

Theorem 3 ([8, Theorem 1.2]). Let K ∈ K3. If K ∈ Rβ\Rα, then for all ρ ∈ (−r, 0] the
following holds:

i) h(K∗ρ , u) = 1 for all u ∈ clU1(Kρ).
ii) clU0(Kρ) = clU1(Kρ).

This theorem allows one to prove:

Corollary 1 ([8, Corollary 3.2]). There are no polytopes in Rβ.

A convex body K ∈ K3, with B3 ⊂ K, is called a p-tangential body of B3, p ∈ {0, 1, 2},
if each (2 − p)-extreme support plane of K supports B3, p = 0, 1, 2. Here a supporting
hyperplane is said to be p-extreme if its outer normal vector is a p-extreme direction. For
characterizations and properties of p-tangential bodies we refer to [11, Section 2.2].

So a 0-tangential body of B3 is just the ball itself and each p-tangential body is also
a q-tangential body for p < q ≤ 2. A 1-tangential body is usually called a cap-body, and
it can be seen as the convex hull of B3 and countably many points such that the line
segment joining any pair of those points intersects the ball. A 2-tangential body will be
briefly called a tangential body.
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The following result allows one again to exclude convex bodies from the class Rβ .

Theorem 4 ([8, Theorem 1.3, Theorem 1.4]). Let K ∈ K3
0.

i) K is a tangential body of B3 lying in the class Rβ if and only if K is a 1-tangential
body (cap-body) of B3.

ii) If K ∈ Rβ then
S(K)− S(K−r) ≤ r[2M(K)− rM(K∗)],

and equality holds if and only if K is homothetic to a cap-body of B3.

Remark 1. From Theorem 4 we know that the cap-bodies of the ball lie in Rβ , and
clearly they are not in Rγ . Moreover, it assures that any 2-tangential body (which is not
a cap-body) does not belong to Rβ , whereas it trivially lies in Rα = K3. It shows that
all inclusions Rγ ⊂ Rβ ⊂ Rα are strict.

3. The roots of the Steiner polynomial. Regarding the Steiner polynomial (3) as a
formal polynomial in the complex variable ρ, it is a natural question to look at its roots
and to study their geometric meaning. In [7] the problem of classifying the convex bodies
of the 3-dimensional Euclidean space depending on the roots of their Steiner polynomial
has been solved. This classification is given in terms of relations, i.e., equalities and
inequalities, between the geometric measures V, S and M. In order to state this result,
we need some additional notation and definitions.

For the sake of brevity, we will denote by φ+ and φ− the functionals

φ±(K) := M(K)3 − 6π(M(K)S(K)− 4πV(K))± (M(K)2 − 4πS(K))3/2.

On the other hand, notice that the 3-dimensional Steiner polynomial fK(ρ) always has
a real root. Thus, the following possibilities can appear: a triple real root, three simple
real roots, a double real root and a simple one or two conjugate complex roots and the
real one. In the last two cases we can distinguish two different types (see Figure 2), for
which the following notation will be used: we say that the Steiner polynomial has

• double roots of Type 1 (complex roots of Type 1) if its minimum ρm satisfies
fK(ρm) = 0 (fK(ρm) > 0);
• double roots of Type 2 (complex roots of Type 2) if its maximum ρM satisfies
fK(ρM ) = 0 (fK(ρM ) < 0).

ρ3 ρ3

Type 1

Type 2

ρm

ρM

Fig. 2. The Steiner polynomial has two conjugate complex roots and a simple one.



126 E. SAORÍN

Using this notation, we get the following result:

Theorem 5 ([7, Theorem 1]). Let K ∈ K3. Then its Steiner polynomial has:

• A triple real root if and only if K is a ball.
• A double real root of Type 1 if and only if φ−(K) = 0.
• A double real root of Type 2 if and only if φ+(K) = 0.
• Two conjugate complex roots of Type 1 if and only if φ−(K) > 0.
• Two conjugate complex roots of Type 2 if and only if φ+(K) < 0.
• Three simple real roots if and only if φ+(K) > 0 and φ−(K) < 0 simultaneously.

This theorem leads to a precise classification of the 3-dimensional convex bodies into
three big (mutually disjoint) classes: the convex bodies whose Steiner polynomial has

• only real roots, either simple, double or triple (class <; in particular we write <1

for double roots of Type 1 and <2 for double roots of Type 2),
• complex roots of Type 1 (class C1), or
• complex roots of Type 2 (class C2).

In the particular case when K is a 2-dimensional convex body in R3, its volume is
V = 0, its surface area S = 2A and its integral mean curvature M = (π/2)p. Then the
Steiner polynomial of K takes the form fK(ρ) = ρ

(
2A+π/2pρ+4/3πρ2

)
and it is possible

to characterize the planar convex bodies of R3 depending on the algebraic type of roots
that their Steiner polynomial has:

Lemma 1 ([7, Lemma 2]). If K ⊂ R3 is a planar convex body, its Steiner polynomial has

• three different real roots if and only if p2 > 128/(3π)A and A 6= 0;
• a double real root of Type 1 if and only if A = 0, i.e., only if K is a line segment;
• a double real root of Type 2 if and only if p2 = 128/(3π)A;
• complex roots of Type 2 if and only if p2 < 128/(3π)A.
• The Steiner polynomial of K never has complex roots of Type 1.

