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Abstract. We investigate the propagation of the uniform spatial Gevrey Gσ , σ ≥ 1, regu-

larity for t→ +∞ of solutions to evolution equations like generalizations of the Euler equation

and the semilinear Schrödinger equation with polynomial nonlinearities. The proofs are based

on direct iterative arguments and nonlinear Gevrey estimates.

1. Introduction. The main goal of this paper is to investigate the propagation for

t → +∞ of the uniform Gevrey regularity with respect to the space variables x of

solutions to Cauchy problems for some classes of nonlinear evolution equations by means

of techniques, based on iterative arguments and nonlinear estimates in the framework of

Gevrey spaces. The initial data are supposed to be uniformly Gσ(Ω) Gevrey (we write

shortly v ∈ Gσun(Ω)) for some σ ≥ 1, where Ω = Rn or Ω is the n-dimensional torus

Tn = Rn/(2πZ)n. More precisely, v ∈ Gσun(Ω) means that there exists ρ > 0 such that

‖v‖σ,ρ,Hr := sup
α∈Zn

+

(
ρ|α|‖∂αv‖Hr

(α!)σ

)
< +∞,(1.1)
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where α! = α1! · · ·αn!, α = (α1, . . . , αn) ∈ Zn+, r ≥ 0 is an integer, and Hr = Hr(Ω) =

W r,2(Ω) stands for the classical L2 based Sobolev space of order r. Define Gσ(Ω, Hr, ρ),

ρ > 0, as the space of all functions v ∈ C∞(Ω) satisfying (1.1). We note that G1(Ω, Hr, ρ)

is a subset of the space of uniformly analytic functions in Ω and every v ∈ G1(Ω, Hr, ρ)

can be extended to a holomorphic function in the strip {z ∈ Cn : |Im z| < ρ}. As in Propo-

sition 1.4.5 of [Ro], we have that Gσ(Ω, Hr, ρ) is a vector space and, if r > n/2, a ring

with respect to the arithmetic product of functions, and is closed under differentiation.

We refer to the book [Ro] for the basic theory of Gevrey spaces.

In view of the lack of space we will focus on two particular classes of equations. The

first one is a generalization of the incompressible Euler equation (cf. [LO]). We will extend

the results in [LO] for the propagation of the analytic regularity on T2 in the framework

of all Gevrey classes Gσ, σ ≥ 1. More precisely, we consider the Cauchy problem

∂tω +K[ω] · ∇ω = 0, t > 0, x ∈ Ω(1.2)

ω(0, x) = ω0(x), x ∈ Ω(1.3)

where Ω = Rn or Ω = Tn, and the operator K satisfies the following hypotheses:

(H1) K is linear: Hs(Rn) 3 ω −→ K[ω] =
(
K1[ω], . . . ,Kn[ω]

)
∈
(
Hs+1(Ω)

)n
, s ≥ 0;

(H2) there exists a real valued function b ∈ Gσun(Ω), infx∈Ω b(x) =: b0 > 0 such that

∇ · (bK[ω]) = 0, ω ∈ Hs(Ω), s ≥ 0;(1.4)

(H3) for any s ≥ 0, K is bounded from Hs(Ω) to (Hs+1(Ω))n, namely there exists a

positive constant C such that
∥∥K[ω]

∥∥
Hs+1 ≤ C‖ω‖Hs , ω ∈ Hs(Ω).(1.5)

The hypotheses (H1)–(H3) are satisfied for generalizations of the Euler equation on

the two-dimensional torus related to shallow water equations, cf. [LO]. For the Euler

equation in a bounded domain in R2 with smooth real analytic boundary, the propaga-

tion of the uniform analyticity of solutions to the Dirichlet boundary value problem has

been investigated in [BB] by means of subtle estimates on the Green function of the Pois-

son kernel in complex analytic neighbourhoods of the domain. The propagation of the

local analyticity of solutions to the Euler equation in Rn was studied in [AM]. Recently,

the propagation of the uniform analyticity of solutions to Euler type equations on the

torus Tn was investigated in [LO] by means of nonlinear estimates in Gevrey G1 spaces

and the Galerkin approximation (cf. also [BG], [FT], [FeT] for results on analytic regular-

ity for dissipative equations like the Navier-Stokes equation for incompressible fluids, the

Kuramoto-Sivashinsky equation, and semilinear parabolic equations). Theorems on the

existence and/or uniqueness of classical solutions to the initial value problem for Euler

type equations can be found in [Ba], [Ka], [LOT], [Ol].

