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C/ Maŕıa de Luna 3, 50018 Zaragoza, Spain

E-mail: manavas@unizar.es, msebasti@unizar.es

Abstract. The methodology of fractal interpolation is very useful for processing experimental

signals in order to extract their characteristics of complexity. We go further and prove that

the Iterated Function System involved may also be used to obtain new approximants that are

close to classical ones. In this work a classical function and a fractal function are combined to

construct a new interpolant. The fractal function is first defined as a perturbation of a classical

mapping. The additional condition of proximity to another interpolant leads to a problem of

convex optimization whose solution is a fractal element with mixing properties. This procedure

may be applied to the reduction of the regularity order of traditional approximants and for the

computation of models with rich geometric structure.

1. Introduction. Fractal geometry provides a new insight into the approximation and
modeling of natural phenomena [1, 7]. The method of Iterated Function Systems supports
the understanding and processing of complex sets [8]. Barnsley has used this methodology
for the interpolation of real data [1, 2]. Fractal interpolation functions (FIF’s) constitute
a useful tool for the approximation of experimental data. These maps possess good geo-
metric properties providing suitable graphical representations of complex phenomena and
a simple computation of the fractal dimension of their graphs. In former papers, we have
proved that this method is so general that it contains other interpolation techniques as
particular cases. Specifically, we have generalized some classical approximation functions
such as cubic and Hermite splines by means of fractal interpolation [10, 11].

A new characteristic of this kind of approximant is the non-smoothness of the functions
obtained [5]. This feature allows to mimic real-world signals showing a generally rough
aspect. Another important fact is that the graph of these interpolants possesses a fractal
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dimension, and this number can be used to measure the complexity of a signal, allowing
an automatic comparison of data such as electroencephalographic recordings [12].

In this paper we develop a method for the computation of an interpolant combin-
ing aspects of classical and fractal functions. The fractal function is defined first as a
perturbation of a classical function. The additional condition of proximity to another
interpolant provides a problem of convex optimization whose solution is a fractal element
with mixing properties. The procedure may be applied to the reduction of the regularity
order of traditional approximants, and to the computation of models with rich geometric
structure.

2. Fractal functions. In former papers ([14], [15]), we have studied an Iterated Function
System {wn(t, x)}Nn=1 defined on the set C = I × R, where I is a compact interval,
I = [a, b] ⊂ R. The maps wn(t, x) are defined by

wn(t, x) = (Ln(t), Fn(t, x)) ∀ n = 1, 2, . . . , N

where {
Ln(t) = ant+ bn,

Fn(t, x) = αnx+ qn(t).
(1)

The system is associated with a partition of the interval I

∆ : a = t0 < t1 < · · · < tN = b.

The coefficients an, bn are defined in terms of the nodes of the partition as

an =
tn − tn−1

tN − t0
, bn =

tN tn−1 − t0tn
tN − t0

, (2)

and Fn(t, x) satisfies some Lipschitz conditions ([1]). The multiplier αn is a vertical scale
factor of the transformation, such that −1 < αn < 1. α = (α1, α2, . . . , αN ) is the scale
vector.

Theorem 1 ([1, 2]). The iterated function system (IFS) defined above admits a unique
attractor G. G is the graph of a continuous function h : I → R interpolating the data
(h(tn) = xn, for all n = 0, 1, . . . , N).

The previous function is called a fractal interpolation function (FIF) corresponding
to {(Ln(t), Fn(t, x))}Nn=1. It satisfies the functional equation:

h(t) = Fn(L−1
n (t), h ◦ L−1

n (t)). (3)

In this paper we study a particular case of a Fractal Interpolation Function (FIF).
The map qn is defined as

qn(t) = g ◦ Ln(t)− αnb(t) (4)

where g and b are continuous functions, g, b : I → R, such that b(t0) = g(t0), b(tN ) =
g(tN ).

