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Abstract. The goal of this paper is to provide foundations for a new way to classify and char-

acterize fractals using methods of computational topology. The fractal dimension is a main

characteristic of fractal-like objects, and has proved to be a very useful tool for applications.

However, it does not fully characterize a fractal. We can obtain fractals with the same dimension

that are quite different topologically. Motivated by techniques from shape theory and computa-

tional topology, we consider fractals along with their ε-hulls as ε ranges over the non-negative

real numbers. In particular, we develop theory for the class of non-overlapping symmetric binary

fractal trees that can be generalized to broader classes of fractals. We investigate various features

of the ε-hulls of the trees, based on the holes in these hulls. We determine the hole sequence of

these trees together with the persistence intervals of the holes as the ‘topological bar-codes’ of

these fractals. We provide quantitative results for a selection of specific trees to illustrate the

theory. Finally, we prove that for non-overlapping symmetric binary fractal trees, the growth

rate of holes in ε-hulls is equal to the similarity dimension.

1. Introduction, background and motivation. To date, the main characteristic of
a fractal-like object is its fractal dimension. The fractal dimension has proved to be a
very useful tool for applications [8], [11]. However, the fractal dimension does not fully
characterize a fractal, since it is possible to obtain two fractals with the same fractal
dimensions but different topologies. To demonstrate this point, we consider the well-
known Sierpiński gasket, displayed in Figure 1, and its relatives. One way to describe the
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Fig. 1. The Sierpiński gasket

Sierpiński gasket is in terms of an iterated function system (IFS). Let

f1(x, y) =
1
2

(x, y),(1)

f2(x, y) =
1
2

[(x, y) + (1, 0)],(2)

f3(x, y) =
1
2

[(x, y) + (0, 1)].(3)

The maps fi are contractive similarities, and the IFS {f1, f2, f3} has the Sierpiński gasket
as its unique attractor [11]. It is straightforward to use the self-similarity of the Sierpiński
gasket to calculate its fractal dimension to be ln 3/ ln 2 ≈ 1.585.

In general, an iterated function system consists of a finite set {φ1, . . . , φN} of con-
tractive similarities of Rd (for d = 1, 2, 3, . . .). Let D be the unique real number for
which

(4)
N∑
i=1

rDi = 1.

There exists a unique nonempty compact subset K of Rd, called the attractor, which is
invariant with respect to the contractions [7]:

K =
N⋃
i=1

φi(K).

We say that K is strictly self-similar. For example, the Sierpiński gasket and its relatives
(described in the next paragraph) are all strictly self-similar. The set K is said to satisfy
the open set condition if there exists a bounded open set G ∈ Rd such that

1. φi(G) ⊆ G for each i,
2. φi(G) ∩ φj(G) = ∅ for i 6= j.

When the open set condition is met, K has both Hausdorff and Minkowski dimensions
equal to the solution D in Eq. (4) [3], [7].

The three maps of the IFS for the Sierpiński gasket each map the unit square to
a square with sides of length 1/2, while preserving the orientation of the square, as
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Fig. 2. First four iterations to obtain the Sierpiński gasket

displayed in Figure 2. A relative of the Sierpiński gasket is an attractor of an IFS that
consists of three maps that all map the unit square to the three smaller squares with sides
of length 1/2, and each of the three maps may also involve a symmetry transformation
of the square (reflections or rotations) [11]. An example of such a relative is displayed in
Figure 3. The Sierpiński gasket and its 456 relatives (removing duplicates) [11] all have
the same fractal dimension (ln 3/ ln 2). Some relatives are totally disconnected, some are
simply-connected, and some are multiply-connected, see Figure 4.

Fig. 3. A relative of the Sierpiński gasket

Fig. 4. The Sierpiński gasket and 3 relatives

One source for skepticism of the use of fractal geometry is the heavy reliance on
the fractal dimension in the literature to date because it does not fully characterize a
given fractal. Thus there is strong motivation to find new ways to classify and characterize
fractals. In the case of the Sierpiński gasket and its relatives, the topological properties of
the fractals are not constant: the homologies differ. In general, homology theory attempts
to distinguish between spaces by constructing algebraic and numerical invariants that are
related to the connectivity of the space. The most basic homology theory is simplicial
homology, which is based on the triangulations of spaces, see [9]. Given a triangulation of a
space, the homology groups can be calculated using an algorithm based on linear algebra,
which in general has rather poor numerical behavior. However, in many applications it
is the rank of the homology group that is needed, not the entire group structure. This
rank is represented by the Betti number and is more easily computable.

The problem with many fractals is that they require infinitely many simplices in
their triangulations, and thus at least one of their non-trivial homology groups would
be infinite. This is not possible with simplicial homology, so something else needs to be
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done for spaces like fractals which have infinitely detailed structure. Instead of applying
homology theory to the original object X, one can apply it to derived spaces (arising
from some kind of embedding of the original space) to obtain new information.

This idea has recently been used by Carlsson et al. [1], [17], [2]. Their research involves
a “study of shape description using a marriage of geometric and topological techniques”
[2]. Their derived spaces are constructed using tangential information about the under-
lying space X as a subset of Rn. First, they have defined the tangent complex as the
closure of the space of all tangents to all points of X. Homology of the tangent complex
can be used to detect sharp features such as edges and corners. To distinguish the soft
features, one needs the so-called filtered tangent complex. An invariant called a persistence
module is obtained by applying homology to this filtered tangent complex. The filtered
tangent complex can be used to distinguish between a circle and an ellipse, something
that wasn’t possible with the ordinary tangent complex. Persistent homology is used to
define a simple shape descriptor, called the bar-code. The bar-code is a combinatorial
invariant that possesses information about the shape of an object. Ghrist [6] provides a
wonderful survey of the current work in this area.

For our purposes, the derived spaces that we will use are the ε-hulls of the space.

Definition 1. The ε-hull of A (or the closed ε-neighborhood of A) is defined as:

(5) (A)ε := {x ∈ R2 | d(x,A) ≤ ε},

where d(x, y) is the usual Euclidean metric and d(x,A) is the infimum of d(x, a) as a
ranges through A.

We assume that ε ≥ 0. Of course (A)0 = A. If A is connected and compact, then the
ε-hulls are connected, compact subsets of R2, so determining the homology reduces to
counting holes. The number of holes is equal to the rank of the first homology group (the
first Betti number).

1.1. Examples of ε-hulls. To illustrate what the analysis of ε-hulls of a given set A can
tell us, we consider a few preliminary examples. First we consider a circle. Let Γ be a
circle with radius r, see Figure 5(a). Then for any ε ∈ (0, r), (Γ)ε is an annulus. For
ε ∈ [r,∞), (Γ)ε is a disk. Note that for ε ∈ [0, r), the hole of (Γ)ε naturally arises from
the hole that is in the underlying set, so there does not seem to be any new information.

Second, consider a figure that is a circle with an arc missing, see Figure 5(b). The
length between the endpoints of the gap is given by a. For ε ∈ [r,∞), there are no holes.
For ε ∈ [a/2, r), there is one hole. Finally, for ε ∈ [0, a/2) there are no holes. This example
demonstrates that it is possible for the underlying set to be simply-connected while there
are values of ε for which the ε-hull is multiply-connected.

Now consider a slightly more interesting set, see Figure 6. We assume that

a1/2 < a2/2 < r1 < r2

Then for ε ∈ [r2,∞), there are no holes. For ε ∈ [r1, r2), there is 1 hole. For ε ∈ [a2/2, r1),
there are 2 holes. For ε ∈ [a1/2, a2/2), there is 1 hole. Finally for ε ∈ [0, a1/2), there are
no holes. There are five different intervals of ε-values for which the number and location of
holes remains constant for every ε in the interval. In terms of the holes, there are clearly
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(a) (b)

Fig. 5. (a) Circle and (b) large arc of circle

Fig. 6. Slightly more complicated figure

two different regions where there could be a hole. For example, there is a hole within the
region bounded by the smaller arc with radius r1 for values of ε in [a1/2, r1). The value
a1/2 is a minimum value for a hole to be in this region, and it is what will be referred to
as a ‘contact’ value. The value r1 is the upper limit for ε-values that yield a hole in this
region, and it is what will be referred to as a ‘collapse’ value.

In the previous examples, we observe that there are intervals of values of ε for which
the hole structure of the ε-hulls remains constant. For this reason, we are motivated to
define a relation on the ε-values. Given a connected, compact set A, we define a relation
∼A on ε-values as follows. We say that ε1 ∼A ε2 if for every ε ∈ [εmin, εmax] (where
εmin = min{ε1, ε2} and εmax = max{ε1, ε2}), the hole structure of (A)ε is the same. By
hole structure, we mean number and location of holes. This relation is an equivalence
relation and partitions [0,∞) into equivalence classes. Let N([ε]) denote the number of
holes in (A)ε′ for any ε′ ∈ [ε].

For a final preliminary example we consider the Sierpiński gasket. To completely
determine the ε-hulls, it suffices to consider the triangle with vertices (0, 0), (0, 1) and
(1, 0), shown in Figure 7(a).

The radius of the incircle is (
√

2 − 1)/2. Let r0 be the radius of the incircle of the
biggest hole of the Sierpiński gasket. By the scaling nature of the gasket, r0 = (

√
2−1)/4.

Then the equivalence classes are [r0/(2k)] for k ≥ 0, and

N([r0]) = 0,

N([r0/2]) = 1,
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(a) (b)

Fig. 7. (a) Triangle similar to the holes of the Sierpiński gasket and (b) the incircle of this
triangle

N([r0/4]) = 1 + 3 = 4,

N([r0/(2k)]) = 1 + 3 + · · ·+ 3k−1 =
3k − 1

2
.

It is straightforward to show that

lim
k→∞

lnN([r0/(2k)])
ln 2k

=
ln 3
ln 2

.

So the growth rate of the holes is just the similarity dimension.
At this point we may wonder if it is possible for ε-hulls to give us any new information

about fractals beyond the fractal dimension. We shall see that for the class of non-
overlapping symmetric binary fractal trees the ε-hulls do indeed provide new ways to
classify and characterize the trees.

1.2. Symmetric binary fractal trees. Fractal trees were first introduced by Mandelbrot
in “The Fractal Geometry of Nature” [8]. In general, fractal trees are compact connected
subsets of Rn (for some n ≥ 0) that exhibit some kind of branching pattern at arbitrary
levels. The class of symmetric binary fractal trees were more recently studied by Mandel-
brot and Frame [10] and the author [15], [16]. A symmetric binary fractal tree T (r, θ) is
defined by two parameters, the scaling ratio r (a real number between 0 and 1) and the
branching angle θ (an angle between 0◦ and 180◦). The trunk splits into two branches,
one on the left and one on the right. Both branches have length equal to r times the
length of the trunk and form an angle of θ with the affine hull of the trunk. Each of
these branches splits into two more branches following the same rule, and the branching
is continued ad infinitum to obtain the fractal tree.