Another motivation for our investigations comes from results on the propagation of

the local analytic and, more generally, local Gσ Gevrey regularity for linear and nonlinear

hyperbolic equations (e.g., cf. [CZ], [Kj1], [Kj2], [KY2], [RY], [Sp] and references therein).

We mention also that uniformly analytic functions in Rn as initial data have been used

as a functional set-up for proving global well-posedness of initial value problems for

degenerate Kirchhoff type equations (e.g., cf. [DS], [KY1]).
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The second type of equations will be a model semilinear Schrödinger equation

i∂tu+ ∆u+ g(u) = 0, t > 0, x ∈ Rn(1.6)

u(0, x) = u0(x), x ∈ Rn,(1.7)

where g is a polynomial, vanishing of order q ≥ 2 at the origin, i.e.

g(u) =

p∑

β=q

gβu
β , gβ ∈ C, β = q, . . . , p, gq 6= 0(1.8)

for some integer p ≥ q.
As a corollary from more general results (cf. [KP], see also [Ra]) we know that under

the assumption
q

(q − 1)2
<
n

2
(1.9)

there exists an integer r0 > n/2 + 2, depending only on the dimension n, and a small

constant δ0 > 0 such that if

u0 ∈ Hr(Rn) ∩W r,p(Rn), p =
2q

2q − 1
(1.10)

for r ∈ N, r ≥ r0, and

‖u0‖Hr + ‖u0‖W r,p ≤ δ, 0 ≤ δ ≤ δ0,(1.11)

then the Cauchy problem (1.6), (1.7) admits a unique classical solution

u ∈ C
(
[0,+∞[ : Hr(Rn)

)
∩ C1

(
[0,+∞[ : Hr−2(Rn)

)
.(1.12)

Moreover, for t→ +∞, we have

‖u(t, ·)‖Lκ = O(t−γ), γ =
n(q − 1)

2q
, 2q ≤ κ ≤ +∞,(1.13)

and there exists a constant M0 depending on δ0 and r such that

‖u(t, ·)‖Hr ≤M0‖u0‖Hr , t ≥ 0.(1.14)

Similar results for global in time solutions for small data are available for nonlinear

wave equations and the Klein-Gordon equation (cf. [KP], [Ra], see also [GG] for extensions

to certain quasilinear weakly hyperbolic systems).

We state the first main result of our paper for the initial value problem (1.2)–(1.3)

under the assumptions (H1)–(H3).

Theorem 1. Let us fix r ∈ N, r > n/2+1 and σ ≥ 1. Then we can find a positive con-

stant c0, depending only on n, r and the function b, such that for every ω0 ∈ Gσ(Ω, Hr, ρ),

ρ > 0, the unique global solution ω ∈ C
(
[0,+∞[ : Hr(Ω)

)
to (1.2), (1.3) satisfies

ω(t, ·) ∈ Gσ
(
Ω, Hr, ρσ(t)

)
,(1.15)

where

ρσ(t) = ρ exp
(
−c0

(
t
∥∥ω0

∥∥
σ,ρ,Hr

+

∫ t

0

‖∇K[ω(t1, ·)]‖Hr dt1
))
,(1.16)

for all t ≥ 0.
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Remark 1. We point out that if Ω = T2 and σ = 1, the decay of the Gevrey G1

radius ρ1(t) in (1.16) is slower than the decay rate in Theorem 7 of [LO]. We refer to

Section 5 for more details.

Next, we investigate the propagation of the uniform Gevrey regularity of solutions to

the Schrödinger equation (1.6).

Theorem 2. Assume that (1.9) holds and choose and fix r ∈ N, r ≥ r0 > n/2 + 2

and a Gevrey index σ ≥ 1. Let δ0 > 0 be as in (1.11) and let u0 satisfy (1.10), (1.11) and

u0 ∈ Gσ(Rn, Hr, ρ) for some ρ > 0. Then the unique classical solution u of (1.6), (1.7)

satisfies

u(t, ·) ∈ Gσ(Rn, Hr, ρσ(t)), t ≥ 0,(1.17)

where

ρσ(t) = ρ exp
(
−λ0(‖u0‖σ,ρ,Hr)q−1t− c0(1 + t)1−γ(q−1)

)
, t ≥ 0,(1.18)

while c0 > 0 and λ0 are constants depending only on δ0, r, n, M0 and the coefficients of

the polynomial g. Moreover, for every 0 < ε � 1 we can find 0 < δ(ε) � 1 and c̃0 > 0

such that

ρσ(t) = ρ exp(−εt− c̃0(1 + t)1−γ(q−1)), t ≥ 0(1.19)

provided u0 satisfies (1.11) with δ = δ(ε).