This kind of characterization seems to be a rather useful approach to a well-known
open problem in Convexity, the Blaschke problem (see [7]), although we will not consider
it here (for a detailed discussion on this problem see e.g. [5, 7, 10]).

4. The Hadwiger problem and the Steiner polynomial. In this section we get two
new results in the same line as Theorem 3 and Theorem 4: they will provide necessary
conditions for a convex body to lie in Rβ , but now in terms of the type of roots of its
Steiner polynomial. This will allow us to exclude new (families of) convex bodies from
this class (cf. Corollary 1 and Remark 1).

Before stating the two main results of this section, we start by showing the following
lemma, which will be used in the proofs of the theorems. We write φ±(ρ) := φ±(Kρ).

Lemma 2. Let K ∈ K3. If K ∈ Rβ\Rγ then both φ+(ρ) and φ−(ρ) are strictly increasing
functions in ρ ∈ [−r, 0].
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Proof. Since K ∈ Rβ , we have V′(ρ) = S(ρ) and S′(ρ) = 2M(ρ) for −r ≤ ρ ≤ 0. Then an
easy computation gives

φ′±(ρ) = 3[M(ρ)2M′(ρ)− 2π(M′(ρ)S(ρ) + 2M(ρ)2 − 4πS(ρ))

± (M(ρ)2 − 4πS(ρ))1/2(M(ρ)M′(ρ)− 4πM(ρ))]

= 3[(M(ρ)2 − 2πS(ρ))(M′(ρ)− 4π)±M(ρ)(M(ρ)2 − 4πS(ρ))1/2(M′(ρ)− 4π)].

Since always M(K)2 ≥ 4πS(K) for any convex body K ∈ K3 (see e.g. [11, p. 322]) and
M′(ρ) > 4π for K ∈ Rβ\Rγ (see (4), iii)), we immediately get φ′+(ρ) > 0 for every
ρ ∈ [−r, 0], which proves that φ+(ρ) is strictly increasing.

In the case of φ−(ρ) we have

φ′−(ρ) = 3(M′(ρ)− 4π)[(M(ρ)2 − 2πS(ρ))−M(ρ)(M(ρ)2 − 4πS(ρ))1/2].

Since M(ρ)2 > 2πS(ρ), the second term in the above product is positive if and only if

(M(ρ)2 − 2πS(ρ))2 ≥ M(ρ)2(M(ρ)2 − 4πS(ρ)),

which is trivially true. Moreover, φ′−(ρ) = 0 if and only if equality holds in the above
inequality, i.e., when the surface area S(ρ) = 0 for any ρ ∈ [−r, 0]. Since we have K 6∈
Rγ , we know that K is not a planar convex body and hence S(ρ) > 0, which implies(
M(ρ)2− 2πS(ρ)

)2
> M(ρ)2

(
M(ρ)2− 4πS(ρ)

)
. Using again the inequality M′(ρ) > 4π we

get φ′−(ρ) > 0 for every ρ ∈ [−r, 0], which proves that φ−(ρ) is strictly increasing.
Now we state and prove the main results in this section.

Theorem 6. Let K ∈ K3 with K ∈ Rβ\Rγ .

i) If K ∈ C2 then Kρ ∈ C2 for every ρ ∈ [−r, 0].
ii) If K ∈ < then Kρ ∈ < ∪ C1 for every ρ ∈ [−r, 0].

In the case K ∈ C1 no condition is obtained, since the Steiner polynomial of its inner
parallel bodies can have any type of roots.

Proof. By Lemma 2 we know that φ+ and φ− are strictly increasing functions in ρ, with
−r ≤ ρ ≤ 0, which gives φ+(ρ) ≤ φ+(0) = φ+(K) and φ−(ρ) ≤ φ−(0) = φ−(K).

i) If K ∈ C2 then by Theorem 5 we have φ+(K) < 0, and hence φ+(ρ) < 0. This
shows that Kρ ∈ C2 for every ρ ∈ [−r, 0].

ii) If K ∈ < then by Theorem 5 we get φ+(K) ≥ 0 and φ−(K) ≤ 0; hence, in particular
we have φ−(ρ) ≤ 0. This shows that Kρ ∈ < ∪ C1 for every ρ ∈ [−r, 0].

We recall that K−r = ker(K) and dimK−r ≤ 2; hence by Lemma 1, either K−r ∈ <
or K−r ∈ C2.

Theorem 7. Let K ∈ K3 with K ∈ Rβ\Rγ .

i) If dimK−r ≤ 1 then Kρ ∈ C1 for every ρ ∈ (−r, 0].
ii) If dimK−r = 2 and K−r ∈ < then Kρ 6∈ C2 ∪ <2 for every ρ ∈ (−r, 0].

