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Abstract. This work is concerned with the influence of oscillations in weakly hyperbolic
operators on the well-posedness of the Cauchy problem. The fundamental solution to the Cauchy
problem is constructed for the equations with oscillations in the coefficient very close to the ones
destroying the C∞ well-posedness.

1. Introduction. The subject of this paper concerns with the investigation of the

influence of the oscillations in weakly hyperbolic operators on the well-posedness of the

Cauchy problem. Since the example constructed by F. Colombini and S. Spagnolo [1], it is

well-known that oscillations can break down the well-posedness. Namely, they constructed

a second order equation ∂2
t u− a(t)∂2

xu = f(t, x), with the smooth coefficient a ∈ C∞, for

which the Cauchy problem is not C∞ well-posed (see also [2]). The proof is based on the

very delicate investigation of the energy of solutions. For the equation

∂2
t u− exp(−2t−α)b(t−1)2∂2

xu = 0, α = const. > 0 ,(1.1)

where b(s) is a non-constant, positive and smooth 1-periodic function on R, the energy

method convinces that the Cauchy problem is C∞ well-posed if α ≥ 1. S. Tarama [6]
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appeals to the Floquet theory to prove that the problem is C∞ well-posed if and only if

α ≥ 1/2.

For second order equations with coefficients independent of the spatial variables some

sufficient for the well-posedness conditions are given in [7]. The equation under consider-

ation in [7] is the following:

D2
t u+

∑

|α|=2

a0,α(t)Dα
xu+

∑

j+|α|≤1

aj,α(t)Dj
tD

α
xu = f.(1.2)

It is supposed that the principal symbol can be written in the form

τ2 +
∑

|α|=2

a0,α(t)ξα = (τ − λ1(t, ξ))(τ − λ2(t, ξ)),(1.3)

with the real-valued functions λl(t, ξ) (l = 1, 2) which satisfy the conditions

|λl(t, ξ)| ≤ cλ(t)|ξ|, l = 1, 2, |λ1(t, ξ)− λ2(t, ξ)| ≥ δλ(t)|ξ|, δ = const. > 0,

for all t ∈ [0, T ], ξ ∈ Rnξ . Here λ ∈ C2([0, T ]), λ(0) = λ′(0) = 0, λ′(t) > 0 for t > 0. Thus,

at t = 0 the operator has multiple characteristics. Furthermore, it is assumed in [7] that

the following inequalities are satisfied:

|Dk
t Re a0,α(t)| ≤ Cλ2(t)

( |log λ(t)|
Λ(t)

)2−|α|(λ(t) |log λ(t)|
Λ(t)

)k
, k = 0, 1, 2,(1.4)

|Dk
t Im a0,α(t)| ≤ C

λ2(t)

Λ(t)

(λ(t) |log λ(t)|
Λ(t)

)k
, k = 0, 1,(1.5)

for all t ∈ (0, T ], 0 < |α| ≤ 2. Then in [7] it is proved that for equation (1.2) the Cauchy

problem is C∞ well-posed. The conditions (1.4) and (1.5) couple together an oscillation

with the degeneracy of the principal part.

For the equation (1.1) one can set λ1(t, ξ) = −λ2(t, ξ) = exp(−t−α)b(t−1)|ξ|, and

λ(t) = exp(−t−α). Then the critical value α = 1/2 of (1.1) is reflected in (1.4) by the term(
λ(t)|log λ(t)|

Λ(t)

)k
containing |log λ(t)|. Indeed, to satisfy that condition with k = 1 we have

to require 0 < const. ≤ t2λ(t) |log λ(t)| /Λ(t) for all t ∈ (0, T ], which is equivalent to

α ≥ 1/2. In [7] such equations are called equations with fast oscillating coefficients , while

the equations with coefficients satisfying estimates with
(
λ(t)
Λ(t)

)k
(that corresponds to

α ≥ 1) one can call possessing slowly oscillating coefficients . All other cases (correspond-

ing to α < 1/2) can be regarded as very fast oscillating . Such classification is useful

as well in completely other problem of Lp−Lq decay (as t → ∞) estimates for strictly

hyperbolic equations (see [4]), where anew oscillations can have destructive consequences.

On the other hand after an investigation of the well-posedness the next interesting

question is a construction of the fundamental solution (or of the parametrix) and a

description of the propagation of singularities in the framework of the micro-local analysis.