The paper is organized as follows. In Section 2 we give the proof of Theorem 1 pro-

vided certain nonlinear Gevrey estimates are satisfied. We derive the nonlinear estimates

in Section 3. The proof of Theorem 2 is carried out in Section 4. Finally, in Section 5,

we discuss relations of our theorems with previous results and outline possible general-

izations.

2. Proof of Theorem 1. Let

Zk(t) = ‖ω(t, ·)‖Hr+k ,(2.1)

u(t, x) = K[ω(t, ·](x).(2.2)

In the sequel, we will use C∗ to denote any absolute constant independent of k ∈ N
and ω, ∗ being an index.

The crucial ingredient in the proof of Theorem 1 is the following estimate, which will

be proven in the next section:

Proposition 3.

1. If k ≥ r + 2, then

d

dt
Zk(t) ≤ C0

(
k‖u(t, ·)‖HrZk(t) +

N∑

j=2

(
r + k

j

)
Zj−1(t)Zk+1−j(t)

+

r+k∑

j=N+1

(
r + k

j

)
Zj−r−1(t)Zk+r+1−j(t)

)
,

(2.3)

where N =
[
r+k

2

]
is the integer part of r+k

2 .
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2. If k ≤ r + 1, then

d

dt
Zk(t) ≤ C0

(
k‖u(t, ·)‖HrZk(t) +

k∑

j=2

(
r + k

j

)
Zj−1(t)Zk+1−j(t)

+
r+1∑

j=k+1

(
r + k

j

)
Z1(t)Zk−1(t) +

r+k∑

j=r+2

(
r + k

j

)
Zj−r−1(t)Zk+r+1−j(t)

)
,

(2.4)

where the third term does not appear if k = r + 1.

Now, we want to conclude the assertion of Theorem 1 from the estimates (2.3)

and (2.4).

We set

P (t) = C0

∫ t

0

‖u(s, ·)‖Hr ds(2.5)

and

Θk(t) =
εk

(k!)σ
e−kP (t)Zk(t),(2.6)

where εk will be determined later.

When k ≥ r + 2, from (2.3) we have

Θ′k(t) =
εk

(k!)σ
e−kP (t)

(
Z ′k(t)− C0k‖u(t, ·)‖HrZk(t)

)

≤ C0εk
(k!)σ

e−kP (t)

( N∑

j=2

(
r + k

j

)
Zj−1(t)Zk+1−j(t)

+
r+k∑

j=N+1

(
r + k

j

)
Zj−r−1(t)Zk+r+1−j(t)

)
.

(2.7)

Obviously, from (2.6) we have

Zj−1(t)Zk+1−j(t) =

(
k

j − 1

)−σ
(k!)σ

εj−1εk+1−j
ekP (t)Θj−1(t)Θk+1−j(t).(2.8)

Substituting (2.8) into (2.7) we get

Θ′k(t) ≤ C0

( N∑

j=2

(
r + k

j

)(
k

j − 1

)−σ
εk

εj−1εk+1−j
Θj−1(t)Θk+1−j(t)

+

r+k∑

j=N+1

(
r + k

j

)(
k

j − r − 1

)−σ
εk

εj−r−1εk+r+1−j
Θj−r−1(t)Θk+r+1−j(t)

)
.

(2.9)

By using in (2.9) the relations
(
r + k

j

)(
k

j − 1

)−σ
≤ C1k

(
k

j − 1

)−σ+1

≤ C1k

when 2 ≤ j ≤ [ r+k2 ], and
(
r + k

j

)(
k

j − r − 1

)−σ
≤ C2

(
k

j − r − 1

)−σ+1

≤ C2
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when j ≥ [ r+k2 ] + 1, we obtain

Θ′k(t) ≤ C3

(
k

N∑

j=2

εk
εj−1εk+1−j

Θj−1(t)Θk+1−j(t)

+

r+k∑

j=N+1

εk
εj−r−1εk+r+1−j

Θj−r−1(t)Θk+r+1−j(t)

)
.

