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Abstract. We consider extensions of the classical Fokker-Planck equation ut + Lu =
∇ · (u∇V (x)) on Rd with L = −∆ and V (x) = 1

2
|x|2, where L is a general operator describing

the diffusion and V is a suitable potential.

1. Introduction. We consider the initial value problem for the generalized Fokker-
Planck equation

ut + Lu = ∇ · (u∇V ), x ∈ Rd, t > 0,(1.1)

u(x, 0) = u0(x) ∈ L1(Rd),(1.2)

with a sufficiently regular potential V = V (x), u = u(x, t) and u0(x) ≥ 0. This equation
generalizes the classical Fokker-Planck equation

ut −∆u = ∇ · (ux)(1.3)

in two ways. First, the second order elliptic differential operator −∆ is replaced by
a Markov diffusion operator L so that −L generates a positivity and mass preserving
semigroup e−tL on L1(Rd). Second, the potential V (x) = 1

2 |x|2 with ∇V (x) = x is re-
placed by a more general potential V which is large enough as |x| → ∞ so that V is
confining.

Our assumptions below will guarantee the existence of the unique steady state u∞ =
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u∞(x) ≥ 0 of (1.1) with given M > 0,
∫
u∞(x) dx =

∫
u0(x) dx ≡M.(1.4)

Of course, the Gaussian function u∞(x) = M(2π)−d/2 exp
(
−|x|2/2

)
is the steady state

for (1.3) for each M > 0, and u(t) tends to u∞ at an exponential rate in all the Lp norms,
1 ≤ p ≤ ∞, cf. [21].

The motivations to study extensions (1.1) of (1.3) stem from the probability theory
where Fokker-Planck equations are deeply connected with (nonlinear) stochastic differ-
ential equations driven by Gaussian and Lévy processes, see e.g. [17]. Another motivation
is a study of the large time behavior of solutions of linear (as well as nonlinear) equations

vt + Lv = 0(1.5)

with general diffusion operators L. Here, suitable space-time rescaling leads to an equation
of type (1.1) with V (x) = 1

2 |x|2 and L enjoying some invariance properties (like generators
of symmetric α-stable processes), see [8] and [6], [7], [9] for various results on this subject
and its modifications. Main results include self-similar asymptotics of solutions of (1.5)
when t → ∞, which was obtained for the model problem ut − ∆u = 0 already in [19].
Physical motivations to study (1.5) and (1.1) come from analysis of anomalous diffusion
phenomena, see introductions in [7], [8] for more details.

Nonlinear versions of Fokker-Planck equations appear e.g. in statistical mechanics,
where the determination of the decay rate of solutions to the (thermal) equilibrium state
is an important problem, see [1, Sec. 4], [2], [4], [3], etc. Let us also mention the paper [18],
where different nonlinear Fokker-Planck equations have been studied using entropy meth-
ods.

The recent paper [1] deals with the models (1.1) with classical diffusion given by
a divergence form second order elliptic differential operator L (with variable coefficients).
The study of the trend to equilibrium is based on a systematic use of various entropy
functionals and Csiszár-Kullback inequalities relating entropies to usual Lp norms, see for
details [22]. The exponential decay in time of the entropy is derived using the equations for
entropy and entropy dissipation and convex Sobolev inequalities (Sec. 3 in [1]) generalizing
the classical logarithmic Sobolev inequality of L. Gross (see, e.g. [21] and [1] for various
approaches to this subject) as well as Poincaré type inequalities.

Our goal in this paper is to give simple entropy dissipation arguments which could
be the first step toward proving that solutions approach steady states in L1 for fairly
general equations (1.1). Next, by the Fourier analysis, we show the exponential decay of
‖u(t)− u∞‖Lp for equations (1.1) with a Lévy diffusion generator L close to a fractional
power of the Laplacian operator (−∆)α/2, 0 < α < 2, and V (x) = 1

2 |x|2. We will also
briefly comment on the difficulties with the application of logarithmic Sobolev inequalities
for generators of symmetric Markov semigroups (as in [13]) to the problem of the optimal
decay rate of the entropy when L is not a (divergence form) differential operator.