For the operators with slow oscillations such construction can be found in [8]. The goal of

the present note is to fill up the gap for the equations with oscillations in the coefficients

very close to the ones destroying the well-posedness. Thus in this paper we consider the

critical case of equations with fast oscillating coefficients.
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Let p = p(t) be a smooth function p ∈ C∞(0, T ] (0 < T < 1), satisfying

p′(t) ≤ −γ
t

(∃γ > 1), ∀t ∈ (0, T ],

0 ≤ p′′(t) ≤ ∃C|p(t)p′(t)|2, ∀t ∈ (0, T ].

Let a(t) be a non-negative function such that

a(t) = λ(t)b(t),

where

λ(t) =

{
e−p(t) for 0 < t ≤ T ,

0 for t = 0,

belongs to C1[0, T ] and b(t) is a uniformly positive smooth function satisfying

b ∈ C∞(0, T ] and |∂ht b(t)| ≤ ∃Ch|p(t)p′(t)|h for h = 1, 2, . . . , 0 < t ≤ T.(1.6)

The function p(t) implies the speed of degeneracy while the function b(t) describes the

oscillations. Typical examples are the following:

a1(t) =

{
exp (−t−α)b̃(t−1) for 0 < t ≤ T ,

0 for t = 0,
a2(t) =

{
tγ b̃

(
(− log t)β

)
for 0 < t ≤ T ,

0 for t = 0,

where α > 0, β > 0, γ > 1 and b̃(s) is a non-constant, uniformly positive, smooth and

1-periodic function on (0,∞).

In this paper we shall consider
{
∂2
t u− a(t)2∂2

xu = 0 in [0, T ]× Rx,

u(0, x) = u0(x), ∂tu(0, x) = u1(x) in Rx.
(1.7)

By Hs(Rx) we denote the Sobolev space equipped with the norm

‖u‖s :=
(∫

R

∑

k≤s
|∂kxu(x)|2 dx

)1/2

.

Further H∞(Rx) :=
⋂
s∈RH

s(Rx).

Theorem 1.1.

a) Assume that b(t) satisfies (1.6). Then for every u0, u1 ∈ H∞(Rx), the Cauchy

problem (1.7) has a unique solution u ∈ C2
(
[0, T ], H∞(Rx)

)
represented as follows:

u(t, x) =
∑

l=0,1

∑

m=1,2

1

2π

∫

R

∫

R
ei[(x−y)·ξ+ϕm(t,ξ)]alm(t, ξ)ul(y) dy dξ,

where ϕm(t, ξ) = (−1)m
∫ t

0
a(τ) dτ · ξ for m = 1, 2, while there exist Chα > 0, M > 0 and

0 ≤ ρ1 < ρ2 ≤ 1 such that

sup
0≤t≤T,
|ξ|≥1

|Dh
tD

α
ξ alm(t, ξ)| ≤ Chα〈ξ〉M+ρ1h−ρ2α for α ≥ 0, h, l = 0, 1, m = 1, 2.(1.8)

b) The representation is valid for every u0, u1 ∈ HM (Rx), and

WF
(
u(t)

)
⊂
{

(x, ξ) =
(
y ±

∫ t

0

a(τ) dτ, η
)

: (y, η) ∈WF(u0) ∪WF(u1)
}
.
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c) The problem possesses the finite propagation speed property that for smooth coef-

ficient a2 ∈ C∞([0, T ]) together with a) leads to C∞ well-posedness, that is, for every

u0, u1 ∈ C∞(Rx), the Cauchy problem (1.7) has a unique solution u ∈ C∞
(
[0, T ]× Rx

)
.

Remark 1.2. In particular when a(t) ≡ a1(t) (resp. a2(t)), the condition (1.6) cor-

responds to α ≥ 1/2 (resp. β ≤ 2). For α < 1/2 according to [6] the Cauchy problem

is not C∞ well-posed. The results of a) and c) are optimal. While, the result b) can be

obtained from the general theory of Fourier integral operators.

Remark 1.3. If λ(t) vanishes of infinite order, the Cauchy problem (1.7) has a unique

solution u ∈ C∞
(
[0, T ]× Rx

)
and (1.8) holds for any h ≥ 0.