(2.10)

If we choose εk = k2, then we have

N∑

j=2

εk
εj−1εk+1−j

=

N∑

j=2

(
1

j − 1
+

1

k + 1− j

)2

≤ C4,

r+k∑

j=N+1

εk
εj−r−1εk+r+1−j

=
r+k∑

j=N+1

(
1

j − r − 1
+

1

k + r + 1− j

)2

≤ C5,

with C4, C5 being independent of k ∈ N.

Thus, from (2.10) we obtain

Θ′k(t) ≤ C6k max
1≤j≤k−1

Θj(t)Θk−j(t),(2.11)

where C6 is an absolute constant depending on r > 1.

When k ≤ r+ 1, it is not difficult to derive from (2.4) that we also have the estimate

(2.11) by noting that all coefficients on the right-hand side of (2.4) are bounded by a

constant depending only on r.

If we set

µλk(t) := e−λktΘk(t) =
k2

(k!)σ
e−k(λt+P (t))‖ω(t, ·)‖Hr+k(2.12)

with P (t) being given in (2.5), then, from (2.11) and from the choice of the initial datum

ω0 ∈ Gσ(Ω, Hr, ρ) we obtain

µλk(t) ≤ µλk(0) +
C6

λ
max

1≤j≤k−1
max

0≤s≤t
µλj (s)µλk−j(s)

≤ ‖ω0‖σ,ρ,Hr +
C6

λ
max

1≤j≤k−1
max

0≤s≤t
µλj (s)µλk−j(s).

(2.13)

Set

ΓN (λ) := max
1≤k≤N

sup
t≥0

µλk(t), N = 1, 2, . . . .

Since Γ0(λ) < +∞, we are reduced to the following sequence of iteration inequalities

ΓN (λ) ≤ ‖ω0‖σ,ρ,Hr +
C6

λ

(
ΓN−1(λ)

)2
, N = 1, 2, . . . .(2.14)

The sequence {ΓλN}∞N=1 converges provided λ ≥ λ0 := 4C6‖ω0‖σ,ρ,Hr . Choosing λ = λ0

we get the estimate

Γλ0

N ≤ 2‖ω0‖σ,ρ,Hr , N = 1, 2, . . . ,(2.15)

which leads to

µλ0

k (t) ≤ 2‖ω0‖σ,ρ,Hr(2.16)

for all t ≥ 0, k ∈ N. The proof of Theorem 1 is complete.
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3. Nonlinear Gevrey estimates. We will use the notation f̂(ξ) = Fx→ξf for the

discrete Fourier transformation

f̂(ξ) :=

∫

Tn
e−ixξf(x) dx, ξ ∈ Zn,(3.1)

in the case Ω = Tn while if Ω = Rn we will rely on the continuous Fourier transformation

f̂(ξ) =

∫

Rn
e−ixξ f(x)dx, ξ ∈ Rn.(3.2)

First of all, we have

Lemma 4. Let r ∈ N, r > n/2 be fixed, ω be the classical solution to the IVP (1.2),

(1.3), and let A be the positive and self-adjoint operator A := (1 − ∂2
x1
− . . . − ∂2

xn)1/2.

Then for any k ∈ N, ω ∈ C
(
[0,+∞[: H+∞(Ω)

)
we have

|〈u · ∇(Ar+kω), Ar+kω〉(t)| ≤ C0‖u(t, ·)‖L∞‖ω(t, ·)‖2Hr+k(Ω)(3.3)

where u = K[ω] (as in (2.2)), H+∞(Ω) =
⋂
s≥0H

s(Ω),

〈µ, ν〉(t) :=

∫

Ω

µ(t, x)ν(t, x)dx, µ, ν ∈ C
(
[0,+∞[ : L2(Ω)

)
,

and C0 = 2−1b−1
0 ‖∇b‖L∞ , b0 > 0 being defined in the assumption (H2).

Proof. By using ∇ · (bu) = 0, ∇b−1 = −b−2∇b, and the definition of b0 > 0 in (H2),

we have

∣∣〈u · ∇(Ar+kω), Ar+kω
〉
(t)
∣∣ =

∣∣∣1
2

〈
(Ar+kω)2,∇ · u

〉
(t)
∣∣∣

=
∣∣∣1
2

〈
(Ar+kω)2, (∇b−1) · bu

〉
(t)
∣∣∣

≤ ‖∇b‖L∞
2b0

‖u(t, ·)‖L∞‖ω(t, ·)‖2Hr+k(Ω)

(3.4)

which implies the desired inequality (3.3).