In the case when dimK−r = 2 and K−r ∈ C2, no condition for all inner parallel bodies
is obtained, since their Steiner polynomial can have any type of roots. We can only assure
that the original body K ∈ C1∪C2; in fact, if we suppose that K ∈ < then, by Theorem 6,
part ii), we conclude that Kρ ∈ <∪ C1 for all ρ ∈ [−r, 0], a contradiction since K−r ∈ C2.
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Proof. We prove first i). By Lemma 2 we know that φ+, φ− are strictly increasing func-
tions in ρ > −r, which gives φ+(ρ) > φ+(−r) and φ−(ρ) > φ−(−r). Since dimK−r ≤ 1,
V(−r) = S(−r) = 0 and hence

φ+(ρ) > φ+(−r) = 2M(−r)3 = 2M(K−r)3 ≥ 0,

φ−(ρ) > φ−(−r) = M(−r)3 −M(−r)3 = 0.

From φ+(ρ) > 0 and by Theorem 5 we can assure that Kρ ∈ < ∪ C1 for all ρ ∈ (−r, 0].
Moreover, since the inequality is strict, the Steiner polynomial of Kρ cannot have double
real roots of Type 2. From φ−(ρ) > 0 and by Theorem 5 we know that Kρ ∈ C1 for all
ρ ∈ (−r, 0], i.e., the Steiner polynomial of all its inner parallel bodies has only complex
roots of Type 1. This shows i).

Analogously we get ii). By the strict monotonicity of the function φ+ (in this case φ−
plays no role) we get φ+(ρ) > φ+(−r). Since dimK−r = 2 and we assume K−r ∈ <, we
know (Theorem 5) that φ+(−r) ≥ 0, which gives φ+(ρ) > 0. This shows that Kρ 6∈ C2∪<2

for every ρ ∈ (−r, 0].
We show with a couple of examples how some convex bodies can be excluded from

the class Rβ by using the previous theorems.

Example 1. The orthogonal cylinders K(r, h) with circular basis of radius r and height
h ∈ [0,∞) have volume V = πr2h, surface area S = 2πr(r + h), and integral mean
curvature M = π(πr+h). It can be proved (see [7, Example 5]) that the Steiner polynomial
fK(r,h) can have either three real roots, or complex roots of Type 2, depending on the
ratio between r and h. Moreover, the Steiner polynomial of just one cylinder (up to
congruences) will have double real roots of Type 2, the one with h = h0 ≈ 1.71065r; if
h < h0, complex roots of Type 2 appear; if h > h0, three simple real roots; and only in
the limit case of a segment, double real roots of Type 1 are obtained. For instance, the
archimedean cylinder (when h = 2r) satisfies K(r, 2r) ∈ <\{<1,<2}.

It is easy to check that if we consider any cylinder K(r, h) with h ∈ (h0, 2r) then its
inner parallel bodies K(r, h)ρ, ρ ∈ [−h/2, 0], have

V = π(r + ρ)2(h+ 2ρ), S = 2π(r + ρ)(r + h+ 3ρ), M = π(πr + h+ (π + 2)ρ),

and for ρ < −r(h− h0)/(2r− h0), all the inner parallel bodies K(r, h)ρ ∈ C2, whereas we
already know that K(r, h) ∈ <. Hence by Theorem 6 we can assure that K(r, h) 6∈ Rβ .

Example 2. Theorem 7 i) allows one to exclude from Rβ those convex bodies not lying
in C1 with kernel one point. For instance, if we consider the family of cones with circular
basis of radius e.g. 1 and height h, it is easy to check that

V =
π

3
h, S = π

(
1 +

√
1 + h2

)
, M = π(π + h− arctanh),

and that they can have either real roots, complex roots of Type 1 or complex roots of
Type 2. Notice that the kernel of any of these cones is a point. Hence, if K is a cone with
K 6∈ C1 (which is obtained for any h ∈ [0, h ≈ 3.37108]), we can assure that K 6∈ Rβ .
Notice moreover that the inner parallel bodies of any cone are homothetic copies of it.
Then the Steiner polynomial fKρ of the inner parallel bodies will have the same type of
roots as the original cone K, i.e., Kρ 6∈ C1 for all ρ ∈ [−r, 0] if K 6∈ C1.
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Another illustrative example is provided by the truncated cones. Notice that their
inner parallel bodies are cones for sufficiently small ρ (see Figure 1). Hence by the previous
argument for the family of cones, suitable truncated cones can be excluded also from Rβ .

Remark 2. Notice that these results show in which cases the type of roots of the Steiner
polynomial are “preserved by inner parallel bodies”, in the following sense: it is known
(see [7, Theorem 3]) that if K is a convex body whose Steiner polynomial has a certain
type of roots (simple real, double real or complex), then all the outer parallel bodies of
K verify that their Steiner polynomial has the same type of roots; as we can see from
Theorem 6 and Theorem 7, in the case of the inner parallel bodies, this can be assured
only in particular situations.
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[7] M. A. Hernández Cifre and E. Saoŕın, On the roots of the Steiner polynomial of a 3-

dimensional convex body, Adv. Geom. 7 (2007), 275–294.
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