A self-avoiding tree has no self-intersection (see Figure 8). A self-contacting tree has
self-intersection but no actual branch crossings (see Figure 9). For a given branching
angle θ, there is a unique scaling ratio rsc(θ) (or just rsc) such that the corresponding
tree is self-contacting [10]. The values of rsc as a function of θ have been completely
determined [10]. To determine the value of rsc, find the smallest scaling ratio such that
there is part of the tree besides the trunk that is on the linear extension of the trunk [10],
[15]. Further details about the general class of self-contacting trees is available in other
literature [10], [15], [16]. A non-overlapping tree is either self-avoiding or self-contacting.
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(a) T (0.6, 72◦) (b) T (0.55, 105◦) (c) T (0.55, 140◦)

Fig. 8. Self-avoiding trees

A self-overlapping tree has branch crossings. This paper focuses on the non-overlapping
trees.

(a) T (rsc, 40◦) (b) T (rsc, 112.5◦) (c) T (rsc, 150◦)

Fig. 9. Self-contacting trees

1.3. Topology of non-overlapping symmetric binary fractal trees. Mandelbrot and Frame
classified all symmetric binary self-contacting fractal trees according to the topological
type of the canopy of the tree. The two branching angles 90◦ and 135◦ are identified
as being topologically critical [10]. Mandelbrot and Frame restrict their attention to the
self-contacting trees, while our work studies both the self-avoiding and self-contacting
trees. The self-avoiding symmetric binary fractal trees are all simply-connected and they
are all topologically equivalent. On the other hand, the self-contacting trees are infinitely
complicated in the sense that they have infinitely many holes (with the two exceptions
T (rsc, 90◦) and T (rsc, 135◦)). The homeomorphism classes of non-overlapping binary trees
have been completely determined [15], [16]. The homology type of non-space-filling self-
contacting trees is too complicated though.

It seems that from a topological point of view, symmetric binary fractal trees are
either too trivial or too complex for topological invariants to describe them. For this
reason, we are motivated to look at derived spaces, namely the ε-hulls. The use of ε-hulls
allows us to give a finer, more interesting classification of symmetric binary fractal trees
than the straight topological one given by Mandelbrot and Frame [10]. The self-avoiding
fractal trees, which by themselves are all topologically equivalent, can now be associated
with systems of ε-hulls that possess vastly different topological properties, depending on
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the branching angle and scaling ratio of the original tree. It is possible for an ε-hull of
a self-avoiding tree with a specific scaling ratio and branching angle to have non-trivial
homology.

(a) T (0.4, 50◦) (b) T (0.595, 50◦) (c) T (0.4, 52◦)

Fig. 10. Comparison of self-avoiding trees

Consider the images of three self-avoiding trees in Figure 10. The first two trees have
the same branching angle but different scaling ratio, while the first and third trees have
the same scaling ratio and slightly different branching angle. The three trees in Figure
10 each have trivial homology since they are contractible, and they are all topologically
equivalent. We will develop a kind of classification of the trees in which the first and third
would be of the same class, while the second tree is in a different class.

We will further refine our study of the homology of ε-hulls by looking at different
features of the holes. Various properties of the holes of the ε-hulls offer different ways
to characterize the trees. We first introduce the notion of a hole class, and define the
persistence interval and persistence of a hole class. We define the important concept of
level of a hole. We are able to define a ‘topological bar-code’ for a tree based on how the
hole structure of the ε-hulls change as a function of ε.

It is important to remember that many of the constructions developed to analyze the
computational topology of symmetric binary fractal trees will extend not only to more
general fractal trees, but to other classes of fractals as well. With this thought in mind,
many of the definitions in the following sections have been developed to be as general as
possible.

1.4. ε-Hulls and fractals. The ε-hulls have recently been used by other researchers to
study fractals. The main example that we reference is the research of Robins et al. [12],
[13], [14]. Their research presents a study of the extrapolation of topological information
about the structure of a space from a finite set of data points. They assume that the
underlying set, X, is a compact metric space, and the data, S, are a finite set of points that
approximate X. A finite set of points has trivial topological structure. The basic approach
is to determine the topological properties of the ε-hulls of S as ε→ 0, and to extrapolate
this information to investigate the connectivity and homology of the underlying set X.

Previous work by Robins et al. has focused on holes in the ε-hulls that correspond
to a hole in the underlying space. The problem is to identify which holes in the ε-hulls
do correspond to such holes. Persistent Betti numbers count the number of holes that
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persist in the epsilon-hull for a certain range of epsilon values [12], [13]. When X has
fractal structure, it is possible to see unbounded growth in the persistent Betti numbers
β0
k(Xε) (defined in [12]) as ε → 0, so one can characterize this growth by assuming an

asymptotic power law. Not surprisingly, if the underlying set is a self-similar fractal, there
is a connection between the similarity dimension and the number of holes as ε → 0. If
β0
k(Xε) → ∞ as ε → 0, then it is natural to quantify the divergence by assuming an

asymptotic power law: β0
k(Xε) ∼ εγk . Robins gives the following conjecture: If X is a

self-similar fractal and a growth rate γk is non-zero, then it is equal to the similarity
dimension.

Our own work supports this conjecture. We prove the conjecture for holes in the
ε-hulls of any tree. Specifically, we prove that for a non-simple tree with scaling ratio r
(for which there exist ε-hulls that are multiply-connected) and a sequence {εn} defined by
εn = rnε0 such that ε0 > 0 and there are a finite number of holes in the ε-hulls for all εn,
the growth rate of holes is given by the similarity dimension (Theorem 16 in Section 5).

Our basic assumptions are different from the work discussed above [12], [13]. Though
the ε-hulls do provide the basis for our study of fractals, we consider the ε-hull of the
actual fractal, not of a finite approximation to the fractal. This approach has been quite
fruitful for the class of symmetric binary fractal trees, and future work will include a
thorough study of the ε-hulls of the relatives of the Sierpiński gasket. Contrary to the
the earlier work [12], [13], we are interested in all holes that arise in an ε-hull, not just
ones that are due to holes in the underlying fractal. Our goal is not just to classify
the topology of the underlying fractal, but to use the ε-hulls to gain finer invariants
to make comparisons. We are also interested in persistence as another characteristic of
the holes. In this case, persistence says something about the size of the holes, and it
can be considered a topological way to describe ‘lacunarity’ (discussed further below).
Persistence of holes also reflects how ‘space-filling’ the holes are, and this characteristic
may be particularly useful for applications. Although the utilization of ε-hulls is not new,
our goals and methods are quite different from those used in the literature to date.

As mentioned at the beginning of this Introduction, it is possible for two fractals to
have the same fractal dimensions but different topologies. One attempt to characterize
this has been through ‘lacunarity’. Mandelbrot first used the term lacunarity to describe
the texture of a fractal in terms of the holes or gaps of the fractal [8]. Generally, a
fractal with high lacunarity has larger holes or gaps compared to a fractal with the same
dimension but lower lacunarity. Mandelbrot suggested several ways to measure lacunarity.
One method involves ε-hulls so it is worthwhile to discuss here.

If K is a compact subset of Rd, let |K(ε)| denote the d-dimensional Lebesgue measure
(length, area, volume, etc.) of the ε-hull of K. Let D be the box-counting or Minkowski
dimension of K. Then [5]

(6) lim
ε→0

log |K(ε)|
log ε

= d−D.

In many cases we have the stronger condition that [8]

|K(ε)| ∼ Lεd−D,
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where L is a ‘prefactor’. Mandelbrot has suggested that 1/L is a numerical measure of
lacunarity [8].

For strictly self-similar sets, there are stronger results about lacunarity. Gatzouras
presents a theorem that is a refinement to Eq. (6).

Theorem (Gatzouras [5]). Let φ1, . . . , φN : Rd → Rd be contracting similarities with
similarity ratios r1, . . . , rN ∈ (0, 1), and let K be the corresponding invariant set. Assume
that the open set condition is met and that

∑N
i=1 r

D
i = 1.

1. If the numbers log r1, . . . , log rN do not concentrate on an additive subgroup of R of
the form λZ = {. . . ,−2λ,−λ, 0, λ, 2λ, . . .} for some λ > 0, then the following limit
exists and is finite:

lim
ε→0

|K(ε)|
εd−D

.

2. The following limit always exists and is finite:

L := lim
T→∞

1
T

∫ T

0

|K(e−t)|
e−t(d−D)

dt.

The number L is always defined, and 1/L can be used as a numerical measure of
lacunarity. If the condition for (1) is met, then this limit necessarily equals L. Note that
the Sierpiński gasket and its relatives do not satisfy (1). The general idea of the theorem
is that for values of t that are small, the gaps or holes of K are filled. As t increases, the
holes become exposed and the Lebesgue measure drops. It is important to note that using
lacunarity to compare two sets is only meaningful if the sets have the same Hausdorff
dimension [4].

We shall see that our approach using ε-hulls is broader than this notion of lacunarity.
First of all, our analysis is on fractals that are not strictly self-similar. Secondly, the
analysis considers all values of ε, not just what happens in the limit as ε goes to 0.
Finally, and most importantly, our analysis will be useful for comparing fractals with
different dimensions.

The organization of the remainder of the paper is as follows. Section 2 presents termi-
nology and mathematical details of the symmetric binary fractal trees and their ε-hulls.
Section 3 presents deeper theory regarding the ε-hulls of trees, including a discussion on
hole classes and hole persistence, leading to the definition of the hole sequence of a tree,
which provides a ‘topological bar-code’. To illustrate the utility of the new theory, we
look at specific examples of trees and their ε-hulls in Section 4. Following these examples,
we are able to further discuss the theory in Section 5. This includes a proof that for
non-simple trees the growth rate of holes is equal to the similarity dimension. Finally in
Section 6 there is a brief discussion of some current and future work related this paper.

2. ε-Hulls of symmetric binary fractal trees. Before proceeding with the analysis of
the ε-hulls of non-overlapping symmetric binary fractal trees, we first describe the fractal
trees and their scaling properties more precisely by using a monoid representation. For
any r ∈ (0, 1) and any θ ∈ (0◦, 180◦), the generator maps mR(r, θ) (or just mR) and
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mL(r, θ) (or just mL) are transformations on R2:

mR

([
x

y

])
= r

[
cos θ sin θ
− sin θ cos θ

] [
x

y

]
+
[

0
1

]
,(7)

mL

([
x

y

])
= r

[
cos θ − sin θ
sin θ cos θ

] [
x

y

]
+
[

0
1

]
.(8)

The generator maps mR and mL each consist of a rotation, contraction and translation.
The image of any compact set U under a generator map is similar to the set U with
contraction factor r.