The main ingredient in the proof of Proposition 3 is to establish

Proposition 5.

1. With the same notation as above, if k ≥ r + 2, then
∣∣〈u · ∇(Ar+kω), Ar+kω

〉
(t)−

〈
Ar+k(u · ∇ω), Ar+kω

〉
(t)
∣∣

≤ C0Zk(t)

(
k‖u(t, ·)‖HrZk(t) +

N∑

j=2

(
r + k

j

)
Zj−1(t)Zk+1−j(t)

+
r+k∑

j=N+1

(
r + k

j

)
Zj−r−1(t)Zk+r+1−j(t)

)
,

(3.5)

where Zk(t) = ‖ω(t, ·)‖Hr+k and N = [ r+k2 ].
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2. If k ≤ r + 1, then

∣∣〈u · ∇(Ar+kω), Ar+kω
〉
(t)−

〈
Ar+k(u · ∇ω), Ar+kω

〉
(t)
∣∣

≤ C0Zk(t)

(
k‖u(t, ·)‖HrZk(t) +

k∑

j=2

(
r + k

j

)
Zj−1(t)Zk+1−j(t)

+

r+1∑

j=k+1

(
r + k

j

)
Z1(t)Zk−1(t) +

r+k∑

j=r+2

(
r + k

j

)
Zj−r−1(t)Zk+r+1−j(t)

)
,

(3.6)

where the third term does not appear when k = r + 1.

Proof. Set 〈ξ〉 = (1 + |ξ|2)1/2, ξ being the dual variable of x ∈ Ω. Clearly, we have

∣∣〈u · ∇(Ar+kω), Ar+kω〉(t)− 〈Ar+k(u · ∇ω), Ar+kω〉(t)
∣∣

=
∣∣∣
∫
〈ξ〉r+kω̂(t, ξ)(û · ∇(Ar+kω)(t, ξ)− 〈ξ〉r+kû · ∇ω(t, ξ)) dξ

∣∣∣

≤
∫ ∫
〈ξ〉r+k|ω̂(t, ξ)|

r+k∑

j=1

(
r + k

j

)
〈ξ − η〉j

× 〈η〉r+k+1−j|û(t, ξ − η)| |ω̂(t, η)| dη dξ

(3.7)

by using

〈ξ〉r+k ≤
r+k∑

j=0

(
r + k

j

)
〈ξ − η〉j〈η〉r+k−j.(3.8)

For the term with j = 1 in (3.7), we have due to assumption (H3)

∫ ∫
〈ξ〉r+k|ω̂(t, ξ)|〈ξ − η〉〈η〉r+k|û(t, ξ − η)| |ω̂(t, η)| dη dξ

=

∫ ∫ 〈ξ〉r+k|ω̂(t, ξ)|
〈ξ − η〉r 〈ξ − η〉r+1〈η〉r+k|û(t, ξ − η)| |ω̂(t, η)| dη dξ

≤ C0‖u(t, ·)‖Hr+1Z2
k(t) ≤ C1‖ω(t, ·)‖HrZ2

k(t).

(3.9)

Denote by I the sum of terms from j = 2 to r + k on the right-hand side of (3.7).

1. When k ≥ r + 2, we decompose I into two parts as follows:

I =

r+k∑

j=2

(
r + k

j

)∫ ∫
〈ξ〉r+k|ω̂(t, ξ)|〈ξ − η〉j

× 〈η〉r+k+1−j|û(t, ξ − η)| |ω̂(t, η)| dη dξ

=
( N∑

j=2

+

r+k∑

j=N+1

)
. . . =: I1 + I2,

(3.10)

where N = [ r+k2 ].
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For the term I1 we have

I1 =

N∑

j=2

(
r + k

j

)∫ ∫
〈ξ〉r+k|ω̂(t, ξ)|〈ξ − η〉r+j |û(t, ξ − η)|

× 〈η〉
r+k+1−j|ω̂(t, η)|
〈ξ − η〉r dη dξ

≤ C2

N∑

j=2

(
r + k

j

)
Zk(t)Zj−1(t)Zk+1−j(t).