2. Notation and classes of symbols. In this paper we often use the cut-off func-

tions χ(s) and ψ(s) such that

χ(s) =

{
1 for 0 ≤ s ≤ 1,

0 for s ≥ 2,
χ′(s) ≤ 0 and ψ(s) = 1− χ(s).

We define Λ(t) =
∫ t

0
λ(τ) dτ and Λ∗(t) = Λ(t)

p(t) . Let N > 0 and 〈ξ〉 =
√
e2 + |ξ|2 (≥ e).

Definition 2.1. The functions tN (ξ) and t̃N (ξ) are (unique) roots of Λ∗(t)〈ξ〉 =

2N log〈ξ〉 and Λ∗(t)〈ξ〉 = 4N log〈ξ〉, respectively, i.e., Λ∗(tN (ξ))〈ξ〉 = 2N log〈ξ〉 and

Λ∗(t̃N (ξ))〈ξ〉 = 4N log〈ξ〉.
Definition 2.2. We define the hyperbolic zone

ZN (t, ξ) =
{

(t, ξ) ∈ [0, T ]× Rξ : Λ∗(t)〈ξ〉 ≥ 2N log〈ξ〉 and |ξ| ≥ 1
}
.

Definition 2.3. Let m1, m2 and m3 be real numbers. We define the spaces of the

symbols

SN (m1,m2,m3) =
{
a(t, ξ) ∈ C∞ : sup

(t,ξ)∈ZN

〈ξ〉|α|−m1 |Dh
tD

α
ξ a(t, ξ)|

λ(t)m2 |p(t)p′(t)|m3+h
≤ Chα

}
,(2.1)

S−∞N (m1,m2,m3) =

∞⋂

k=0

SN (m1 − k,m2 − k,m3 + k).(2.2)

Remark 2.4. The following properties are known (see [7]).

(i) SN (m1,m2,m3) ⊃ SN (m1 − k,m2 − k,m3 + k) for k ≥ 0.

(ii) If a ∈ SN (m1,m2,m3), then Dα
ξ a ∈ SN (m1 − |α|,m2,m3).

(iii) If a ∈ SN (m1,m2,m3) and b ∈ SN (m̃1, m̃2, m̃3) (resp. S−∞N (m̃1, m̃2, m̃3)), then

ab ∈ SN (m1 + m̃1,m2 + m̃2,m3 + m̃3) (resp. S−∞N (m1 + m̃1,m2 + m̃2,m3 + m̃3)).

Proposition 2.5 ([7]). Suppose that for all k = 1, 2, . . ., ak ∈ SN (m1 − k + 1,m2 −
k + 1,m3 + k − 1), ak(t, ξ) = 0 for 0 ≤ t ≤ tN (ξ), |ξ| ≥ 1. Then there exists a symbol

a(t, ξ) ∈ SN (m1,m2,m3) such that

supp a ⊂ ZN (t, ξ) and a ∼ a1 + a2 + . . . mod S−∞N (m1,m2,m3)

in the sense that a− a1 − . . .− ak ∈ SN (m1 − k,m2 − k,m3 + k) for all k = 0, 1, . . ..
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3. Reduction to a first order diagonal system. Without loss of generality we

may suppose that b(t) has the form

b(t) ≡ 1 + c(t),

where c(t) is a smooth function satisfying

|c(t)| ≤ 1/2, c ∈ C∞(0, T ] and |∂ht c(t)| ≤ Ch|p(t)p′(t)|h (∃Ch > 0).

By Fourier transform the Cauchy problem (1.7) is changed into
{
∂2
t v + a(t, ξ)2v = 0 in [0, T ]× Rξ,
v(0, ξ) = v0(ξ), ∂tv(0, ξ) = v1(ξ) in Rξ,

(3.1)

where a(t, ξ) = λ(t)
{

1 + c(t)
}
|ξ|
(
= a(t)|ξ|

)
.

Definition 3.1. The functions ε = ε(ξ) and ε̃ = ε̃(ξ) are (unique) roots of the

equations λ(t)〈ξ〉 = 1 and λ(t)〈ξ〉 = 2, respectively, i.e., λ(ε)〈ξ〉 = 1 and λ(ε̃)〈ξ〉 = 2.

Definition 3.2. The functions δ = δ(ξ) and δ̃ = δ̃(ξ) are (unique) roots of the equa-

tions Λ(t)〈ξ〉 = N log〈ξ〉 and Λ(t)〈ξ〉 = 2N log〈ξ〉, respectively, i.e., Λ(δ)〈ξ〉 = N log〈ξ〉
and Λ(δ̃)〈ξ〉 = 2N log〈ξ〉.