An address A = A1A2 · · · is a string (finite or infinite) of elements, with each element
either R (for ‘right’) or L (for ‘left’). If an address is finite, then the level of the address
is equal to the number of elements in the string. The only level 0 address is the empty
address A0. An address map mA is a composition (finite or infinite) of generator maps.
For finite addresses A = A1A2 · · ·Ak, mA = mAk

◦ · · · ◦mA2 ◦mA1 . Ak denotes the set
of all level k addresses. An infinite address map is the limit of finite address maps, and
is well defined because r ∈ (0, 1). A∞ denotes the set of all infinite addresses. If C is
any compact subset of R2 and if mA is a level k address map, then the set mA(C) is a
compact subset of R2 that is similar to C with contraction factor rk. The monoid MLR

consists of all address maps with composition as the binary operation.
The trunk T0 of any tree is the closed vertical line segment between the points (0, 0)

and (0, 1). The image mR(T0) is the first branch to the right of the trunk, i.e., the closed
line segment between the points (0, 1) and (r sin θ, r cos θ + 1), and the image mL(T0) is
the first branch on the left side. Given a level k address A, the level k branch b = b(A)
is mA(T0). The affine hull of a branch is the line in R2 that the branch is collinear with
(also referred to as the linear extension). A level k finite approximation tree Tk(r, θ) is
the union of all branches up to and including level k. With the Hausdorff distance as
metric on the space of compact subsets of R2, the sequence of compact sets {Tk(r, θ)}
has a limit as the number of levels of branching goes to infinity because r ∈ (0, 1). The
symmetric binary fractal tree T (r, θ) is defined to be this limit.

Given an address A, the point with address A is denoted by PA and defined as follows.
If A is finite, PA is mA((0, 1)), i.e., the endpoint of the branch b(A), and is referred to as
a vertex of the tree. A tip point of the tree T (r, θ) is PA for some infinite address A, and it
equals mA((0, 1)). That is, for an infinite address A, PA is equal to the limit of the points
PAi as i goes to infinity, where Ai is the address of length i that consists of the first i
elements of A. The top points of a tree are all points of the tree that have maximal y-value.

In general, given a set U that is a subset of a tree T (r, θ) and an address A, mA(U) is
also a subset of the tree, and we refer to it as a descendant of U . The level of a descendant
is equal to the level of the address map A. A particular class of descendants are subtrees.
A level k subtree of a tree T (r, θ) is defined to be mA(T ) for some level k address A. The
subtree is denoted by SA(r, θ), SA, Sb, or just S (the branch b = b(A) acts as the trunk
of the subtree). If U is a subset of a tree and mA is a level k address map, then mA(U)
is similar to U with contraction factor rk. In general, we write V ∼kr U if there exists a
level k address map A such that V = mA(U).
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For an address A = A1A2 · · · , there exists a natural path on the tree that starts
with the trunk and goes to PA. The path consists of the trunk along with all branches
b(Ai), where Ai = A1 · · ·Ai. We denote this path p(A), and because it starts at the
trunk we consider it to be level 0. A level k path is the image of a level 0 path under
some level k address map. Certain paths are relevant for various features of a tree, such
as for identifying a hole. Paths that start with the trunk and are such that every other
branch is vertical (paths which are as ‘straight’ as possible) form a class of paths that are
particularly important. This warrants special symbols for the sets of addresses for such
paths.

AL2k = {A1A2 · · ·A2k | A2i−1A2i ∈ {RL,LR}, 1 ≤ i ≤ k} (k ≥ 0),(9)

AL∞ = {A1A2 · · · | A2i−1A2i ∈ {RL,LR}, ∀i}.(10)

For example, the address RLRLLRRL is in AL8. The address (RLLR)∞ is in AL∞.
The ‘AL’ refers to the fact that a level 0 path given by any such address is such that the
path alternates between vertical branches (all even level branches) and branches which
form an angle of θ with the y-axis (all odd level branches).

From the definition of the generator maps (Eqs. (4) and (8)), it is straightforward to
show that mR is equal to mL composed with reflection across the y-axis and vice versa.
Consequently, each tree is equal to its reflection across the y-axis. Because of this left-right
symmetry, we often restrict our attention to the right side of the tree. The mirror image
of an address A is the address A∗ that is obtained by switching each element of A from
L to R and R to L. For example, if A = RRLR, then A∗ = LLRL. The mirror image of
any object of the tree is the reflection of the object across the y-axis. It is often useful to
employ the following concise notation.

y = {(0, y) ∈ R2 | y ∈ R}, i.e. the y-axis,(11)

yI = {(0, y) ∈ R2 | y ∈ I}, where I is any subset of R.(12)

All self-contacting trees besides T (rsc, 90◦) and T (rsc, 135◦) have infinitely many
holes. The boundary of a hole is a simple closed curve. The holes and their bound-
ary curves were discussed in greater detail in [16]. For our purposes, it suffices to state
that such a self-contacting tree has at least one hole whose boundary intersects y. Any
hole whose boundary intersects y is considered to be level 0. Any hole H whose boundary
does not intersect y is such that there is a level 0 hole H ′ and some address map mA such
that H = mA(H ′). Thus the level of a hole or a curve is the level of the corresponding
address map.

Certain points of a tree will be important for studying holes. We introduce notation
for two particular addresses that are in AL∞:

(13) CR = RL(LR)∞ and CL = LR(RL)∞.

We now describe the canopy points of a tree, which correspond to endpoints of gaps of
trees whose top tip points are Cantor sets [12]. The degree 0 top canopy interval, denoted
by Itc, is the closed line segment bounded by the point PCR

with address CR = RL(LR)∞

and its mirror image PCL
with address CL = LR(RL)∞ (see Figure 11). The point PCR

is the right endpoint of the canopy interval, and PCL
is the left endpoint. There are no
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Fig. 11. Level 0, degrees 0 and 1 canopy intervals of T (rsc, 62◦)

top points between PCR
and PCL

. The interval Itc intersects the tree only in the points
PCR

and PCL
, so it indicates a gap in the top of the tree. The image mA(Itc) is a closed

line segment whose endpoints are with addresses ACR and ACL, and the interior of the
line segment is disjoint from the subtree (and the entire tree). A degree k canopy interval
is the image of Itc under an address map of the form mA, where A ∈ AL2k. Figure 11
displays the two degree one (level 0) canopy intervals. The top canopy intervals are the
collection of all top canopy intervals of degree k, as the degree ranges over k ≥ 0. The
top canopy points are the collection of endpoints of top canopy intervals. The degree of
a top canopy point is the degree of the interval that it is an endpoint of. Right canopy
points of degree k are at addresses ACR for some A ∈ AL2k, and left canopy points of
degree k are at addresses of the form ACL for some A ∈ AL2k. In general, a canopy point
is a top canopy point, or the image of a top canopy point under mA on some subtree
SA. Likewise, a canopy interval on a subtree SA is the image of a top canopy interval
under mA.

2.1. ε-Hulls of trees

Definition 2. Let θ ∈ (0◦, 180◦) and r ∈ (0, 1) be given, and let ε ≥ 0. We denote the
ε-hull of the tree with scaling ratio r and branching angle θ by E(r, θ, ε), and it is equal
to (T (r, θ))ε:

(14) E(r, θ, ε) = {(x, y) ∈ R2 | d((x, y), T (r, θ)) ≤ ε}.

The boundary of E(r, θ, ε) is denoted by ∂E(r, θ, ε) or just ∂E. Thus

(15) ∂E = {(x, y) ∈ R2 | d((x, y), T (r, θ)) = ε}.

The new notation for the ε-hulls of trees is used to reflect the fact that the topological
and geometrical properties of a given ε-hull are a function of r, θ and ε.

Remark. For any r and θ, E(r, θ, 0) = ∂E(r, θ, 0) = T (r, θ). For any ε ≥ 0, T (r, θ) ⊆
E(r, θ, ε).

Definition 3. Let r ∈ (0, 1) and θ ∈ (0◦, 180◦) be given. Let ε ∈ [0,∞]. Let S = SA(r, θ)
be a subtree of T (r, θ), where A ∈ Ak for some k ≥ 1. Let b = b(A). We define the ε-hull
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of the subtree S with scaling ratio r, branching angle θ and trunk b(A), denoted by
EA(r, θ, ε), ES(ε), ES , or Eb, to be

(16) EA(r, θ, ε) = {(x, y) ∈ R2 | d((x, y), SA(r, θ)) ≤ ε}.

Proposition 1. Let r, θ be given. Let S = SA(r, θ) ∈ Sk, where A ∈ Ak, for some k ≥ 1.
Then for any ε ∈ [0,∞), EA(r, θ, rkε) = mAE(r, θ, ε). Consequently EA(r, θ, rkε) ∼kr
E(r, θ, ε) (i.e., similar with factor rk via mA).

Intuitively, for a given tree T (r, θ) and a given ε ≥ 0, one considers a hole in E(r, θ, ε)
to be some open, contractible (i.e. simply-connected) set that is disjoint from the ε-hull,
and such that the boundary of the hole is a subset of the boundary of the ε-hull. For a
given tree T (r, θ) with r ∈ (0, 1) and ε ≥ 0, let EC(r, θ, ε), or EC , denote the complement
of the ε-hull in R2.

(17) EC(r, θ, ε) = R2\E(r, θ, ε) = {(x, y) ∈ R2 | d((x, y), T (r, θ)) > ε}.

In general, we use a superscript of ‘C’ to denote the complement of a given set in R2.
For any r, θ, and ε, EC is an open set. So if EC is non-empty, then the components

of EC are all open. There is one unbounded component whose first homology group is
Z, and any other components are contractible. The holes, if they exist, are the bounded
components. They are also the insides of simple, closed curves of the boundary of the
ε-hull.

Let Γ denote the set of the simple, closed curves in R2. For γ ∈ Γ, the inside of a curve
is denoted O(γ). We also define the set of simple, closed curves of tree T (r, θ), denoted
Γ(r, θ) (discussed in greater detail in [16]). A hole of a tree T (rsc, θ) is equal to O(γ) for
some γ such that O(γ) is disjoint from T (rsc, θ). Now we define the set of simple, closed
curves of the boundary of an ε-hull.

Definition 4. Let r ∈ (0, 1) and θ ∈ (0◦, 180◦) be given. Let ε ∈ [0,∞]. A simple, closed
curve of the boundary of the ε-hull E(r, θ, ε) is a simple, closed curve γ such that γ is
a subset of ∂E(r, θ, ε) and O(γ) is disjoint from the ε-hull E(r, θ, ε), i.e. O(γ) ⊂ EC .
Let Γ(r, θ, ε) be the collection of all simple, closed curves of the boundary of the ε-hull
E(r, θ, ε).

Definition 5. Let r ∈ (0, 1) and θ ∈ (0◦, 180◦) be given. Let ε ∈ [0,∞]. A hole in the
closed ε-hull E(r, θ, ε) is a region of the form O(γ) for some γ ∈ Γ(r, θ, ε). Alternately, a
set H is a hole if it is an open, simply-connected subset of R2 such that H is a component
of the complement of E(r, θ, ε) in R2. Denote the set of all such holes by H(r, θ, ε), or
just H(ε).

Let ε ≥ 0. Let N(r, θ, ε) be the number of holes in the ε-hull E(r, θ, ε) of the tree
T (r, θ). Often we write N(ε). For a given ε ≥ 0, N(r, θ, ε) may be 0, a finite number,
or infinite, depending on r and θ. For any tree, N(r, θ,∞) = 0. For any θ, if r < rsc,
then N(r, θ, 0) = 0. That is, the number of holes in any self-avoiding tree is 0 since there
are no simple, closed curves in ∂E(r, θ, 0) = T (r, θ), because any self-avoiding tree is
contractible.