(3.11)

For the term I2 we have

I2 =
r+k∑

j=N+1

(
r + k

j

)∫ ∫ 〈ξ〉r+k|ω̂(t, ξ)|
〈η〉r 〈ξ − η〉j |û(t, ξ − η)|

× 〈η〉2r+k+1−j|ω̂(t, η)| dη dξ

≤ C3

r+k∑

j=N+1

(
r + k

j

)
Zk(t)Zj−r−1(t)Zk+r+1−j(t).

(3.12)

Substituting (3.9)–(3.12) into (3.7), we conclude (3.5).

2. When k ≤ r + 1, we decompose I into three parts as follows:

I =

r+k∑

j=2

(
r + k

j

)∫ ∫
〈ξ〉r+k|ω̂(t, ξ)|〈ξ − η〉j

× 〈η〉r+k+1−j|û(t, ξ − η)| |ω̂(t, η)| dη dξ

=
( k∑

j=2

+
r+1∑

j=k+1

+
r+k∑

j=r+2

)
. . . =: I1 + I2 + I3.

(3.13)

Similarly to (3.11) and (3.12) we can obtain

I1 ≤ C4

k∑

j=2

(
r + k

j

)
Zk(t)Zj−1(t)Zk+1−j(t)(3.14)

and

I3 ≤ C4

r+k∑

j=r+2

(
r + k

j

)
Zk(t)Zj−r−1(t)Zk+r+1−j(t).(3.15)

For the term I2 in (3.13), by using

Rn = {|η| ≤ C5|ξ − η|} ∪ {|η| ≥ C5|ξ − η|}



288 T. GRAMCHEV AND Y.-G. WANG

for some positive constant C5, we have

I2 =

r+1∑

j=k+1

(
r + k

j

)(∫ ∫

|η|≤C5|ξ−η|
+

∫ ∫

|η|≥C5|ξ−η|

)
〈ξ − η〉r+2

× |û(t, ξ − η)| 〈ξ〉
r+k|ω̂(t, ξ)|

〈η〉j−2〈ξ − η〉r+2−j 〈η〉
r+k−1|ω̂(t, η)| dη dξ

≤ C6

r+1∑

j=k+1

(
r + k

j

)∫ ∫
〈ξ〉r+k|ω̂(t, ξ)|

(
〈η〉−r + 〈ξ − η〉−r

)

× 〈ξ − η〉r+2|û(t, ξ − η)|〈η〉r+k−1|ω̂(t, η)| dη dξ

≤ C7

r+1∑

j=k+1

(
r + k

j

)
Zk(t)Z1(t)Zk−1(t), t ≥ 0.

(3.16)

Substituting (3.14)–(3.16) into (3.13), and using (3.9) we immediately obtain (3.5).

4. Gevrey regularity for semilinear Schrödinger equations. Without loss of

generality we may assume n = 1 and g(u) = uq (in the general case n > 1 and g(u)

polynomial only additional technical and notational difficulties occur). We write x instead

of x1 and D for ∂x. Set

Wk = Dku, Uk(t) = ‖Wk(t, ·)‖Hr , k ∈ N.

We differentiate equation (1.6) k times with respect to x, multiply it by Wk, integrate

in Hr(Rn). Using the Leibniz rule for differentiation, we get

1

2

d

dt

(
U2
k (t)

)
≤ Re(〈Wk(t, ·), quq−1(t, ·)Wk(t, ·)〉Hr)

+ Re(〈Wk(t, ·), Rk(t, ·)〉Hr),
(4.1)

where

Rk(t, ·) =

min{q,k}∑

`=2

q!uq−`(t, ·)
(q − `)! `!

∑

k1+...+k`=k
k1≥1,...,k`≥1

k!

k1! · · · k`!
∏̀

µ=1

Wkµ(t, ·)(4.2)

for all k ∈ N.

We recall that since r is an integer greater than n/2 and we consider classical Sobolev

spaces Hr(Ω), we have the following Schauder type estimates (e.g., cf. [GR]):

‖uq−1(t, ·)Wk(t, ·)‖Hr ≤ (‖u(t, ·)‖L∞)q−1Uk(t) +M1(‖u(t, ·)‖Hr)q−1Uk−1(t),(4.3)

for all k ∈ N, t ≥ 0, where M1 = θq−1, θ > 0 being a positive constant in the Schauder

lemma for the product in Hr(Ω), depending only on n and r. Combining (4.3) with the

decay estimate (1.13) for κ = ∞ and the estimate (1.14) we get that for some constant