Lemma 3.3. For sufficiently large N > 0, the following relation holds :

0 < ε < ε̃ < δ < δ̃ ≤ tN (ξ) < t̃N (ξ) for ξ ∈ Rξ.
Now we approximate a(t, ξ) with two functions defined by the following formulas.

a∗(t, ξ) = χ
(
λ(t)〈ξ〉

)
+ ψ

(
λ(t)〈ξ〉

)
λ(t)

{
1 + ψ

( Λ(t)〈ξ〉
N log〈ξ〉

)
c(t)

}
〈ξ〉,

a∗∗(t, ξ) =
λ(δ̃)〈ξ〉

2
χ
( Λ(t)〈ξ〉
N log〈ξ〉

)
+ ψ

( Λ(t)〈ξ〉
N log〈ξ〉

)
λ(t)

{
1 + ψ

( Λ(t)〈ξ〉
N log〈ξ〉

)
c(t)

}
〈ξ〉.

Noting that |c(s)| ≤ 1/2 and considering the supports of χ and ψ, we get

Lemma 3.4. For any t ∈ [0, T ] and ξ ∈ Rξ, a∗(t, ξ) and a∗∗(t, ξ) are positive, more

precisely

a∗(t, ξ) ≥ max
{λ(t)〈ξ〉

2
,

1

2

}
, a∗∗(t, ξ) ≥ max

{λ(t)〈ξ〉
2

,
λ(δ)〈ξ〉

2

}
,

|Dh
tD

α
ξ a
∗(t, ξ)| ≤ Chα〈ξ〉−|α|

(
max{|p′(ε)|, |p′(δ)|p(δ)}

)h
a∗(t, ξ),

|Dh
tD

α
ξ a
∗∗(t, ξ)| ≤ Chα〈ξ〉−|α|

(
|p′(δ)|p(δ)

)h
a∗∗(t, ξ).

Putting W =

(
a∗∗(t, ξ)1/2v

∂t{a∗∗(t, ξ)1/2v}

)
and W0 := W

∣∣
t=0

=
{λ(δ̃)〈ξ〉

2

}1/2
(
v0

v1

)
and

multiplying both sides of (3.1) by a∗∗(t, ξ)1/2, we find that the Cauchy problem (3.1) is

equivalent to the one for the system,


∂tW =

(
0 1

−a(t, ξ)2 − r(t, ξ) ∂ta
∗∗(t,ξ)

a∗∗(t,ξ)

)
W,

W (0) = W0,

where r(t, ξ) =
3

4

(∂ta∗∗(t, ξ)
a∗∗(t, ξ)

)2

− 1

2

∂2
t a
∗∗(t, ξ)

a∗∗(t, ξ)
.
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Further we make one step of the diagonalization by putting

W ∗ =

(
1 1

−ia∗(t, ξ) ia∗(t, ξ)

)−1

W and W ∗0 := W ∗
∣∣
t=0

=
1

2

(
1 i

1 −i

)
W0,

and multiplying both sides of the system by

(
1 1

−ia∗(t, ξ) ia∗(t, ξ)

)−1

, where a∗(t, ξ)−1

belongs to SN (−1,−1, 0). Then we obtain
{
∂tW

∗ = D(t, ξ)W ∗ +B(t, ξ)W ∗,

W ∗(0) = W ∗0 ,
(3.2)

where D = ia(t, ξ)

(−1 0

0 1

)
,

B =
1

2

{∂ta∗∗(t, ξ)
a∗∗(t, ξ)

− ∂ta
∗(t, ξ)

a∗(t, ξ)

}( 1 −1

−1 1

)

+ i
{
a∗(t, ξ)− a(t, ξ)

}(−1 0

0 1

)
+
a(t, ξ)2 − a∗(t, ξ)2 + r(t, ξ)

2ia∗(t, ξ)

(
1 1

−1 −1

)
.