Notation. All the integrals without integration limits are meant
∫
Rd . . .; inessential

constants are denoted by C, even if they vary from line to line.
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2. Entropy dissipation for solutions of general Fokker-Planck equations.
We prove in this section the decreasing property of the (relative with respect to the
steady states) entropy of solutions u of the Fokker-Planck equation (1.1), under fairly
general assumptions on L and V . Namely, we suppose that the operator L is Markov, i.e.
−L generates a positivity and mass preserving strongly continuous semigroup {e−tL}t≥0

on L1(Rd), and suppose that e−tL is defined by an integral kernel Kt:

e−tLz(x) =

∫
Kt(x, y)z(y) dy.(2.1)

The latter follows, e.g., from the ultracontractivity assumption

e−tL : L1(Rd)→ L∞(Rd), t > 0,

by the Dunford-Pettis theorem, see [15, Th. 2.6.20].
We will not use in this section explicit characterizations of L which can be given in

the form of pseudodifferential operators or integro-differential ones, cf. [15, Sec. 3.7].
Moreover, we assume that V is a confinement potential with respect to L, i.e. the

steady states u∞ satisfying the equation

Lu∞ = ∇ · (u∞∇V )(2.2)

are positive: u∞(x) ≥ 0, integrable: u∞ ∈ L1(Rd), and normalized:
∫
u∞(x) dx = 1.

Recall that for L = −∆ this integrability condition is equivalent to e−V ∈ L1(Rd),
while V ∈ W 2,∞

loc (Rd) is assumed to have u∞ regular enough. We will see in the next
section how to solve (2.2) if L is a Lévy operator defined by a Fourier multiplier a(ξ):

L̂u(ξ) = a(ξ)û(ξ), and V (x) = 1
2 |x|2. In those cases the steady states u∞ are unique up

to the normalization
∫
u∞(x) dx = 1.

We consider relative entropy functionals of the form

W [u(t)|u∞] ≡W (t) =

∫
Ψ

(
u(x, t)

u∞(x)

)
u∞(x) dx,(2.3)

where u(t) = u(x, t) ≥ 0 is a solution of (1.1), the function Ψ is a C2 convex function
on R+, Ψ(s) ≥ 0 for s ≥ 0, and Ψ(1) = 0. Typical (and the most important for our
purposes) examples include the logarithmic (or physical) entropy with

Ψ1(s) = s log s− s+ 1,(2.4)

and the quadratic entropy

Ψ2(s) = (s− 1)2.(2.5)

More generally, one can consider the family of entropies generated by

Ψp(s) = sp − 1− p(s− 1)(2.6)

with 1 < p ≤ 2, the logarithmic entropy being obtained in the limit as p↘ 1. They have
been considered in [1] as examples of admissible entropies. However, in this section we
need neither additional regularity assumptions on Ψ (like Ψ ∈ C4), nor growth restrictions
(like Ψ(s) ≤ C(s− 1)2) used in [1] in order to consider not only the entropy production
equation (2.8) below but also the rate of entropy dissipation, see (2.15), below.
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Theorem 2.1. Suppose that u = u(x, t) ≥ 0 is a sufficiently regular solution of the
Fokker-Planck equation (1.1), Ψ generates an entropy functional as above, and u0 ∈
L1(Rd) satisfies moreover W [u0|u∞] <∞ for a steady state u∞ with

∫
u∞ =

∫
u0. Then

the entropy W decreases monotonically : W (t)↘W∞ as t→∞.

Proof. We begin with formal calculations valid for regular solutions, noting that for
u0 admitting a solution of the initial value problem (1.1)–(1.2) and satisfying merely the
condition W [u0|u∞] < ∞, the calculations can be justified by standard approximation
procedures as in, e.g., [1].