A0 > 0, defined in an obvious way by the decay of ‖u(t, ·)‖L∞ in (1.13), the following

inequality holds

‖uq−1(t, ·)Wk(t, ·)‖Hr ≤ A0(1 + t)−(q−1)γUk(t) +M1δ
q−1Uk−1(t),(4.4)
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for all k ∈ N, t ≥ 0. Set

Vk(t) =
Uk(t)

(k!)σ
, k ∈ N.(4.5)

On the other hand, using the Moser type inequality

‖f1 . . . fq‖Hr ≤ C
q∑

µ=1

‖fµ‖Hr
∏

ν 6=µ
‖fν‖Hr−1

for some C = C(q, r) > 0 and the nonlinear Gevrey estimates from [GR] we deduce that

one can find a constant M2 > 0 depending on q, r and M0, such that

‖Rk(t, ·)‖Hr
(k!)σ

≤M2

min{q,k}∑

`=2

δq−`
∑

k1+...+k`=k
k1≥1,...,k`≥1

∑̀

µ=1

P`,µk1,...,k`
(σ)Vkµ(t)

∏

ν 6=µ
Vkν−1(t),(4.6)

for every k ∈ N, t ≥ 0, where

P`,µk1,...,k`
(σ) =

(
k1! · · · kq!

k!

)σ−1 ∏

ν 6=µ

1

kσν
, 2 ≤ ` ≤ q,(4.7)

with the convention P1,1
k1

(σ) = 1. Hence, combining (4.1), (4.4) and (4.6), we obtain

V ′k(t) ≤ qA0(1 + t)−γ(q−1)Vk(t) +
M1δ

q−1

kσ
Vk−1(t)

+M2

min{q,k}∑

q=2

δq−j
∑

k1+...+k`=k
k1≥1,...,k`≥1

∑̀

µ=1

P`,µk1,...,k`
(σ)Vkµ(t)

∏

ν 6=µ
Vkν−1(t),

(4.8)

for every k ∈ N, t ≥ 0. Set

Qk(t) := exp
(
−kM3(1 + t)1−γ(q−1)

)
Vk(t)(4.9)

with the constant M3 > 0 satisfying

M3(1 + t)1−γ(q−1) ≥ qA0

∫ t

0

(1 + τ)−γ(q−1) dτ, t ≥ 0.

Therefore, multiplying (4.8) by exp
(
−kM3(1 + t)1−γ(q−1)

)
and taking into account the

identity

exp
(
−kM3(1 + t)1−γ(q−1)

)
Vkµ(t)

∏

ν 6=µ,1≤ν≤`
Vkν−1(t)

= exp
(
−M3(`− 1)(1 + t)1−γ(q−1)

)
Qkµ(t)

∏

ν 6=µ,1≤ν≤`
Qkν−1(t),
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we obtain

Q′k(t) ≤ M1δ
q−1

kσ
exp
(
−M3(1 + t)1−γ(q−1)

)
Qk−1(t)

+M2

min{q,k}∑

`=2

exp
(
−M3(`− 1)(1 + t)1−γ(q−1)

)
δq−`

×
∑

k1+...+k`=k
k1≥1,...,k`≥1

∑̀

µ=1

P`,µk1,...,k`
(σ)Qkµ(t)

∏

ν 6=µ
Qkν−1(t)

≤ M1δ
q−1

kσ
exp
(
−M3(1 + t)1−γ(q−1)

)
Qk−1(t)

+M2

min{q,k}∑

`=2

exp
(
−M3(`− 1)(1 + t)1−γ(q−1)

)
δq−`

×
∑

k1+...+k`=k
k1≥1,...,k`≥1

∑̀

µ=1

P`,µk1,...,k`
(σ)Qkµ(t)

∏

ν 6=µ
Qkν−1(t).

(4.10)

We observe that by the definition of the constant A0 we get that A0 = O((‖u0‖Hr)q−1).

Since the right-hand side of (4.10) does not depend on Qk(t), we derive (1.18) by argu-

ments similar to (and easier than) the ones used in Section 3. We show in details (1.19)

since somewhat more subtle estimates are involved. Choose and fix 0 < ε� 1. Then for

every small positive number 0 < ε1 � ε we have the freedom to choose δ � ε1. We set

Qεk(t) = Qk(t) exp(−kεt) and

BεN := max
1≤k≤N

sup
t≥0
Qεk(t), N ∈ N.(4.11)

Then, taking into account (4.7) and (4.10), we can find a positive number M4 depending

on M1, M2, n, q and σ, such that

BεN ≤ ‖u0‖σ,ρ,Hr +
M4

N1+σε

q∑

j=1

δq−j(BεN−1)j

≤ ‖u0‖σ,ρ,Hr +
M4

N1+σ

δ

ε

q−1∑

j=1

δq−j−1(BεN−1)j +
M4

N1+σε
(BεN−1)q, N ∈ N.