Definition 3.5. We define recursively the sequence
{
B(k)(t, ξ)

}
k≥1

as





B(1)(t, ξ) = B(t, ξ)− χ
( Λ∗(t)〈ξ〉

2N log〈ξ〉
)
B(t, ξ),

B(k)(t, ξ) = B̃(k)(t, ξ)− χ
( Λ∗(t)〈ξ〉

2N log〈ξ〉
)
B(t, ξ) for k = 2, 3, . . .,

where

B̃(k)(t, ξ) =
(
I +

k−1∑

j=1

H(j)(t, ξ)
)(
∂t −D(t, ξ)−

k−1∑

j=1

F (j)(t, ξ)
)

−
(
∂t −D(t, ξ)−B(t, ξ)

)(
I +

k−1∑

j=1

H(j)(t, ξ)
)
,

F (k)(t, ξ) = diagB(k)(t, ξ), H(k)(t, ξ) =
1

2ia(t, ξ)

(
0 B

(k)
12 (t, ξ)

−B(k)
21 (t, ξ) 0

)
.

When 0 ≤ t ≤ tN (ξ), we see that B(1)(t, ξ) = 0 and recursively B(k)(t, ξ) = 0 for

k = 1, 2, . . .. Thus, we obtain H(k)(t, ξ) = 0 for k = 1, 2, . . .. Moreover we can derive for

k = 2, 3, . . .

B(k) =
k−1∑

j=1

[D,H(j)]−
k−1∑

j=1

∂tH
(j) −

(
I +

k−1∑

j=1

H(j)
) k−1∑

j=1

F (j) +B
(
I +

k−1∑

j=1

H(j)
)
− χB

=
{
B(k−1) +

[
D,H(k−1)

]
− F (k−1)

}
+BH(k−1) − ∂tH

(k−1)

−
k−1∑

j=1

H(k−1)F (j) −
k−2∑

j=1

H(j)F (k−1).

Noting that B(k−1)+[D,H(k−1)]−F (k−1) ≡ 0, we also obtain recursively the following
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Lemma 3.6. For sufficiently large N > 0,

B(k) ∈ SN (−k,−k, k + 1), H(k) ∈ SN (−k − 1,−k − 1, k + 1) for k = 1, 2, . . . ,

F (k) ∈
{
SN (−1,−1, 2) for k = 1,

SN (−k − 1,−k − 1, k + 2) for k = 2, 3, . . .

By Proposition 2.5 there exists H(t, ξ) =

(
0 H12

H21 0

)
∈ SN (−2,−2, 2) such that

suppH ⊂ ZN (t, ξ) and H ∼ H(1) + H(2) + . . . mod S−∞N (−2,−2, 2), and for sufficiently

large N > 0, there exists H∗(t, ξ) ∈ SN (−2,−2, 2) defined by

H∗(t, ξ) ≡ 1

1−H12H21

(
H12H21 −H12

−H21 H12H21

)
=
(
I +H(t, ξ)

)−1 − I.

Finally, putting

W ∗∗ =
(
I +H∗(t, ξ)

)
W ∗ and W ∗∗0 := W ∗∗

∣∣
t=0

=
(
I +H∗(0, ξ)

)
W ∗0 = W ∗0 ,

and multiplying both sides of (3.2) by
(
I +H∗(t, ξ)

)
, we obtain





∂tW
∗∗ = D(t, ξ)W ∗∗ + diag

{
B∗(t, ξ)

}
W ∗∗ + χ

( Λ∗(t)〈ξ〉
2N log〈ξ〉

)
B(t, ξ)W ∗∗

+ χ
( Λ∗(t)〈ξ〉

2N log〈ξ〉
)
B∗∗(t, ξ)W ∗∗ +R(t, ξ)W ∗∗,

W ∗∗(0) = W ∗∗0 ,

(3.3)

where R(t, ξ) ⊂ S−∞N (−1,−1, 2), B∗(t, ξ) = B(1) + BH ∈ SN (−1,−1, 2) and B∗∗(t, ξ) =

H∗B ∈ SN (−3,−3, 4).

4. Some estimates. In this section we show some estimates which will be used to

construct the fundamental solution of (3.3). For simplicity we define χ∗(t) = χ
(
λ(t)〈ξ〉

)
,

χ∗∗(t) = χ
(

Λ(t)〈ξ〉
N log〈ξ〉

)
and ψ∗(t) = 1− χ∗(t), ψ∗∗(t) = 1− χ∗∗(t).