Differentiating the entropy functional W along the solution u(t) of (1.1) we get after
some integrations by parts

dW

dt
=

∫
Ψ′
(
u(x, t)

u∞(x)

)
ut(x, t) dx

= −
∫
LuΨ′

( u

u∞

)
+

∫
∇ · (u∇V )Ψ′

( u

u∞

)

= −
∫
LuΨ′

( u

u∞

)
−
∫
u∇V Ψ′′

( u

u∞

)
· ∇
( u

u∞

)

= −
∫
LuΨ′

( u

u∞

)
−
∫
∇V u∞ · ∇ϕ

( u

u∞

)
,

where ϕ′(s) = sΨ′′(s) so that

ϕ(s) = sΨ′(s)−Ψ(s).(2.7)

Finally, we get the entropy production formula

dW

dt
= −

∫
LuΨ′

( u

u∞

)
+

∫
Lu∞ ϕ

( u

u∞

)
≡ −I(2.8)

since the steady state satisfies the relation (2.2).
The integration by parts was used systematically in [1] which permitted the authors

to transform the integral
∫
LuΨ′

(
u
u∞

)
into a more convenient expression for divergence

form second order elliptic differential operators L. Here, we no longer may use integrations
by parts, hence we approximate the operator L by the operators 1

h

(
I − e−hL

)
strongly

converging to L as h↘ 0.
Thus, the right hand side −I of (2.8) can be viewed as the limit as h ↘ 0 of the

expressions

−Ih ≡ −
1

h

∫ (
I − e−hL

)
uΨ′

( u

u∞

)
+

1

h

∫ (
I − e−hL

)
u∞ ϕ

( u

u∞

)

= − 1

h

∫ {
u(y, t)

u∞(y)
Ψ′
(
u(y, t)

u∞(y)

)
− ϕ

(
u(y, t)

u∞(y)

)}
u∞(y) dy(2.9)

− 1

h

∫ ∫
Kh(x, y)

{
−u(y, t)

u∞(y)
Ψ′
(
u(x, t)

u∞(x)

)
+ ϕ

(
u(x, t)

u∞(x)

)}
u∞(y) dy dx,

where Kh(·, ·) denotes the integral kernel of the semigroup e−hL, cf. (2.1). In particular,∫
Kh(x, y) dx = 1 holds for all h > 0 and y ∈ Rd.
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Next, we have by (2.7) and (2.9)

Ih =
1

h

∫ ∫
Kh(x, y)

{
−u(y, t)

u∞(y)
Ψ′
(
u(x, t)

u∞(x)

)

+ ϕ

(
u(x, t)

u∞(x)

)
+ Ψ

(
u(y, t)

u∞(y)

)}
u∞(y) dy dx.

Taking into account again the relation (2.7) we arrive at the representation

Ih =
1

h

∫ ∫
Kh(x, y)

{
Ψ

(
u(y, t)

u∞(y)

)
−Ψ

(
u(x, t)

u∞(x)

)

+ Ψ′
(
u(x, t)

u∞(x)

)(
u(x, t)

u∞(x)
− u(y, t)

u∞(y)

)}
u∞(y) dy dx.

(2.10)

Finally, Ih is positive by the convexity of Ψ. For instance, using the Taylor formula, the
expression in braces in (2.10) is equal to

1

2
Ψ′′(ζ)

(
u(x, t)

u∞(x)
− u(y, t)

u∞(y)

)2

≥ 0,(2.11)

with an intermediate point ζ between u(x,t)
u∞(x) and u(y,t)

u∞(y) .

Remark that the positivity of Ih might be also concluded using the Young inequality

ab ≤ Ψ(a) + Φ(b), a, b ≥ 0,(2.12)

where the convex function Φ is the conjugate function of Ψ, cf. [16], satisfying the relation
Φ(Ψ′(s)) ≡ ϕ(s), and putting a = u(y,t)

u∞(y) , b = Ψ′
( u(x,t)
u∞(x)

)
in (2.12). Remember that Ψ′ and

Φ′ are increasing, mutually inverse functions, and the relation aΨ′(a) = Ψ(a) + Φ(Ψ′(a))

is satisfied identically by (2.7).
The differential inequality dW

dt ≤ 0 following from (2.8), (2.10) and (2.11) shows that
W [u(t)|u∞] decreases along the trajectories of (1.1).