TOPOLOGICAL BAR-CODES OF FRACTALS 195

Proposition 2. For any θ except 90◦ or 135◦, N(rsc, θ, 0) =∞. That is, a self-contact-
ing, non-space-filling tree has an infinite number of holes.

Proof. There must exist at least one closed, simple curve in the tree T (rsc, θ) such that
O(γ) is disjoint from T (rsc, θ) (see [16] for actual constructions of such curves). Without
loss of generality, let γ ∈ Γ(r, θ, 0) such that γ intersects y (such a curve necessarily exists
[16]). For each k ≥ 1, the set mRk(γ) is a simple closed curve, by the similarity of the
tree. Let γk denote mRk(γ). Also by the similarity of the tree, we have O(γk) disjoint
from T (rsc, θ), so O(γk) is a hole of the tree. Each O(γk) is distinct, because each γk
is similar to γ with contraction factor rksc. Therefore the corresponding holes to these
simple, closed curves as k ranges through the positive integers are all distinct, and so
there must be an infinite number of distinct holes.

Definition 6. A tree T (r, θ) is a simple tree if N(r, θ, ε) = 0 for every ε ∈ [0,∞]. Thus
every ε-hull of the tree is contractible (there are no holes).

Fig. 12. Simple tree T (0.25, 125◦)

Many simple trees do exist [15]. For example, the space-filling trees T (rsc, 90◦) and
T (rsc, 135◦) are contractible, and any ε-hull of either tree is also contractible. These two
trees are special cases. In general, the simple trees occur for small scaling ratios. In fact,
for any branching angle, there exist scaling ratios such that the corresponding trees are
simple (see [15] for a proof). Figure 12 displays a self-avoiding tree that is simple.

Definition 7. A tree T (r, θ) is a non-simple tree if there exists an ε ≥ 0 such that
N(r, θ, ε) > 0.

To continue the study of non-simple trees, more theory regarding the holes themselves
is needed.

3. Persistence of holes, hole classes and bar-codes. In this section we present
theory regarding the hole structure of ε-hulls of the trees, leading to the definition of
‘topological bar-codes’ for the trees.

3.1. Hole classes and persistence. Consider the self-contacting tree with branching angle
145◦, shown in Figure 13(a). The tree itself contains infinitely many holes. For example,
there is a hole H1 (the grey region) whose boundary contains the vertical line segment
between the point with address RR and the top of the trunk, and part of the branch
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b(R). For values of ε > 0 that are sufficiently small, there will still be exactly one hole
in this region of the ε-hull. There will not always be a hole in this region, because for
sufficiently large ε, the region is completely covered by the ε-hull. This leads us to wonder
for what range of values of ε the holes persist.

(a) T (rsc, 145◦) (b) T (rsc, 45◦)

Fig. 13. Self-contacting trees with holes

Consider the tree T (rsc, 45◦) shown in Figure 13(b). There is a hole H2 bounded in
part by the point (0, 1), the lowest tip point on the y-axis (with address RL3(LR)∞),
and the branches b(R) and b(L). It is possible to determine the smallest ε for which this
hole is covered by the ε- of the tree [15]. For any ε between 0 and this ‘collapse’ value,
there is exactly one hole in the ε-hull that has non-empty intersection with H2.

This is not always the case. Consider the hole H1 in the tree T (rsc, 145◦) again. Now
consider the point with address RRRL. When ε is half the x-coordinate of this point, the
original hole splits into two holes. Because of this possibility of a hole splitting, we have
to be careful with the definition of the persistence interval. We would like the definition
to be such that for any two holes, their corresponding persistence intervals are either the
same or they are disjoint, because we do not want one to be a proper subset of the other
(as would be the case for one of the two holes that is a result of a larger hole splitting in
two).

Definition 8. Let T (r, θ) be a non-simple tree, let ε ≥ 0 be such that there exists a hole
H in E(r, θ, ε). Then the persistence interval of H, denoted by P (H), is the maximal
interval I such that for any ε1 ∈ I, there is a unique hole H1 of E(r, θ, ε1) that has
non-empty intersection with H, and H1 obeys the following condition. For any ε2 ∈ I,
there exists exactly one hole H2 of E(r, θ, ε2) that has non-empty intersection with H1.

Definition 9. Let T (r, θ) be a non-simple tree, let ε0 ≥ 0 be such that there exists a hole
H of E(r, θ, ε0). The hole class [H] is the set of holes that have non-empty intersection
with H as ε ranges through P (H).

We often use just the symbol H to denote the hole class [H] when the context is clear.
For any H ′ ∈ [H], we have P (H ′) = P (H) (as a result of the definition of persistence
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interval), so P (H) is often considered to be the persistence interval of the hole class [H],
and is also denoted by P ([H]).

Definition 10. The persistence of a hole class [H] is defined to be the length of the
persistence interval P ([H]), and is denoted by |P ([H])| or |P (H)|.

We shall see that it is possible for a hole class to have persistence equal to 0.

Definition 11. Let T (r, θ) be a non-simple tree, and let H be a hole of some ε-hull of
the tree. The contact value of the hole class [H] is the infimum of the persistence interval
of the hole class, and it is denoted by ε[H] or just εH . The collapse value of the hole class
[H] is the supremum of the persistence interval, and it is denoted by ε[H] or just εH . Thus

(18) εH = inf(P ([H])), εH = sup(P ([H])).

The collapse value marks the end of a certain hole class. It could mean that the
maximal hole of the class is now completely covered by the ε-hull, but it could also mean
that the hole class has split into more than one hole class (so the region is not covered).

Definition 12. Let [H] be a hole class. The maximal hole of the hole class [H] is denoted
[H]max, and it is the element of [H] that occurs at εH . Every other hole in the hole class
is a subset of this hole.

If a hole class has contact value equal to 0, it is considered to be a self-contacting
hole class, because the maximal hole of the class is a hole of the actual tree. More will
be said regarding persistence intervals once we have introduced the concept of the level
of a hole. We will present quantitative results about persistence intervals of hole classes
for the ε-hulls of specific trees.

3.2. Symmetry and levels of holes. Each symmetric binary fractal tree has the y-axis,
which we have denoted by y, as an axis of symmetry. We now investigate how this
symmetry affects the structure of the holes. It follows immediately that those holes which
intersect y are symmetric in y, and other holes which do not intersect y have a counterpart
reflected across y. It follows from self-similarity that many holes will be symmetric in
lines which form linear extensions of branches on the tree.

Thus it seems plausible that there are holes in some ε-hulls that are also symmetric,
in the sense that a hole is symmetric if there is an axis of symmetry through the hole
that is an axis of symmetry for the hole itself.

Definition 13. For given values of r and θ and for ε ∈ [0,∞), a hole H ∈ H(r, θ, ε)
is a symmetric hole if there exists an axis of symmetry through it. Otherwise it is a
non-symmetric hole.

For example, the hole H2 of the tree T (rsc, 45◦) described above (see Figure 13(b))
is symmetric about y. The hole H4 of T (rsc, 45◦) described below (see Figure 14(b))
is symmetric about the affine hull of the branch b(RRLL). The hole H1 of the tree
T (rsc, 145) described above (see Figure 13(a)) is not symmetric. However, the mirror
image of H1 is also a hole. The hole H3 of T (rsc, 145) described below (see Figure 14(a))
is not symmetric.
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For given values of r and θ and for ε ∈ [0,∞] it is clear that both the ε-hull of the
tree and its boundary are symmetric about y. Suppose γ ∈ Γ(r, θ, ε) is such that γ does
not intersect y. Then the mirror image γ∗ (γ reflected across y) is an element of Γ(r, θ, ε)
distinct from γ.

It is possible to have a hole whose boundary is entirely contained in the boundary of
the ε-hull of a subtree. Recall that a level k subtree is the image of T (r, θ) under some
level k address map. This motivates the definition of the ‘level’ of a hole. Before we give
the definition, we present some preliminary results about holes and subtrees.

Theorem 3 (Subtree Theorem). Let θ be given, let r ≤ rsc, and let ε ≥ 0 be such that
H(r, θ, ε) is non-empty. Let H ∈ H(r, θ, ε). Then there exists a unique integer k ≥ 0 such
that:

1. For every m ≤ k, there exists a unique level m subtree S such that ∂H ⊂ ∂ES.
2. For all integers l > k, there are no level l subtrees S′ such that ∂H ⊂ ∂ES′ .

Proof. Suppose θ is given, r ≤ rsc, and ε ≥ 0 such that H(r, θ, ε) is non-empty. Let
H ∈ H(r, θ, ε).

If ∂H was completely included in the boundary of more than one subtree, then these
two subtrees must have been overlapping at branch interiors, and this contradicts that
r ≤ rsc. So if ∂H is contained in the boundary of the ε-hull of some level m subtree, then
this subtree is the unique such subtree of level m.

Trivially, ∂H is a subset of the boundary of the ε-hull of the level 0 subtree (which is
just the tree itself). Now for any m ≥ 0 such that there exists a unique level m subtree
whose ε-hull boundary contains ∂H, then the same is true for all integers l such that
0 ≤ l ≤ m. Let l be such that 0 ≤ l ≤ m. Then there is a unique level l subtree S′ that
is a superset of S (since there is a unique level l branch that is an ancestor of the trunk
of the subtree S), and hence ∂H ⊂ ∂ES′ .

Finally, there exists an integer m such that there are no level m subtrees whose ε-hull
boundaries entirely contain ∂H. If ε = 0, then ∂E = T (r, θ), and ∂H must partially
consist of branches of the tree. Any integer that is higher than the level of a branch that
is part of ∂H could be taken as m. If ε > 0, then there exists an integer m such that the
ε-hull of any subtree of level m or higher is contractible (since the size of the subtrees is
decreasing as the levels increase), and so such an m would be such that there are no level
m subtrees whose ε-hull boundaries entirely contain ∂H.

Thus there must exist a maximal non-negative integer k such that there exists a level
k subtree S such that ∂H ⊂ ∂ES , and this level k subtree is unique and for all integers
l > k, there are no level l subtrees S′ such that ∂H ⊂ ∂ES′ .

Definition 14. Let θ and r ≤ rsc be given, let ε ≥ 0 be such that H(r, θ, ε) 6= ∅. Let
H ∈ H(r, θ, ε), let H ′ = [H]max and ε′ = εH . Then H is a level k hole for some k ≥ 0, if k
is the the largest integer such that there exists a level k subtree S, whose ε-hull boundary
∂ES(ε′) contains the boundary ∂H ′ of H ′. For a given non-negative integer k, denote the
set of all level k holes by Hk(r, θ, ε), or just Hk(ε).
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(a) Level 2 hole of T (rsc, 145◦) (b) Level 4 hole of T (rsc, 45◦)

Fig. 14. Examples of holes of different levels

Examples of holes with levels higher than 0 are displayed in Figures 14(a) and (b).
Figure 14(a) displays the level 2 holeH3 = mRL(H1) of T (rsc, 145◦). Figure 14(b) displays
the level 4 hole mRRLL(H2) of T (rsc, 45◦).