Noting the support of χ
(

Λ∗(t)〈ξ〉
2N log〈ξ〉

)
, we obtain

∫ T

0

χ
( Λ∗(t)〈ξ〉

2N log〈ξ〉
)
B(t, ξ) dt ≤ 1

2

∫ t̃N (ξ)

0

∣∣∣∂ta
∗∗

a∗∗
− ∂ta

∗

a∗

∣∣∣ dt+

∫ t̃N (ξ)

0

|a∗ − a| dt

+
1

2

∫ t̃N (ξ)

0

∣∣a2 − a∗2
∣∣

a∗
dt+

1

2

∫ t̃N (ξ)

0

|r|
a∗

dt

≡ I1 + I2 + I3 + I4.

Since ∂ta
∗(t, ξ) = 0 for 0 ≤ t ≤ ε, ∂ta∗∗(t, ξ) = 0 for 0 ≤ t ≤ δ and a∗(t, ξ) = a∗∗(t, ξ) for

δ̃ ≤ t
(
≤ t̃N (ξ)

)
, we deduce that

I1 =
1

2

∫ δ̃

ε

∣∣∣∂ta
∗∗

a∗∗
− ∂ta

∗

a∗

∣∣∣ dt ≤ 1

2

∫ δ̃

ε

∣∣∣∂ta
∗

a∗

∣∣∣ dt+
1

2

∫ δ̃

δ

∣∣∣∂ta
∗∗

a∗∗

∣∣∣ dt ≡ I∗1 + I∗∗1 .

Noting the supports of χ∗′, ψ∗′ and ψ∗∗′, by (1.6) and Lemma 3.4 we obtain

I∗1 ≤ C

∫ δ̃

ε

{ |χ∗′|
a∗

+
|ψ∗′|λ〈ξ〉

a∗
+
ψ∗|λ′|〈ξ〉

a∗
+
|ψ∗∗′|λ〈ξ〉

a∗
+
ψ∗∗λ|c′|〈ξ〉

a∗

}
dt
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≤ C
{∫ ε̃

ε

|χ∗′| dt+

∫ ε̃

ε

λ′〈ξ〉 dt+

∫ δ̃

ε

λ′

λ
dt+

∫ δ̃

δ

λ〈ξ〉
N log〈ξ〉 dt+

∫ δ̃

δ

|pp′| dt
}

≤ C
{

1 + 1 +

∫ δ̃

ε

|p′|dt+ 1 + p(δ)

∫ δ̃

δ

|p′| dt
}
≤ Cp(ε).

Similarly we also obtain I∗∗1 ≤ Cp(ε). Thus we get I1 ≤ I∗1 + I∗∗1 ≤ Cp(ε). Since a(t, ξ) =

a∗(t, ξ) for δ̃ ≤ t
(
≤ t̃N (ξ)

)
, we get I2 =

∫ δ̃
0
|a∗ − a| dt ≤ CΛ(δ̃)〈ξ〉 ≤ CN log〈ξ〉. Similarly,

by Lemma 3.4 we get I3 ≤ CN log〈ξ〉. Since ∂ta
∗∗(t, ξ) = 0, ∂2

t a
∗∗(t, ξ) = 0 for 0 ≤ t ≤ δ,

we deduce that

I4 ≤ C
∫ t̃N (ξ)

δ

1

a∗

∣∣∣∂ta
∗∗

a∗∗

∣∣∣
2

dt+ C

∫ t̃N (ξ)

δ

1

a∗

∣∣∣∂
2
t a
∗∗

a∗∗

∣∣∣ dt ≡ I∗4 + I∗∗4 .

The last estimate corresponds to the estimate in the oscillation’s subzone of [5]. Noting

the supports of χ∗∗′ and ψ∗∗′, by (1.6) and Lemma 3.4 we obtain

I∗4 ≤ C

∫ t̃N

δ

{ |λ(δ̃)〈ξ〉χ∗∗′|2
a∗a∗∗2

+
|ψ∗∗′|2λ2〈ξ〉2

a∗a∗∗2
+
ψ∗∗|λ′|2〈ξ〉2
a∗a∗∗2

+
ψ∗∗λ2|c′|2〈ξ〉2

a∗a∗∗2

}
dt

≤ C
{∫ δ̃

δ

λ〈ξ〉
(N log〈ξ〉)2

dt+

∫ t̃N

δ

(λ′
λ

)2 1

λ〈ξ〉 dt+

∫ t̃N

δ

|pp′|2
λ〈ξ〉 dt

}
≤ C

∫ t̃N

δ

p2|p′|2
λ〈ξ〉 dt.