Remark. Of course, if the uniqueness of steady states satisfying (1.4) is supposed, it
is expected that limt→∞W (t) = W∞ equals W∞ = W [u∞|u∞] = 0. This would imply,
using the extensions of the Csiszár-Kullback inequalities studied in [22, Sec. 2.7]

‖u(t)− u∞‖L1 ≤ KW [u(t)|u∞](2.13)

for admissible entropies W and some constant K = K(Ψ), that u(t) converges to u∞ in
L1(Rd). We cannot, however, prove this in such a general setting of Theorem 2.1. The
proof needs some supplementary hypotheses on V and L, and could follow the scheme
below.

Since (2.13) holds, the entropy W [ · | · ] dominates the L1 metric in which (1.1) gener-
ates a dynamical system. To conclude that the (strict) Lyapunov functional W decreases
to its unique critical value 0 = W [u∞|u∞] in the set {z ∈ L1(Rd) : z ≥ 0,

∫
z =∫

u0 =
∫
u∞}, we would use the LaSalle invariance principle (see, e.g. [11, Th. 9.2.3

and Th. 9.2.7]). To do that, we need the compactness of the closures of trajectories
{u(t) : t ≥ 0} in L1(Rd). The latter property would follow from their weak compactness
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in L1(Rd), the property of the uniform space localization of u(t):

∀ε > 0 ∃R, T ∀t ≥ T
∫

|x|≥R
u(x, t) dx < ε,

and the convergence of the norms: ‖u(t)‖L1 → ‖u∞‖L1 which holds because u(x, t) ≥ 0,
u∞(x) ≥ 0 and

∫
u(x, t) dx =

∫
u∞(x) dx.

The weak L1(Rd)-compactness (characterized by the Dunford-Pettis theorem) is as-
sured by the uniform integrability of u(t) since W (t) ≤ W (0) and Ψ in the definition
of W is a strictly superlinear function (cf. the de la Vallée-Poussin criterion).

To prove the localization property, we need some additional hypotheses on the mutual
relations of L and V .

Note that I = 0 in (2.8) characterizes (unique) steady states of (1.1) so that the
convergence of W (t) to zero can also be obtained by a standard variational argument
W (tn)↘W∞, dW (tn)

dt → 0 for a (and hence any) sequence tn↗∞, W∞ =W [u∞|u∞] = 0,
under the Palais-Smale condition which is, essentially, the L1(Rd)-compactness of the
closures of trajectories discussed above. Indeed, if in (2.11) the equality holds, then
u(x,t)
u∞(x) = u(y,t)

u∞(y) (= 1, by (1.4)) a.e., and limt→∞ u(t) = u∞ would follow.

We expect that supplementary hypotheses expressing compactness properties of the
semigroup generated by −L+∇·(.∇V ) could guarantee that even a stronger result on the
exponential convergence to the steady states in L1(Rd) will hold, compare the following
remark.

Remark. In the case of a divergence form elliptic second order diffusion operator L
a stronger result is proved (under certain supplementary regularity and size assumptions
on L and V ) in [1]. Namely, the relative entropy W is shown to decay exponentially

W (t) ≤W (0)e−λt(2.14)

for some λ > 0. The idea is to consider the entropy dissipation relation
dI
dt

= −R(2.15)

and to show that R satisfies

R ≥ λI(2.16)

for some λ > 0. This, together with the preliminary result limt→∞W (t) = 0, leads
to (2.14). The proof of (2.16) is rather involved and tricky. That proof uses a specific
property of divergence form operators L = ∇ · (D∇) with a symmetric positive definite
matrix D = D(x) which permitted the authors of [1] to write down the Fokker-Planck
equation ut = ∇ · (D(∇u+ u∇V )) in an equivalent self-adjoint form

zt = ∇ · (D∇z)− zṼ(2.17)

on L2(Rd) involving the new variable z = u/
√
u∞ and a new potential Ṽ .

The relation (2.16) appears to be equivalent to the generalized logarithmic Sobolev
inequality of Bakry-Eméry. Thus, the proof of the exponential convergence of u(t) to u∞
in [1] has given, via (2.16), an alternative proof of this rather delicate extension of the
classical Gross logarithmic Sobolev inequality, see [20], [21] for an earlier approach.
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In the framework of [1], the preliminary estimate on the decay of the entropy to 0 is
proved using simple spectral theory arguments (and we used the Invariance Principle).
On the other hand, the logarithmic Sobolev inequality implies the spectral gap condition
for the operator in the form (2.17) of the Fokker-Planck equation, see [1, Sec. 3.2].