Remarks. An immediate consequence of this definition of hole level is that the elements
of any hole class are all at the same level. In addition, because ∂ES(ε′) contains the
boundary ∂H ′ of H ′ we also have that ∂ES(ε) contains the boundary ∂H of H. Let θ
and r ≤ rsc be given, and let ε ≥ 0. Let k ≥ 0. Then Nk(r, θ, ε), or just Nk(ε), is the
number of level k holes of the corresponding ε-hull.

The following theorem will be extremely useful for analyzing the characteristics of
hole classes.

Theorem 4 (Hole Level Theorem). Let θ be given, and let r ≤ rsc. Let ε ≥ 0 such that
Hk(r, θ, ε) is non-empty, for some k ≥ 1. Let H ∈ Hk(r, θ, ε). Then for ε′ = r−kε, there
exists a hole H ′ ∈ H0(r, θ, ε′) and a level k address map mA such that H = mA(H ′), and
thus H ∼kr H ′.

Proof. Let θ be given, let r ≤ rsc, and let ε ≥ 0. Let H ∈ Hk(r, θ, ε) for some k ≥ 0. Let
ε′ = r−kε. There exists a subtree S = SA(r, θ), for some A ∈ Ak, such that ∂H ⊂ ∂ES
(by definition of a level k hole). Now S is a level k subtree, so EA(r, θ, ε) ∼k E(r, θ, ε′)
since EA(r, θ, ε) = mA(E(r, θ, ε′)). Now ∂H is a simple, closed curve that is a subset
of the boundary ∂ES of ES . ∂ES ∼kr ∂E, via the address map mA, so there exists
γ ∈ ∂E(r, θ, ε′) such that mA(γ) = H and so ∂H ∼kr γ. Let H ′ = O(γ) ∈ H(r, θ, ε′).
Then mA(H ′) = H and H ∼kr H ′. Note that the boundary of ES may intersect the
boundaries of other level k subtrees, but the intersection can’t affect ∂H because that
would contradict H being a level k hole.

The idea of this theorem is that any hole must correspond to a level 0 hole. For
example, the level 2 hole H3 = mRL(H1) in Figure 14(a) clearly corresponds to the level
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0 hole H1 in Figure 13(a). It is always possible to find an address and a level 0 hole to
obtain the given hole.

The converse of the previous theorem is also true and is stated below in the Descen-
dant Theorem (Theorem 7). The Hole Level Theorem may seem obvious due to the scaling
nature of the trees. However, the ε-hulls of subtrees may overlap in the formation of the
ε-hull of the tree, so it is more complicated than just considering the ε-hulls of subtrees
as disjoint sets. The Hole Level Theorem tells us that any hole in any ε-hull is the image
of a level 0 hole under a level k address map, i.e., it is a result of an action of the free
monoid. This is a very special property, because this implies that the level 0 holes yield
information about holes at any level. We can restrict our attention to the level 0 holes,
and this is the same thing as taking the fundamental domain under the action of the free
monoid. However, it is interesting to see how the critical values and scaling ratios interact.

We now direct our attention to the properties of the level 0 holes, and then derive
more general results about higher level holes. Self-contact for a given branching angle θ
occurs at the smallest scaling ratio such that either a tip point intersects y(1,ymax], or a
tip point or branch endpoint intersects the trunk [15]. This implies that rsc is the smallest
scaling ratio such that either SRL and SLR intersect or SRR and T0 intersect. In terms
of holes of the tree T (r, θ) = E(r, θ, 0), self-contact occurs for the smallest scaling ratio
such that there is a level 0 hole in the tree. For ε > 0, the conditions for a hole to be level
0 are similar.

Theorem 5 (Level 0 Hole Criteria). Let θ be given, and let r ≤ rsc. Let ε ≥ 0. A hole
H ∈ H(r, θ, ε) is level 0 if and only if one of the following conditions holds:

1. The boundary of H has non-empty intersection with both ERL(ε) and ELR(ε).
2. The boundary of H has non-empty intersection with both ERR(ε) and T0(ε).
3. The boundary of H has non-empty intersection with both ELL(ε) and T0(ε).

Proof. See [15].

Corollary 6. A hole is level 0 if and only if it intersects y(1,∞) (in the first case of
Theorem 5) or it does not intersect y but needs the trunk for formation (in the second
and third cases).

Theorem 7 (Descendant Theorem). Let θ be given, and let r ≤ rsc. Let ε ≥ 0 be such
that there exists a level 0 hole H ∈ H(r, θ, ε). For any positive integer j, there exist 2j

corresponding distinct level j holes in H(r, θ, rjε), namely the holes of the form mA(H),
where A ∈ Aj.

Proof. See [15]. First one proves that mR(H) and mL(H) are distinct level 1 holes in
(r, θ, rε). Then proceed via induction.

Due to the nice scaling properties of holes, we have some immediate results about
hole classes. To determine the persistence interval of any hole, it suffices to determine the
persistence interval of its corresponding level 0 hole.

Proposition 8. Let T (r, θ) be a tree. Let H be a level 0 hole, and let HA be the corre-
sponding level k hole for some level k address map mA. Then ε ∈ P ([H]) if and only if
rkε ∈ P ([HA]).
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Corollary 9. Let T (r, θ) be any tree, and let H ∈ H0(r, θ, ε) for some ε ≥ 0. Let
A ∈ Ak for some k ≥ 1. Let HA = mA(H) ∈ Hk(r, θ, rkε). Then

(19) εHA
= rkεH and εHA

= rkεH .

To study the holes in H(r, θ, ε) as ε ranges through [0,∞), as a result of Theorems 4
and 7 it suffices to determine the critical values for the level 0 holes. Any level k hole is the
image of a level 0 hole under a suitable level k address map. Conversely, any level 0 hole
has 2k corresponding level k holes via the address maps. To get the complete picture for
the persistent homology, we need to know how the critical values and the scaling ratios
interact. Another important factor regarding holes is symmetry. The ε-hulls all possess
left-right symmetry, so it suffices to consider holes that are not disjoint from the right
side of the y-axis. This will suffice to give information about holes on both sides.

3.4. The hole sequence. We now investigate one way to characterize a tree, based on what
can happen in the ε-hulls of a specific tree as ε ranges through [0,∞]. First we discuss
the critical values of ε for a tree, that is, for a pair r and θ. Then we will define a relation
on the ε-values, and this will enable us to define a hole partition and sequence. The hole
sequence is the new characteristic of a tree that is a kind of ‘topological bar-code’ in the
sense of Carlsson et al. [2].

Let r, θ be such that T (r, θ) is not a simple tree. The set Con(r, θ) denotes the set of
contact values for all possible hole classes (of any level). The set Col(r, θ) denotes the set
of collapse values for all possible hole classes (of any level). Because of the scaling nature
of the contact and collapse values and because we can restrict our attention to holes that
are the maximal hole of their class, we have

Con(r, θ) = {rkεH |k ≥ 0, H is a maximal level 0 hole},(20)

Col(r, θ) = {rkεH |k ≥ 0, H is a maximal level 0 hole}.(21)

Definition 15. For a pair (r, θ), a critical ε-value of (r, θ) is any contact or collapse
value. The set of all critical values is denoted by Crit(r, θ). If a tree is simple, then we
say Crit(r, θ) is empty.

If Crit(r, θ) is non-empty, then it has infinitely many elements. Given a level 0 hole
class H, its collapse value εH is non-zero. For each k ≥ 1, there is a level k hole Hk

(corresponding to some level k address map) whose collapse value is rkεH . Thus there
are infinitely many distinct critical values. It is generally straightforward to determine εH
for a level 0 hole class. Unfortunately, εH is generally not as easy to determine. Often a
lower and upper bound are sufficient for determining the hole sequence. We now present
notation for the bounds that we will consider.

A subscript of ‘gh’ refers to a lower bound for a critical value of ε. The ‘gh’ stands for
‘guaranteed hole’. A subscript of ‘gc’ refers to an upper bound for a critical value of ε.
The ‘gc’ stands for ‘guaranteed collapse’.

The lower bounds we consider are denoted by εghH , where we require that there exists
a hole of [H] at εghH . Thus εH ≤ εghH < εH . The upper bounds we consider are denoted
by εgcH , where we require that there are no holes of [H] for any ε ≥ εgcH . Thus εH ≤ εgcH .
We will use these bounds when dealing with specific examples.
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For any tree, if ε is sufficiently large, then the entire ε-hull is simply-connected. As ε
decreases to 0, the number of holes may become non-zero (if the tree is non-simple). We
now investigate the number of holes as a function of ε. We are concerned not just with
the number of holes, but also the classes of holes.

Definition 16. Let θ ∈ (0◦, 180◦) and let r ≤ rsc. The hole congruence relation of the
pair (r, θ), denoted by ∼r,θ, is defined on the set [0,∞] of ε-values as follows. ε1 ∼r,θ ε2
if the number of holes and the hole classes remain constant for ε between ε1 and ε2
(inclusively).

The hole congruence relation ∼r,θ is obviously an equivalence relation.

Definition 17. Let θ ∈ (0◦, 180◦) and let r ≤ rsc. The hole congruence partition of the
pair r, θ, denoted HP(r, θ), is the partition of [0,∞] into the equivalence classes with
respect to the hole congruence relation ∼r,θ. An equivalence class is denoted by [ε]r,θ, or
just [ε] when r and θ are understood.

We can order the equivalence classes of the hole partition as follows. We say that
[ε1] ≤ [ε2] if and only if ε1 ≥ ε2. This reverse ordering is used because when we consider
actual trees, we consider what happens as ε decreases from ∞, we don’t start by looking
at small values of ε. In addition, we use this reverse ordering to define the hole sequence.

Theorem 10. Let ε ∈ Crit(r, θ). Then [ε] = [ε, ε′) if ε′ is the next highest element of
Crit(r, θ) (so there are no elements of Crit(r, θ) between ε and ε′); [ε] = [ε,∞] if ε is the
largest value of Crit(r, θ); otherwise [ε] = {ε} (if there are critical values higher than ε,
but no next highest).

Proof. See [15].

Proposition 11. For any non-simple tree T (r, θ), the equivalence class of 0 with respect
to the hole congruence relation is the singleton set {0}.

Proof. See [11].

Finally we can define the hole sequence of a tree.

Definition 18. For a pair (r, θ) such that r ≤ rsc, the hole sequence of the pair (r, θ),
or the hole sequence of the tree T (r, θ), is the ordered set of numbers

(22) {Nε(r, θ)} = {N(r, θ, ε) | ε ∈ Crit(r, θ) or ε = 0},

where the set is ordered according to decreasing values of ε.