The attractor of the system is the graph of a continuous function gα : I → R which
interpolates to g at the nodes of the partition,

gα(tn) = g(tn) ∀ n = 0, 1, . . . , N. (5)
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Fig. 1. Original function g

(See Figures 1, 2). The mapping gα satisfies the functional equation (3)

gα(t) = g(t) + αn(gα − b) ◦ L−1
n (t) ∀ t ∈ In (6)

Let G be the set of continuous functions

G = {f ∈ C[a, b] : f(t0) = g(t0), f(tN ) = g(tN )}

G equipped with the uniform norm is a complete metric space. Define a mapping Tα :
G → G by:

(Tαf)(t) = Fn(L−1
n (t), f ◦ L−1

n (t)) (7)

for all t ∈ [tn−1, tn], n = 1, 2, . . . , N . It is a contraction mapping on the metric space
(G, ‖ · ‖∞) and possesses a unique fixed point on G, that is the FIF gα.

The uniform distance between gα and g is bounded in terms of the scale vector ([12])
and the map b,

‖gα − g‖∞ ≤
|α|∞

1− |α|∞
‖g − b‖∞ (8)
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Fig. 2. Fractal function associated to g with respect to α = (0.15, 0.15, . . .) and b(t) a line
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where ‖ · ‖∞ is the uniform norm defined as

‖f‖∞ = max{|f(t)| : t ∈ I} (9)

and
|α|∞ = max {|αn| : n = 1, 2, . . . , N}. (10)

The scale vector gives a degree of freedom to the function g, allowing us to modify
its properties or to approach a given function.

3. Construction of hybrid fractal interpolants. In this section we develop a method
for the construction of a new interpolant as described above. We follow arguments similar
to those of [9], for a different IFS.

Theorem 2 (Collage Theorem [2]). Let (X, d) be a complete metric space and let T be
a contraction map with contraction factor c ∈ [0, 1). Then, for any f ∈ X

d(f, f̃) ≤ 1
1− c

d(f, Tf)

where f̃ is the fixed point of T .

We consider two classical interpolants (S and P ) of a set of data. We construct the
fractal function Sα associated to S, defined in the previous section. Now we apply the
collage theorem for f = P , f̃ = Sα and T = Tα.

The distance here is the uniform metric and T = Tα is the contraction (7), so that
‖TαP −P‖∞ < ε implies ‖P −Sα‖∞ < ε

1−|α|∞ and Sα will be a fractal interpolant close
to P .

We may set the problem of finding α∗ such that

α∗ = min
α
‖TαP − P‖∞ = min

α
c(α)

where |α|∞ ≤ δ < 1.
The classical interpolants (polynomial, spline) are piecewise smooth and consequently

by the definition of Tα, so is Tαf − f . The function c(α) is non-differentiable in general,
but its convexity can be proved and thus, the problem

(CP )
{

minαc(α)
|α|∞ ≤ δ < 1

is a constrained convex optimization problem. The existence of solution is clear if c is a
continuous function as Bδ = {α ∈ RN ; |α|∞ ≤ δ < 1} is a compact set of RN . Let us see
that c is continuous, and (CP ) convex.

The operator Tα takes here the form

Tαf(t) = S(t) + αn(f − b) ◦ L−1
n (t) (11)

for all t ∈ In and f ∈ G.

Proposition 1. Let P ∈ G be given and Bδ = {α ∈ RN ; |α|∞ ≤ δ < 1}. The map
g : Bδ → G defined by g(α) = TαP such that

TαP (t) = S(t) + αn(P − b) ◦ L−1
n (t) (12)

for all t ∈ In, is continuous with respect to α.
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Proof. According to (12) if α, β ∈ Bδ and for t ∈ In,

TαP (t) = S(t) + αn(P − b) ◦ L−1
n (t),

T βP (t) = S(t) + βn(P − b) ◦ L−1
n (t),

then
|TαP (t)− T βP (t)| ≤ |αn − βn| ‖P − b‖∞

and
‖TαP − T βP‖∞ ≤ |α− β|∞‖P − b‖∞, (13)

so
‖g(α)− g(β)‖∞ ≤ |α− β|∞‖P − b‖∞,

hence g(α) is Lipschitz with constant M = ‖P−b‖∞ and the continuity of g is deduced.

Consequence 1. c(α) = ‖TαP − P‖∞ = ‖g(α) − P‖∞ is continuous because it is
obtained by adding and composing continuous functions.