We believe that R satisfies the inequality (2.16) also for general diffusion operators L
and suitable potentials V . However, observe that the logarithmic Sobolev inequality for
generators of hypercontractive semigroups e−tL as in [13, Th. 2.2.3] (or in [12, Prop. II.1
and Th. II.5]) is not sufficient to prove (2.16), and thus a proof of (2.16) requires another
approach.

3. Lévy-Fokker-Planck equations and the exponential convergence to their
steady states. The equations of the form

ut + Lu = ∇ · (ux),(3.1)

called here the Lévy-Fokker-Planck equations, are the main object of study in this section.
They are particular examples of (1.1). Moreover, they appear as the rescaled versions of
equations

zt + Lz = 0(3.2)

when L has suitable scaling properties. Indeed, if L = (−∆)α/2, defined by the Fourier
multiplier a(ξ) = |ξ|α, 0 < α ≤ 2, corresponds to the α-stable law, then the space-time
rescaling

z(x, t) = (αt+ 1)−d/αu
(
x(αt+ 1)−1/α, α−1 log(αt+ 1)

)

leads exactly to (3.1).
Let pαt (x−y) = Kt(x, y) be the integral kernel of the semigroup e−t(−∆)α/2 , ‖pαt ‖Lq =

ct−d(1−1/q)/α. Thus, the results on the intermediate asymptotics of z(t) (see [6], [9]):

td(1−1/q)/α
∥∥∥z(t)−

(∫
z0

)
pαt

∥∥∥
Lq
→ 0 as t→∞

are equivalent to the results on the convergence of u(t) to u∞.

To the best of our knowledge, [10] was the first result on the asymptotic resemblance
of z(t) to a multiple of the heat kernel p2

t , preceding the fine analysis of the self-similar
L1 large time behavior of solutions of the heat equation, i.e. (3.2) with L = −∆ (and
more general parabolic equations). They used in [10] arguments involving estimates for
fundamental solutions of considered equations to show that if z0 ∈ L1,

∫
z0 = 0, then

‖z(t)‖L1 → 0 as t → ∞, but they do not get estimates for the decay rate. After then,
several papers appeared, and we mention only [19] employing entropy methods, togeth-
er with very general, technical results in [14] applicable in a much wider context. An
application of these ideas to nonlinear problems can be found in [6], [8], [9].

Let us consider the equation (3.1) where L is a Lévy diffusion generator defined by its

symbol a(ξ) as in the Lévy-Khinchin formula (3.143) in [15]: L̂u(ξ) = a(ξ)û(ξ). Moreover,
we suppose, as in [8] that

0 < lim inf
ξ→0

a(ξ)

|ξ|α ≤ lim sup
ξ→0

a(ξ)

|ξ|α <∞,(3.3)
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0 < inf
a(ξ)

|ξ|2(3.4)

are satisfied for some α (which must belong to (0, 2]), as well as a is sufficiently smooth
for ξ 6= 0.

Remark. Our assumptions on the symbol a guarantee not only the hyper- and ul-
tracontractivity of the semigroup e−tL, cf. [8, (2.6)], where the decay estimates

∥∥e−tLv
∥∥
Lp
≤ C min

(
t−d(1−1/p)/2, t−d(1−1/p)/α

)
‖v‖L1 ,(3.5)

for the semigroup e−tL are discussed, but also the boundedness of the solutions u 7→ u(t)

of (3.1) from L1(Rd) to Lp(Rd). Note that a similar boundedness result with u0 ∈ Lp

follows using the entropy Ψp with any p > 1 as in Theorem 2.1. If V is such that
supx∈Rd ∆V (x) <∞, then lim supt→∞ ‖u(t)‖Lp <∞ for each u0 ∈ (L1∩Lp)(Rd). To see
this, observe that

1

p

d

dt
‖u‖pLp +

∫
Lu |u|p−2u = −

∫
u∇V · ∇(|u|p−2u) =

p− 1

p

∫
∆V |u|p.