We shall see that for many trees the hole sequence is order isomorphic to the natural
numbers (i.e., can be indexed by the natural numbers). However, is not true in general.
The complications arise when there are non-zero values of ε that have singleton equiva-
lence classes. An example of how this can occur is with the tree T (rsc, 90◦), as we shall
see in the next section.

4. Specific examples. In this section of the paper we look at specific examples of
non-overlapping trees and their ε-hulls. We give one complete detailed example, and then
we discuss certain aspects of other trees.
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4.1. Detailed example: T (rsc, 45◦). We begin with a detailed example of a specific tree,
the self-contacting tree with branching angle 45◦ (see Figure 15(a)). This tree is a nice
example to start with because the geometric calculations are more straightforward than
with other angles. This example is worked through in detail to demonstrate the methods
that are used for other trees. First, we need to determine rsc. Using methods detailed in
[10], [15] and [16], rsc is the root of the polynomial r3 +

√
2r2 − 1/

√
2 that is in (0, 1),

hence rsc ≈ 0.59347. We claim that the self-contacting hole classes are the only hole
classes for the tree. Further discussion is available in [15].

(a) (b)

Fig. 15. (a) Level 0 holes of T (rsc, 45◦), (b) main level 0 hole of T (rsc, 45◦)

As discussed in [16], we can identify a self-contacting hole class by giving its location in
terms of the upper and lower limit of where the boundary of the maximal hole intersects
the y-axis y. The largest hole class is located by the pair (A0, RL

3(LR)∞), and we denote
this class by M . All other hole classes are located by pairs of the form (ACL,ACR),
where A ∈ AL2k (see Equation 9) for some k ≥ 0. Recall that CL denotes the address
LR(RL)∞ and CR denotes the address RL(LR)∞. Let C0 denote the hole class identified
by (RL3CL, RL

3CR). All other hole classes (except for M) are similar to C0 and are
referred to as canopy holes because their boundaries consist entirely of tip points on the
canopies of the subtrees SRL3 and SLR3 , see Figure 16(a).

Since any canopy hole class is the image of the hole class C0, and hence similar to
C0, we only need to determine the critical ε-values for M and C0. In general, there are
2j level 0 canopy holes that are similar to C0 with contraction factor r2jsc , via the address
maps from addresses in AL2j . We denote these holes Cj . The persistence interval for each
hole begins with 0, since each hole class is a self-contacting hole class. The exact collapse
values of the persistence intervals can also be determined. All hole classes here are sym-
metric about the y-axis, so to determine the collapse values we determine the smallest ε
so that the interval between the two locator points of the class is within ε of the tree.

First we calculate the collapse value εM of the largest hole. To do this, we determine
which point on the y-axis inside the hole is furthest from the boundary of the hole.
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Consider Figure 15(b), which is a close-up view of the main hole, along with a square
formed from the branches b(R) and b(L), and two other new line segments. The top right
line segment intersects the tree at the top of the subtree SRL4 . Further details for the
collapse value of the hole class M are found in [15], and εM ≈ 0.32266.

(a) (b)

Fig. 16. (a) Close-up of the intersection of SRL3 and SLR3 of T (rsc, 45◦), (b) Canopy Holes
Boundary Approximation for T (rsc, 45◦)

We can use a similar method to determine the value of εC0 . Consider the largest
canopy hole C0. The boundary of this hole can be approximated by a polygon of the
form shown in Figure 16(b). Again, further details are available in [11], and we find
εC0 =≈ 0.0175.

Now we are able to completely determine the persistence intervals, the hole partition
and the hole sequence for this tree.

Proposition 12. The level 0 critical ε-values for T (rsc, 45◦) are:

εM = 0, εM ≈ 0.3227,
εC0 = 0, εC0 ≈ 0.0175,
εCj = 0, εCj = r2jscεC0 j ≥ 0.

To order these critical values in decreasing order, we compare εC0 to εM . For these
values we have

r6scεM < εC0 < r5scεM .

The first five non-trivial equivalence classes are given in Table 1. Any other equivalence
class is of the form [rjscεC0 , r

5+j
sc εM ), where j ≥ 0, or of the form [r6+jsc εM , r

j
scεC0), where

j ≥ 0. We will look at these two forms of classes, and we consider the cases when j is
odd and when j is even.

First we will look at equivalence classes of the form [r6+2k
sc εM , r

2k
sc εC0), where k ≥ 0.

Holes of class M are present at levels 0 through 6 + 2k − 1, thus NM = 26+2k − 1. Holes
of class C0 are present at levels 0 through 2k and NC0 = 22k+1 − 1. Holes of class C1 are
present at levels 0 through 2(k − 1) and NC1 = 2(22k−1 − 1). In general, for integers l
such that 0 ≤ l ≤ k, holes of type Cl are present at levels 0 through 2(k − l). We have
NCl

= 2l(22k−2l+1 − 1) = 22k−l+1 − 2l. There are no other classes of holes. The total
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Table 1. Summary of the first twelve persistence intervals and numbers of holes in the hole
partition for T (rsc, 45◦) (the ” means that the values from the row above are also included, the
superscripts in the middle column represent the level of the hole class)

Equivalence class Description of holes present N([ε])

[εM ,∞) 0

[rscεM , εM ) 4 M 1

[r2scεM , rscεM ) ”, 2 M1 3

[r3scεM , r2scεM ) ”, 4 M2 7

[r4scεM , r3scεM ) ”, 8 M3 15

[r5scεM , r4scεM ) ”, 16 M4 31

[εC0 , r
5
scεM ) ”, 32 M5 63

[r6scεM , εC0) ”, 1 C0 64

[rscεC0 , r
6
scεM ) ”, 64 M6 128

[r7scεM , rscεC0) ”, 2 C1
0 130

[r2scεC0 , r
7
scεM ) ”, 128 M7 258

[r8scεM , r2scεC0) ”, 2 C1 260

number of holes for this equivalence class is then

N([r6+2k
sc εM , r

2k
sc εC0)) = 26+2k − 1 +

k∑
l=0

(22k−l+1 − 2l) = 26+2k + 2k+1(2k+1 − 2).

Next are equivalence classes of the form [r6+2k+1
sc εM , r

2k+1
sc εC0), where k ≥ 0. Holes of

class M are present at levels 0 through 6 + 2k, thus NM = 27+2k − 1. In general, for
integers l such that 0 ≤ l ≤ k, holes of class Cl are present at levels 0 through 2(k− l)+1.
We have NCl

= 2l(22k−2l+2 − 1) = 22k−l+2 − 2l. There are no other classes of holes. The
total number of holes for this equivalence class is then

N([r6+2k+1
sc εM , r

2k+1
sc εC0)) = 27+2k + 2k+1(2k+2 − 3).

Similarly, we determine that

N([r2ksc εC0 , r
5+2k
sc εM )) = 26+2k + 2k(2k − 2)

and

N([r2k+1
sc εC0 , r

5+2k+1
sc εM )) = 27+2k + 2k+1(2k+1 − 2).

We conclude:

Theorem 13. For T (rsc, 45◦), the equivalence classes with respect to hole congruence
are completely determined, and thus the hole sequence is also completely determined. We
have

N0 = 0, N1 = 1, N2 = 3, N3 = 7, N4 = 15, N5 = 31, N6 = 63

and for k ≥ 0,

N7+4k = N([r6+2k
sc εM , r

2k
sc εC0)) = 26+2k + 2k+1(2k+1 − 2),

N8+4k = N([r2k+1
sc εC0 , r

5+2k+1
sc εM )) = 27+2k + 2k+1(2k+1 − 2),
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N9+4k = N([r6+2k+1
sc εM , r

2k+1
sc εC0)) = 27+2k + 2k+1(2k+2 − 3),

N10+4k = N([r2(k+1)
sc εC0 , r

5+2(k+1)
sc εM )) = 26+2(k+1) + 2k+1(2k+1 − 2).

Remarks. The hole sequence is order-isomorphic to the natural numbers. The hole
sequence is monotonically increasing.

4.1. Golden 108 T (rsc, 108◦). We now consider another self-contacting tree: T (rsc, 108◦).
It can be shown that rsc = (−1 +

√
5)/2 = 1/φ ≈ 0.618 [15]. Here φ denotes the golden

ratio. There are exactly three other self-contacting trees that scale with the golden ratio
(corresponding to the angles 60◦, 120◦ and 144◦) [15].

Fig. 17. T (1/φ, 108◦)

This tree has two different types of holes. The main holes are self-contacting holes.
The second type arises from contact between two of the top tip points, namely the points
CR = RL(LR)∞ and CL = LR(RL)∞.

The main level 0 hole class is identified by the pair (A0, RRR(LR)∞). Let M denote
this hole class. Let S denote the level 0 secondary hole class. Consider the top of the
subtree SRRR. The gap between the canopy points PRRRCR

and PRRRCL
yields a hole

for some non-zero contact value (which equals half the distance between the two points).
There are other hole classes that correspond to the other canopy pairs of this subtree,
and the contact values decrease towards 0 as the degree of the canopy pairs gets higher.
Thus, for any δ > 0, there is some canopy hole class whose contact value is less than δ,
and the persistence of M must be 0.

Let Mk denote the main mixed hole class that has contact value rkscεS for k ≥ 1. Then,
for k ≥ 2, the collapse value of Mk is the contact value of Mk−1. The collapse value of
M1 corresponds to when the entire region is covered. Without going into the technical
details (available in [15]), it is possible to show that

εM1 = r2scεS , εM1 < εgcM1
≈ 0.119006,

εS = 0.224514, 0.224514 < εS < εgcS ≈ 0.236068.

This implies rscεM1 < r2scεS < r2scεS < εM1 . Thus

N0 = N([εS ,∞]) = 0,

N1 = N([εS , εS)) = 1 (level 0 secondary),



TOPOLOGICAL BAR-CODES OF FRACTALS 207

N2 = N([rscεS , εS)) = 0,

N3 = N([rscεS , rscεS)) = 2 (level 1 secondary),

N4 = N([εM1 , rscεS)) = 0,

and in general:

N5+3k (k ≥ 0) = N([rk+2
sc εS , r

k
scεM1)) = 2k+2 − 2,

N6+3k (k ≥ 0) = N([rk+2
sc εS , r

k+2
sc εS)) = 2k+3 − 2,

N7+3k (k ≥ 0) = N([rk+1
sc εM1 , r

k+2
sc εS)) = 2k+2 − 2.

Remarks. The hole sequence is order-isomorphic to the natural numbers. The hole
sequence is not monotonically increasing. The interesting thing to note here is that in
the ε-hull for ε = r2scεS , there are holes in level 2 and level 0, but no holes of level 1. This
provides a counter-example to a conjecture that it is not possible to have a discontinuity
in the levels of holes possible for any specific ε.

4.3. Golden 144 T (rsc, 144◦). As mentioned in the previous example, another self-con-
tacting tree that scales with the golden ratio is T (rsc, 144◦). Figure 18 displays an image
of the tree.