(4.12)

Note that problems in dealing with (4.12) might occur for N 1+σ ≤ O(ε−1). At this point

we choose δ � ε1, ε1 � min{‖u0‖σ,ρ,Hr , ε} so that both δε−1 and the HN (Ω) norms of

u(t, ·) for N1+σ ≤ O(ε−1) become small enough. If N1+σ � O(ε−1), then the convergence

of {BεN} for N → +∞ follows by iteration type arguments as for (2.14). The proof of

(1.19) is complete.

5. Concluding remarks. We begin by pointing out that if Ω = T2 and σ = 1, the

decay of the Gevrey G1 radius ρσ(t) in (1.16) is slower than the decay shown in Theorem 7

of [LO]. Indeed, by (H3) we obtain that

‖∇K[ω(t, ·)]‖Hr ≤ C‖ω(t, ·)‖Hr =: θ(t), t ≥ 0.
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Hence, by (1.16), we get

ρ1(t) ≥ ρ exp
(
−c0t‖ω0‖σ,ρ,Hr − c0C

∫ t

0

θ(t1) dt1

)
, t ≥ 0.(5.1)

The decay rate for ρ1(t) given by the formulas (22) and (24) on p. 329 of [LO] could be

rewritten in the following form: there exist two positive constants c1 and c2 such that

ρ1(t) = ρ exp

(
−c2

∫ t

0

(√
‖ω0‖2σ,ρ,Hr + c1

∫ t2

0

θ3(t1) dt1

)
dt2

)
, t ≥ 0,(5.2)

which is faster than the decay rate given by (5.1).

We mention also that we can derive estimates for the decay of ρσ(t) for t → +∞
in (1.15) for solutions ~v = (v1, . . . , vm) to IVP for m×m systems of evolution equations

of the type

∂t~v +

n∑

j

Kj [~v]∂xj~v + F [~v] = ~f(t, x),(5.3)

where F is an analytic nonlinear term, ~f ∈ C
(
[0,+∞[ : (Gσun(Ω))m

)
, Kj , j = 1, . . . , n,

are matrix-valued operators (they might be nonlocal, as in Kirchhoff type equations

utt −M(‖∇u(t, ·)‖2L2)∆u = 0, M ∈ C1
(
R : ]0,+∞[

)
). The condition (H2) is replaced by

the requirement

Re
( n∑

j

〈v,Kj [v]∂xjv〉
)
≥ 0, v ∈ H1(Ω).(5.4)

Note that (1.2) can be reduced to an equation of the type (5.3), setting v(t, x) =

b(x)ω(t, x) and multiplying (1.2) by b(x). The proofs become more involved from the

point of view of the nonlinear analysis type difficulties.

As to the possibility to investigate the propagation of the uniform Gσ regularity of

solutions to initial boundary value problems (Dirichlet or Neumann type) when Ω ⊂ Rn
is a domain whose boundary ∂Ω is a real analytic submanifold, we observe that even

for polynomial nonlinearities g(u) no estimates in Banach spaces of Gevrey functions are

available, as far as we know. In particular, it is necessary to analyze carefully Gevrey

norms of products of eigenfunctions of −∆ in domains with zero Dirichlet or Neumann

boundary conditions.

As to generalizations of Theorem 2, we can show, by the same body of ideas (it-

erative inequalities and precise Gevrey nonlinear estimates) but with technically more

involved proofs, similar results on the uniform Gevrey regularity of solutions to Cauchy

problems for the nonlinear wave equation, the Klein-Gordon equation as well as for some

Schrödinger type operators with multiple characteristics (cf. [GNT], [Ta]), with quasilin-

ear nonlinear terms depending analytically on u and ∇u. As for the case of nonanalytic

Gevrey Gσ, σ > 1, nonlinearities, it seems that some of the recent methods for obtaining

nonlinear Gevrey estimates of Gevrey (but not analytic) nonlinear compositions (cf. [GR],

[BRS]) might be applied for semilinear equations with Gevrey nonlinearities.
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