Similarly we also obtain I∗∗4 ≤ C
∫ t̃N
δ

p2|p′|2
λ〈ξ〉 dt. Thus I4 ≤ I∗4 + I∗∗4 ≤ C

∫ t̃N (ξ)

δ
p2|p′|2
λ〈ξ〉 dt ≤

C p(δ)2|p′(δ)|
〈ξ〉

∫ t̃N
δ

(
−p′(t)

)
ep(t) dt ≤ Cp(δ)2|p′(δ)|ep(δ)〈ξ〉−1.

Combining I1–I4 and noting that |p′(δ)|ep(δ) ≤ 〈ξ〉
N log〈ξ〉 , we have for ξ ∈ Rξ

∫ T

0

χ
( Λ∗(t)〈ξ〉

2N log〈ξ〉
)
B dt ≤ Cp(ε) + CN log〈ξ〉+ Cp(δ)2|p′(δ)|ep(δ)〈ξ〉−1

≤ CN log〈ξ〉.
(4.1)

Noting the supports of χ
(

Λ∗(t)〈ξ〉
2N log〈ξ〉

)
and observing that B∗∗(t, ξ) ∈ SN (−3,−3, 4), we

obtain for ξ ∈ Rξ
∫ T

0

χ
( Λ∗(t)〈ξ〉

2N log〈ξ〉
)
B∗∗ dt ≤ C

∫ t̃N

tN

p(t)4|p′(t)|4
〈ξ〉3λ(t)3

dt = C

∫ t̃N

tN

p(t)|p′(t)|
(
Λ∗(t)〈ξ〉

)3 dt ≤ C.(4.2)

Since R(t, ξ) ∈ S−∞N (−1,−1, 2) ∈ SN (−3,−3, 4), similarly we have for ξ ∈ Rξ
∫ T

0

Rdt ≤ C
∫ T

tN

p(t)k+2|p′(t)|k+2

〈ξ〉k+1λ(t)k+1
dt = C

∫ T

tN

p(t)|p′(t)|
(
Λ∗(t)〈ξ〉

)k+1
dt.(4.3)

5. The representation formula. We define the diagonal matrix function

E(t, ξ) = exp
{∫ t

0

D(τ, ξ) dτ
}

=

(
exp
{
−i
∫ t

0
a(τ, ξ) dτ

}
0

0 exp
{
i
∫ t

0
a(τ, ξ) dτ

}
)
.

For every Ψ(ξ) the vector function V (t, ξ) = E(t, ξ)Ψ(ξ) is a solution of the Cauchy

problem {
∂tV = D(t, ξ)V in [0, T ]× Rξ,
V (0, ξ) = Ψ(ξ).

(5.1)



EQUATIONS WITH FAST OSCILLATING COEFFICIENTS 129

Now we put

G(t, ξ) ≡ E−1
{

diag
{
B∗
}

+ χ
( Λ∗(t)〈ξ〉

2N log〈ξ〉
)
B + χ

( Λ∗(t)〈ξ〉
2N log〈ξ〉

)
B∗∗ +R

}
E.

Then the matrix function

K(t, ξ) =
∞∑

j=1

∫ t

0

G(t1, ξ) dt1

∫ t1

0

G(t2, ξ) dt2 · · ·
∫ tj−1

0

G(tj , ξ) dtj

is the solution of the Cauchy problem
{
∂tK(t, ξ) = G(t, ξ)K(t, ξ) +G(t, ξ) in [0, T ]× Rξ,
K(0, ξ) = 0.

(5.2)

Moreover by (4.1), (4.2) and (4.3) we get the following result.

Proposition 5.1. There exist MN > 0 and a strictly increasing function φ(s) satis-

fying lims→+∞ φ(s)/s = 0 such that

sup
0≤t≤T, |ξ|≥1

∣∣Dh
tD

α
ξK
∣∣ ≤ CNhα〈ξ〉MNφ(〈ξ〉)h

{ (log〈ξ〉)2

〈ξ〉
}α

for h = 0, 1, α ≥ 0.(5.3)

Remark 5.2. If we take φ(s) = λ
(

Λ∗−1
(

4N log s
s

))
s which is a strictly increasing

function and satisfies lims→+∞ φ(s)/s = 0, then (5.3) holds. In case that a(t) ≡ a1(t)

(resp. a2(t)) (see Section 1), we can set φ(s) = C(log s)3+1/α (resp. C(log s)2s1/γ).