Fig. 18. T (1/φ, 144◦)

The self-contacting hole classes of this tree are the main hole class M located by
A0 and RR; and the vertex classes Vk located by RR(LR)k and RR(LR)k+1 for k ≥ 0.
Let P1 = (x1, y1) be the point with address RRRL. Then x1 ≈ 0.085757 and y1 ≈ 1 −
0.263932. There are non-self-contacting hole classes that correspond to the self-contacting
hole classes splitting. For example, consider the point PRRRL. When there is contact
between this point and the trunk, the main self-contacting hole class splits. Thus the
main class splits when ε = x1/2. The vertex class Vk splits when ε is half the value
of the x-coordinate of the point with address RR(LR)k+1RL. There are no other hole
classes [15].

The region of the tree that is bounded by the two branches b(RR(LR)kL) and
b(RR(LR)k+1), and the portion of the trunk between the starting point of b(RR(LR)kL)
and the endpoint of b(RR(LR)k+1), is similar to the region of the tree bounded by the
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branch b(R), the branch b(RR) and the portion of the trunk between (0, 1) and the end-
point of b(RR), with a contraction factor of r2(k+1)

sc . This fact reduces the set of critical
values that we need to determine.

Let MS denote the hole class with contact value x1/2 that is above the point P1 (so
the upper part of the hole class M that remains after it splits). We refer to it as the ‘main
split’ class. Let V S denote the hole class with contact value x1/2 that is below the point
P1 (so the lower part of the hole class M after it splits). We refer to this as the ‘vertex
split’ class.

The contact values we have so far are εM = εVk
= 0 and εMS = εV S = x1/2. The

collapse values we have so far are εM = x1/2 and εVk
= r

2(k+1)
sc x1/2. To find an upper

bound for the hole class MS, we determine the ε-value such that there is a point in
the region that is ε away from the trunk, the branch b(R) and the point P1. This gives
εgcMS ≈ 0.0655123 [15]. To find an upper bound for the hole class V S, we find the ε-value
such that the point (ε, (y1 + y2)/2) is ε away from the point P1. Solving for this value
gives εgcV S ≈ 0.0474052.

To summarize: rscεMS < εV S < εV S < εMS . The hole partition and sequence is given
by

N0 = N([εMS ,∞]) = 0,

N1 = N([εV S , εMS)) = 2 (level 0 main split),

N2 = N([εV S , εV S)) = 4 (2 level 0 main split, 2 level 0 vertex split),

N3 = N([rscεMS , εV S)) = 2 (level 0 main),

N4 = N([rscεV S , rscεMS)) = 6 (2 level 0 main split, 4 level 1 main split),

N5 = N([rscεV S , rscεV S)) = 10 (same as N4 plus 4 level 1 vertex split).

In general, given k ≥ 0: For intervals of the form [r2k+1
sc εV S , r

2k+1
sc εMS), there are main

split holes at levels 0 through 2k, with the total number of holes given by

N([r2ksc εV S , r
2k
sc εMS)) =

k+1∑
i=1

22i − 2 =
4
3

(4k+1 − 3)− 2(k + 1).

For intervals of the form [r2ksc εV S , r
2k
sc εMS), there are main split holes at levels 0 through

2k + 1, with the total number of holes given by

N([r2k+1
sc εV S , r

2k+1
sc εMS)) =

8
3

(4k+1 − 3)− 2(k + 1).

For intervals of the form [r2ksc εV S , r
2k
sc εV S), there are main and vertex split holes at levels

0 through 2k, with

N([r2ksc εV S , r
2k
sc εV S) =

4
3

(4k+1 − 3)− 2(k + 1) +
2
3

(4k+1 − 1).

For intervals of the form [r2k+1
sc εV S , r

2k+1
sc εV S), there are main and vertex split holes at

levels 0 through 2k + 1, with

N([r2k+1
sc εV S , r

2k+1
sc εV S) =

8
3

(4k+1 − 3)− 2(k + 1) +
4
3

(4k+1 − 1).
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For intervals of the form [r2k+1
sc εMS , r

2k
sc εV S), there are main holes in levels 0 through 2k,

and

N([r2k+1
sc εMS , r

2k
sc εV S)) =

4
3

(4k+1 − 3)− 2(k + 1).

For intervals of the form [r2k+2
sc εMS , r

2k+1
sc εV S), there are main holes in levels 0 through

2k + 1, and

N([r2k+2
sc εMS , r

2k+1
sc εV S)) =

8
3

(4k+1 − 3)− 2(k + 1).

Remarks. The hole sequence is order-isomorphic to the natural numbers. The main hole
class has persistence greater than zero, though it does split. This is different from the
other three golden trees where the main hole class has persistence equal to 0.

4.4. Self-avoiding tree T (0.5, 90◦). For self-avoiding trees with branching angle 90◦, any
hole classes that are not disjoint from the right side of the y-axis arise from canopy
pairs of the subtree SRLL or the subtree SRRR. For this particular tree with scaling ratio
r = 0.5, there are no holes above the trunk, so we just need to look at canopy pairs
of the subtree SRRR. Any point with address of the form RRRA, where A ∈ AL∞,
corresponds to a point on SRRR that has minimal distance to the trunk. Any such point
has the same x-component, so let x1 denote this value. With r = 0.5, we have x1 = 1/3.
The tip point with address RRR(RL)∞ is the highest point on SRRR that has minimal
distance to the trunk, and it is at a distance of rx1 = 1/6 from the branch b(R). Thus
every canopy interval will locate a hole because they are all sufficiently far away from
the branch b(R) when ε = x1/2 = 1/6. This means that there are infinitely many level 0
holes at ε = 1

6 .

Fig. 19. T (0.5, 90◦)

Let Ck denote the hole classes corresponding to degree k canopy intervals. It can be
shown that for any k ≥ 0 [11]:

εCk
=

1
6
, εCk

=
1
6

+
1

6(26+4k)
.

The collapse values decrease as k increases, and limk→∞ εCk
= 1/6. We also have rεC0 ≈

0.0846354 < 1/6, so there can be holes in at most one level at a time.
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For the hole sequence we will use a double index. The first index denotes the level and
the second denotes the highest degree of the canopy interval possible, plus 1. We have

N00 = N([εC0 ,∞]) = 0,

N01 = N([εC1 , εC0)) = 2,

N02 = N([εC2 , εC1)) = 6,

and in general, for level 0 and k ≥ 1:

N0k = N([εCk
, εCk−1)) = 2k+1 − 2.

The value 1/6 is not hole congruent to any other real number, because limk→∞ εCk
= 1/6.

Thus
N0∞ = N({εC0}) =∞.

We use this notation to signify that there are infinitely many critical values before εC0 ,
and that it is the limit of these values. For general levels j ≥ 1 and k ≥ 1:

Nj0 = N([rjεC0 , r
j−1εC0)) = 0,

Njk = N([rjεCk
, rjεCk−1)) = 2j(2k+1 − 2),

Nj∞ = N({rjεC0}) =∞.

Remarks. The hole sequence is not order-isomorphic to the natural numbers, we need
to use a double index to order the sequence. There are non-zero values of ε for which
there are infinitely many holes in the corresponding ε-hull, and these values of ε form
singleton sets in the hole partition. For any specific ε-value, the ε-hull of the tree can
have holes in at most one level. The hole classes have small persistence. For the level 0
hole classes, the persistence of the class Ck is

P ([Ck]) =
1

6(26+4k)
.

For example, for k = 5, P ([C5]) ≈ 2.4835× 10−9. This small persistence is related to the
space-filling nature of the angle. In fact, the persistence of such hole classes decreases as
the scaling ratio gets closer to the self-contacting scaling ratio 1/

√
2.

4.5. Self-avoiding trees T (0.4, 50◦) and T (0.4, 52◦). Figure 10(a) displays T (0.4, 50◦) and
Figure 10(c) displays T (0.4, 52◦).

First we consider the tree T (0.4, 50◦). It can be shown to have only the main type
of holes. Let M denote the main class of holes. Pc = (xc, yc) denotes the contact point
with address RL3(RL)∞. Then xc ≈ 0.21804 and yc ≈ 1 + .46080. We have εM = xc. To
estimate the collapse value, we determine when a point on the y-axis is equidistant from
the branch b(R) and the point Pc. This gives εgcM ≈ 0.76540, which suffices to show that
rεM < εM . The hole sequence and partition is given by

N0 = N([εM ,∞]) = 0,

N1 = N([εM , εM )) = 1,

N2 = N([rεM , εM )) = 0,
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N3 = N([rεM , rεM )) = 2,

N4 = N([r2εM , rεM )) = 0,

and in general, for j ≥ 1,

N2j = N([rjεM , rj−1εM )) = 0,

N2j+1 = N([rjεM , rjεM )) = 2j .

Remarks. For a specific ε-value, the ε-hull of the tree can have holes in at most one level.
The hole sequence is not monotonically increasing, and every number in the sequence is
either 0 or a power of 2. For any sequence of ε-values where εn = rεn−1, we have the
following growth rate:

lim
n→∞

log(N([εn])
log(1/εn)

=
log 2

log 1/r
.

We will not give all the details for the tree T (0.4, 52◦). Although the critical values
are different than for T (0.4, 50◦), the hole sequence is the same. The hole sequence for
the tree T (0.595, 50◦) in Figure 10(b) is much more complicated because it is possible for
holes to be present in more than one level for a specific ε-value. Thus the hole sequence
gives a classification of trees in such a way that T (0.4, 50◦) and T (0.4, 52◦) are of the
same class while T (0.595, 50◦) is in a separate class.

5. Discussion. In Sections 2 and 3, we developed new concepts and theory to study
symmetric binary fractal trees, based on an analysis of their ε-hulls as ε ranges through
the non-negative real numbers. The specific examples presented in the previous section
have shown how rich this extra structure can be. We now revisit the theory. In particular,
we discuss the persistence intervals of hole classes and critical ε-values for a tree and the
hole sequences of trees.

5.1. Persistence intervals. In studying the ε-hulls of a tree as ε ranges over the non-
negative real numbers, we are interested in various aspects of the holes (if holes exist at
all), not just the number of holes. One important feature is the persistence interval (the
interval of ε-values for which there is exactly one hole that has non-empty intersection
with the maximal hole of the hole class) and the persistence (length of the persistence
interval) of a hole class. One of the main results of our theory is that every hole class can
be obtained from some level 0 hole class via a suitable address map, and the persistence
is equal to the persistence of the level 0 hole class scaled by some power of the scaling
ratio r. Once we have determined the persistence intervals of the level 0 holes, we then
know all the persistence intervals for the tree, and thus all critical ε-values.

As seen in the examples, there are trees that have certain hole classes with relatively
small persistence (compared to other hole classes associated with the tree). So relatively
small holes can make a big difference in our characterizations of the trees. For example,
consider the three self-contacting trees T (rsc, 108◦), T (rsc, 112.5◦) and T (rsc, 120◦) shown
in Figure 20.