Using a result extending the classical Nash inequality which relates the decay of the
semigroup e−tL and the integrals

∫
Lu v (cf. [13, (2.2.7) for p ≥ 2, Th. 2.4.6], and [12,

Prop. II.1, Th. II.5] for a more general announcement, or [23, the proof of Prop. II. 5.4]
where the following extension of the Kato-Beurling-Deny inequality

4(p− 1)

p2

∫ (
L|u|p/2

)
|u|p/2 ≤

∫
(Lu)|u|p−1 sgnu

is shown), we get
d

dt
w + cw1+ε ≤ Cw,(3.6)

where w(t) = ‖u(t)‖pLp , and ε = 1/((p− 1)α). We refer the readers for details of the use
of the Kato-Beurling-Deny inequality to [8]. The differential inequality (3.6) leads to

logw − ε−1 log(C − cwε) ≤ Ct,
hence wε(t) ≤ CeεCt

(
1+ceεCt

)−1
, and lim supt→∞ wε(t) ≤ C follows. A similar argument

applied to u(t)− u∞ shows (local) asymptotic stability of u∞.
A more precise statement in Theorem 3.1 below is proved using different arguments

of spectral theory.

It is convenient to study the equation (3.1) in the Fourier variables where this takes
the form

vt + a(ξ)v + ξ · ∇v = 0(3.7)

with v = û and ∇ = ∇ξ. The initial condition (1.2) leads to

v0(ξ) = û0(ξ).(3.8)

Theorem 3.1. The solutions of the equation (3.1) converge to the corresponding
steady states at an exponential rate

‖u(t)− u∞‖Lp ≤ Ce−εt(3.9)

for all 2 ≤ p ≤ ∞, some ε = ε(p) > 0, and C which depend on L, p, and u0, respectively.
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Corollary 3.1. Under some more restrictive regularity and decay assumptions
on u0, the exponential convergence

‖u(t)− u∞‖Lp ≤ Ce−εt(3.10)

holds for all 1 ≤ p ≤ ∞.

Proof. The scheme of the proof of this corollary is fairly standard. It suffices to note
that

‖u‖L1 ≤ C‖û‖1−d/(2m)
L2 ‖Dmû‖d/(2m)

L2(3.11)

for every integer m > d/2, e.g. m = [d/2] + 1, and a constant C = C(d,m). This is a well
known fact, frequently used in harmonic analysis. We refer the reader for an elementary
proof of (3.11) to [5, Example 2, p. 1748].

Indeed, modulo assumptions on the regularity of the symbol a off the origin and
on v0 = û0 (hence on the moments of u0), the solution (Dmv −Dmv∞) of the linear
equation (3.1) decays exponentially to 0 in L2

ξ(Rd). We will not pursue here the question
of optimal assumptions on a and u0 needed for the above reasoning.

Once the exponential convergence of ‖u(t)−u∞‖L1 has been obtained, the convergence
of ‖u(t) − u∞‖Lp , again at an exponential rate, follows by an interpolation argument
and (3.9).

Proof of Theorem 3.1. The Fourier transform v∞ of the steady state u∞ satisfies
the (first order partial differential) equation

ξ · ∇v∞ + a(ξ)v∞ = 0.(3.12)

Thus, we have a unique steady state corresponding to mass 1

v∞(ξ) = exp (−A(ξ)) ,(3.13)

where

A(ξ) =

∫ 1

0

a(sξ)s−1 ds.(3.14)

and
∫
v∞(ξ) dξ ≡ cL,V . Note that A(ξ) is well defined since a(0) = 0, 0 ≤ a(ξ) ≤ c|ξ|α for

small |ξ| and some 0 < α ≤ 2. Moreover, if a(ξ) ∼ |ξ|α for |ξ| ↘ 0, then also A(ξ) ∼ |ξ|α,
and A(ξ) → ∞ together with a(ξ) → ∞ and/or |ξ| → ∞. The fact that A is a Lévy
symbol easily follows from, e.g., the Schoenberg theorem [15, Th. 3.6.11]. In particular,
if a(ξ) = |ξ|α, then u∞ = pα1 .