Consequence 2. The problem (CP ) admits at least one solution.

Proposition 2. The function

c(α) = ‖TαP − P‖∞ (14)
is convex.

Proof. Let λ ∈ R be such that 0 ≤ λ ≤ 1, and α1, α2 scale vectors. Since any constant a
can be expressed as a = λa+ (1− λ)a, and by the equality (12),

c(λα1 + (1− λ)α2)

= max{|Tλα
1+(1−λ)α2

P (t)− P (t)|; t ∈ I}
= max

1≤n≤N
{|S(t)− P (t) + (λα1

n + (1− λ)α2
n)(P − b) ◦ L−1

n (t)|; t ∈ In}

≤ max
1≤n≤N

{λ|S(t)− P (t) + α1
n(P − b) ◦ L−1

n (t)|

+(1− λ)|S(t)− P (t) + α2
n(P − b) ◦ L−1

n (t)|; t ∈ In}
≤ λ‖Tα

1
P − P‖∞ + (1− λ)‖Tα

2
P − P‖∞ = λc(α1) + (1− λ)c(α2).

Proposition 3. The set Bδ = {α ∈ RN ; |α|∞ ≤ δ} is convex.

As a result of the former propositions, (CP ) is a problem of constrained convex
optimization with some solution.

If α∗ is the optimum scale, the expression c(α∗)/(1−|α∗|∞) provides an upper bound
for the uniform distance ‖Sα∗ − P‖∞ according to the Collage Theorem. Here P is a
classical interpolant and Sα

∗
is the fractal function perturbed from S and close to P .

Theorem 3. If X(t) is the original continuous function providing the interpolation data
and α∗ is the optimum scale, the following error estimate is obtained:

‖X − Sα
∗
‖∞ ≤ EP +

c(α∗)
1− |α∗|∞

(15)

where EP is an upper bound of the interpolation error corresponding to P .
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Fig. 3. Polynomial interpolant P

Proof.
‖X − Sα

∗
‖∞ ≤ ‖X − P‖∞ + ‖P − Sα

∗
‖∞

from which the result is deduced.

Proposition 4. If, in the problem (CP), we set δ = δ(h), tending to zero with h, and
S and P are convergent interpolants, then so is Sα

∗
.

Proof. If δ → 0, then
c(α∗)→ c(0) = ‖S − P‖∞

according to (12). If P and S are convergent, both terms in (15) tend to zero and Sα
∗

is
convergent.

Theorem 4. If X(t) is the original continuous function providing the data and α∗ is the
optimum scale, the following error estimate is obtained:

‖X − Sα
∗
‖∞ ≤ ES +

|α∗|∞
1− |α∗|∞

‖S − b‖∞ (16)

where ES is an upper bound of the error corresponding to S.
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Fig. 4. Natural cubic spline S
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Fig. 5. Fractal cubic spline Sα∗ from P and S

Proof.
‖X − Sα

∗
‖∞ ≤ ‖X − S‖∞ + ‖S − Sα

∗
‖∞ (17)

Applying the inequality (8) for g = S and α = α∗ the result is proved.

Consequence 3. Choosing δ = δ(h)→ 0 and a convergent interpolant S, both terms of
(16) tend to zero as does Sα

∗
. Note that only one convergent interpolant is needed; and

this result improves the previous Proposition.

Some comments:

• The method transforms a (possibly) non-convergent interpolant P into a conver-
gent Sα

∗
. Particular case: If the original function X is smooth enough, its (natural)

cubic spline S converges and thus Sα
∗

does also.
• The diversity of options (P, S, Sα

∗
) allows us to choose the best one for an approx-

imation-optimization problem.
• The methodology described may be used to reduce the order of regularity of classical

interpolants.
• Choosing b suitably, Sα

∗
may be differentiable ([13]). In this case, the approximation

of the derivatives of X is also possible.
• The method has new geometric possibilities: In the non-smooth case, the graph of
Sα
∗

has a non-integral fractal dimension and this parameter provides an index for
experimental signals (See Figures 3, 4, 5).
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