The tree T (rsc, 112.5) has only holes of the main type, while the other two have other
types of holes as well. In the case of T (rsc, 108◦), there are other hole classes above the
trunk. T (rsc, 120◦) has the main type of holes along with other classes of holes that arise
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(a) T (rsc, 108◦) (b) T (rsc, 112.5◦) (c) T (rsc, 120◦)

Fig. 20. Three relatively similar looking self-contacting trees with different hole sequences

due to the canopy gaps at the top of the subtree SRR. The persistence of the secondary
contact holes in the case of T (rsc, 108◦) is relatively small compared with the main holes,
as is the persistence of the mixed canopy holes of T (rsc, 120◦). So these small persistence
holes make a big difference in the hole sequences of the trees. If we didn’t want to make
such a distinction between the trees, perhaps we could restrict our attention to level 0 hole
classes that have some minimum persistence, so a persistence cutoff value. We have not
studied this idea in detail yet, but it is definitely worth investigating. Depending on the
persistence cutoff value, a tree with a complicated hole sequence based on our original
theory could have a more straightforward hole sequence. However, from a theoretical
point of view, it is interesting that our theory does distinguish between trees such as
T (rsc, 108◦), T (rsc, 112.5◦) and T (rsc, 120◦), though the distinction may be too fine for
the sake of applications.

Another issue is that a persistence cutoff value would eliminate hole classes that have
0 persistence. We have seen trees whose main holes have 0 persistence. To include these
types of holes, perhaps we could consider a new definition of hole class and persistence
interval. For example, one could define the persistence interval of a hole to be the range
of ε-values for which there is at least one hole that has non-empty intersection with the
original hole, as opposed to our requirement that there is exactly one. This would change
the nature of persistence intervals, because they would no longer be independent of the
hole chosen (because of splitting holes). The set of critical ε-values would remain the
same, but the hole classes would be different. Another definition of persistence could
make a distinction between level 0 hole classes that split into hole classes that are all
level 0 (e.g. T (rsc, 144◦)) and level 0 hole classes that split into more than one hole class,
but only one hole class is still level 0 (e.g. T (rsc, 120◦)). We are currently looking into
other definitions of persistence, but have no major results yet. Future work includes a
general definition for persistence of holes in ε-hulls of any set in R2, not just symmetric
binary fractal trees.

5.2. Hole partitions and hole sequences. The hole sequence is one way to characterize a
fractal tree, and it reflects various features of the tree. It gives a ‘topological bar-code’, a
term coined by Carlsson et al. [2]. Some of the examples in the previous section were such
that the hole sequence was order-isomorphic to the naturals, that is, it could be indexed
by the natural numbers. However, this is not true in general, since other sequences are
such that they could be indexed by non-standard ordinals, using two indices that each
came from the natural numbers. The tree T (0.5, 90◦) is an example of such a tree.
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As demonstrated in the examples, the hole partitions and hole sequences have a wide
range of complexity. As ε decreases from∞, the hole partition eventually comes to a block
of intervals that is repeated (only scaled by a factor of r after one cycle of the block). For
example, a self-contacting tree T (rsc, θ) with only main holes has a straightforward hole
partition. The first non-trivial interval is [rscεM , εM ), and every other interval is equal
to this interval scaled by some factor of rsc, so the length of the block that is repeated
is just 1. On the other hand, a specific example where the length of the repeated block
is infinite is the tree T (0.5, 90◦). So perhaps the length of the repeated block is a way to
characterize ‘complexity’ of a tree.

An important feature that the hole sequences indicate is that the growth rate of
holes is always equal to the similarity dimension of the tree. A general conjecture for all
self-similar fractals regarding growth rates of holes was put forth by Robins in [9]. Our
proof is for the analogous result of non-overlapping non-simple symmetric binary fractal
trees. The fact that it does not work for non-overlapping trees is not a counter-example,
because they are not strictly self-similar. However, it does show that Robins’ conjecture
would not work for all fractals with condensation. First we give a lemma that deals with
the growth rate of holes for a specific hole class.

Lemma 14. Let T (r, θ) be a non-simple tree. Let [H] be any level 0 hole class for the tree.
Let ε0 ∈ P ([H]) be such that ε0 > 0 and the only holes of type [H] in E(r, θ, ε0) are level
0. Let {εn} be a sequence of ε-values for n ≥ 0 such that εn = rnε0. Then

(23) lim
n→∞

log(N[H]([εn]))
log(1/εn)

=
log 2

log 1/r

where N[H]([εn]) denotes the number of holes of type [H] for any ε in the equivalence class
[εn] (so the number of holes of the hole class [H] and its descendant hole classes).

Proof. If H is above the line y = 1, then N[H]([ε0]) = 1 and if H is below the line y = 1,
then N[H]([ε0]) = 2. Let N ′n = N[H]([εn]).

First suppose [H] is a self-contacting hole class, so that rnεH = 0 for all n ≥ 0. For
any n ≥ 0, we have

N ′n = N ′0(1 + 2 + · · · 2n) = N ′0(2n+1 − 1).

Then

lim
n→∞

logN ′n
log(1/εn)

= lim
n→∞

logN ′0(2n+1 − 1)
log(1/rnε0)

= lim
n→∞

log(2n+1 − 1) + log(N ′0)
log(1/rn) + log(1/ε0)

= lim
n→∞

log(2n+1 − 1)
log(1/rn) + log(1/ε0)

+
log(N ′0)

log(1/rn) + log(1/ε0)

= lim
n→∞

log(2n+1 − 1)
log(1/rn) + log(1/ε0)

= lim
n→∞

log(2n+1 − 1)
log(1/rn)

= lim
n→∞

log 2n+1

n log(1/r)
= lim
n→∞

n log 2 + log 2
n log(1/r)

= lim
n→∞

n log 2
n log(1/r)

=
log 2

log(1/r)
.
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Now suppose the hole class is not a self-contacting hole class. There is a finite integer
d such that there are no level 0 holes of type H for any εn where n ≥ d, because the
contact value of the hole class is non-zero. For any εn where n ≥ d, there are holes of
levels n− d+ 1 through n, and

N ′n = N ′0(2n−d+1 + · · ·+ 2n).

Then we can use a similar argument as for the self-contacting hole classes to show that

lim
n→∞

logN ′n
log(1/εn)

=
log 2

log(1/r)
.

Corollary 15. Let T (r, θ) be a non-simple tree. Let [H] be any hole class for the tree.
Let ε0 ∈ P ([H]) be such that ε0 > 0. Let {εn} be a sequence of ε-values for n ≥ 0 such
that εn = rnε0. Then

lim
n→∞

log(N[H]([εn]))
log(1/εn)

=
log 2

log 1/r

where N[H]([εn]) denotes the number of holes of type [H] for any ε in the equivalence
class [εn].

Proof. This follows directly from the previous lemma. See [11] for further details.

Theorem 16 (Growth Rate of Holes). Let T (r, θ) be a non-simple tree. Let ε0 > 0 be
such that E(r, θ, rnε0) has a finite number of hole classes for all n ≥ 0. For the sequence
{εn} defined by εn = rnε0, the growth rate of holes is given by

(24) lim
n→∞

logN([εn])
log(1/εn)

=
log 2

log 1/r
.

Proof. First, there exists m ≥ 0 such that for any n ≥ m, the hole classes of E(r, θ, εn) are
all descendants of the hole classes of E(r, θ, εm), otherwise the assumption that E(r, θ, εn)
has a finite number of hole classes for all n is contradicted. Let M be the number of hole
classes in E(r, θ, εm). We can label the hole classes [Hi] for 1 ≤ i ≤ M . For n ≥ m, we
have

N([εn]) =
M∑
i=1

NHi
([εn]),

where NHi
([εn]) represents the number of holes that descend from [Hi]. Then

lim
n→∞

logN([εn])
log(1/εn)

= lim
n→∞

log
∑M
i=1NHi

([εn])
log(1/εn)

.

We will evaluate this limit by using the Squeeze Theorem. Set N ′M =
∑M
i=1NHi

([εm]).
For n ≥ m, we have

2n−mN ′M ≤
M∑
i=1

NHi
([εn]) ≤ (1 + 2 + · · ·+ 2n−m)N ′M .

The lower limit is the value that would correspond to each hole class being such that
there can be holes in at most one level for any ε while the upper limit corresponds to the



TOPOLOGICAL BAR-CODES OF FRACTALS 215

hole classes all being self-contacting. As in the proof of Lemma 14, we have

lim
n→∞

log 2n−mN ′M
log(1/εn)

=
log 2

log 1/r
and

lim
n→∞

log(1 + · · ·+ 2n−m)N ′M
log(1/εn)

=
log 2

log 1/r
.

Therefore, we have

lim
n→∞

logN([εn])
log(1/εn)

=
log 2

log 1/r
.

6. Conclusions and future work. The goal of this paper has been to provide foun-
dations for a new way to characterize and classify fractals. Because it is possible for two
fractals to have the same fractal dimensions but different topologies, it seems natural to
look at topological features of the fractals. To deal with the complex structure of fractals,
we considered fractals along with their ε-hulls.

The main part of this paper provided definitions, terminology, theoretical results and
specific examples for the class of non-overlapping symmetric binary fractal trees. The
persistence intervals and hole sequence are detailed features of a tree that endow the tree
with extra structure. We have a new classification of symmetric binary fractal trees based
on the hole sequence. The hole sequences are interesting from a theoretical point of view,
but may be difficult to use in applications. Thus some modifications may be needed to
apply the theory to natural systems that can be modelled with fractal trees. There are
other aspects of the ε-hulls of trees that provide other types of classifications, and this
will be discussed in future work.

One particular aspect is ‘complexity’, where we define complexity of a tree to be
related to the highest number of levels of holes that are possible in the ε-hull of a given
tree for any specific ε-value. Self-contacting trees that are not space-filling have infinite
complexity, while all self-avoiding trees have finite complexity. Complexity also allows
for the identification of critical angles. A critical angle in this sense marks a change
in complexity. The two angles 90◦ and 135◦, which were identified by Mandelbrot and
Frame as being topologically critical [10], are interesting in terms of complexity. We have
determined that for the branching angle 90◦, non-overlapping trees have complexity at
most 2, and for the branching angle 135◦, the upper limit is 4 [15]. However, it is not
true that each angle has a finite upper limit, because there is no upper limit for 45◦ [15].
We are still working on the details for other branching angles.

Another aspect is location—where on a non-simple tree do the hole classes appear?
How does this depend on the parameters? For example, the tree T (rsc, 112.5) (in Fig-
ure 20(b)) is interesting because it indicates a change in the location of holes. All self-
contacting trees with branching angle less than 112.5◦ have some kind of hole class that
is above the trunk, while all self-contacting trees with branching angle greater than or
equal to 112.5◦ have no hole classes above the trunk. Thus the angle 112.5◦ is critical in
terms of the location of the holes. We are still investigating the location of hole classes
as a function of branching angle, along with critical angles that indicate a change in
location.
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In conclusion, the hole sequence, or ‘topological bar-code’, does provide new infor-
mation about a fractal. This approach has proved to be quite fruitful for the class of
non-overlapping symmetric binary fractal trees, and should prove to be fruitful for other
classes of fractals as well.
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