By (5.1) and (5.2) we have

∂t
{
E(t, ξ)

(
I +K(t, ξ)

)
Ψ(ξ)

}
= ∂t(EΨ) + (∂tE)KΨ + E(∂tK)Ψ

= D(EΨ) +DKΨ + E(GK +G)Ψ

= D
{
E(I +K)Ψ

}
+ EGE−1

{
E(I +K)Ψ

}
.

This means that the matrix function E(t, ξ)
(
I + K(t, ξ)

)
is the fundamental solution of

the Cauchy problem (3.3). Thus we have the following statement.

Theorem 5.3. Assume that b(t) satisfies (1.6). Then the solution v(t, ξ) to the

Cauchy problem (3.1) can be represented as

v(t, ξ) =
{λ(δ̃)〈ξ〉

8a∗∗

}1/2(
H21(t, ξ) + 1, H12(t, ξ) + 1

)
E(t, ξ)

(
I +K(t, ξ)

)( v0 + iv1

v0 − iv1

)
,

and

sup
0≤t≤T, |ξ|≥1

|Dh
tD

α
ξ v(t, ξ)| ≤ C〈ξ〉MNφ(〈ξ〉)h

{ (log〈ξ〉)2

〈ξ〉
}α
|vl(ξ)| for α ≥ 0, h, l = 0, 1.

Proof. From the definitions we obtain W ∗∗0 =
λ(δ̃)1/2〈ξ〉1/2

2
√

2

(
1 i

1 −i

)(
v0

v1

)
,

W ∗∗ =
(
I +H∗

)( 1 1

−ia∗ ia∗

)−1(
a∗∗1/2 0
∂ta
∗∗1/2

2a∗∗1/2 a∗∗1/2

)(
v

∂tv

)
.

Therefore we get
(

v(t, ξ)

∂tv(t, ξ)

)
=

(
a∗∗(t, ξ)1/2 0
∂ta
∗∗(t,ξ)1/2

2a∗∗(t,ξ)1/2 a∗∗(t, ξ)1/2

)−1(
1 1

−ia∗(t, ξ) ia∗(t, ξ)

)(
I +H(t, ξ)

)
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× E(t, ξ)
(
I +K(t, ξ)

)λ(δ̃)1/2〈ξ〉1/2
2
√

2

(
1 i

1 −i

)(
v0(ξ)

v1(ξ)

)
.

Hence we obtain the representation formula of v(t, ξ). Moreover by Lemma 3.4, Proposi-

tion 5.1 we get for 0 ≤ t ≤ T

|v(t, ξ)| ≤ C
∣∣∣∣
λ(δ̃)〈ξ〉

2a∗∗(t, ξ)

∣∣∣∣
1/2(

max
{
|H12|, |H12|

}
+ 1
)
|E|
(
1 + |K|

)(
|û0|+ |û1|

)

≤ C
∣∣∣ λ(δ̃)〈ξ〉
2λ(δ)〈ξ〉

2

∣∣∣
1/2

· (1 + 1) · 1 ·
(
1 + C〈ξ〉MN

)(
|û0|+ |û1|

)
≤ C〈ξ〉MN

(
|û0|+ |û1|

)
.

Similarly, Lemma 3.4 and Proposition 5.1 give the estimate of derivatives.

Finally, by Theorem 5.3 we can conclude the proof of Theorem 1.1 with

al1 =




il
{
λ(δ̃)〈ξ〉
8a∗∗

}1/2(
H21(t, ξ) + 1

)(
I +K(t, ξ)

)
if ξ ≥ 0,

(−i)l
{
λ(δ̃)〈ξ〉
8a∗∗

}1/2(
H12(t, ξ) + 1

)(
I +K(t, ξ)

)
if ξ < 0,

for l = 1, 2,

al2 =





(−i)l
{
λ(δ̃)〈ξ〉
8a∗∗

}1/2(
H12(t, ξ) + 1

)(
I +K(t, ξ)

)
if ξ ≥ 0,

il
{
λ(δ̃)〈ξ〉
8a∗∗

}1/2(
H21(t, ξ) + 1

)(
I +K(t, ξ)

)
if ξ < 0,

for l = 1, 2.
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