Rewriting the equation (3.1) as

exp (A(ξ)) vt + ξ · ∇ (exp (A(ξ)) v) = 0

we arrive at the following Fourier transform of the solution of (3.1)

v(ξ, t) = exp
(
A
(
e−tξ

))
v0

(
e−tξ

)
exp (−A(ξ)) .(3.15)

Now, we will prove that there exists an ε > 0 such that
∫

Ψ2

(v(t)

v∞

)
v∞ ≤ Ce−2εt.(3.16)
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Since A(ξ) ≥ 0, it follows that v−1
∞ (ξ) = exp(A(ξ)) ≥ 1. Hence, the Ψ2 entropy controls

the L2 norm ∫
Ψ2

(v(t)

v∞

)
v∞ ≥

∫
(v(t)− v∞)2,

and therefore

‖v(t)− v∞‖L2 =
∥∥exp(−A(ξ))

(
exp(A(e−tξ))v0(e−tξ)− v0(0)

)∥∥
L2 ≤ Ce−εt.

The latter is clearly equivalent to the statement on the exponential convergence of u(t)

to u∞ in L2.
To get (3.16) we show that for each 0 < ε < α

J ≡ e2εt
∥∥∥exp

(
−1

2
A(ξ)

)(
exp(A(e−tξ))v0

(
e−tξ

)
− v0(0)

)∥∥∥
2

L2

is bounded as t→∞. Given δ > 0 we split the quantity J into two integrals J = J1 +J2

of the function

exp(−A(ξ))
(
exp(A(e−tξ))v0

(
e−tξ

)
− v0(0)

)2

over {0 ≤ |ξ| < δet} and {δet ≤ |ξ|}, resp. Observe that by u0 ≥ 0, we have ∇v0(0) = 0,
hence

|exp(A(η))v0(η)− v0(0)| ≤ CA(η) ≤ C|η|α

for all |η| < δ with δ > 0 small enough (in fact δ = δ(v0) = δ
(
‖u0‖L1

)
), and C =

C(v0(0)) = C(‖u0‖L1). Therefore

J1 ≤
∫

|ξ|<δet
exp(−A(ξ))|ξ|2αe(2ε−2α)t dξ → 0(3.17)

holds as t → ∞. To estimate the integral J2 let us note that under the assumptions on
the symbol a we have for each b > 0 and all t ≥ T = T (b)

A(ξ) ≥ btA
(
e−tξ

)
.(3.18)

Here we take b > α
(
4 inf{A(η) : |η| ≥ δ}

)−1
. Therefore (3.18) leads to the bound

J2 ≤ C
∫

δet≤|ξ|
exp
((

2ε− bA(e−tξ)
)
t
)

exp
(
2A(e−tξ)

)
dξ

≤ C
∫

δet≤|ξ|
exp
(
−A(e−tξ)

)
dξ <∞

(3.19)

for t ≥ max{T (b), 6/b} because (bt− 3)A(η) ≥ 1
2btA(η) ≥ 2εt holds.

Now, using the Csiszár-Kullback inequalities for W with Ψ2 and [1, Lemma 2.7]
on the comparison of admissible entropies with Ψ1 and Ψ2, we obtain the exponential
convergence to 0 of the norms ‖v(t)−v∞‖Lp with 1 ≤ p ≤ 2. Thus, the exponential decay
of ‖u(t)− u∞‖Lq for 2 ≤ q ≤ ∞ follows by the Hausdorff-Young inequality.

Finally, let us remark that, contrarily to the spectral theory approach in Section 3,
the entropy method is robust and can be extended to certain nonlinear problems, cf. [2],
[3] and [4].



FOKKER-PLANCK EQUATIONS 317

Acknowledgements. The authors wish to thank Peter Markowich for sharing his
ideas concerning various generalizations of Fokker-Planck equations, Wojbor Woyczyński
for discussions on probabilistic interpretations of those equations, and Jean Dolbeault for
interesting comments. Grant support from KBN 50/P03/2000/18 is gratefully acknowl-
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