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Abstract. In this paper we examine self-similar solutions to the system

uit − di∆ui =

m∏

k=1

u
pi
k
k , i = 1, . . . ,m, x ∈ RN , t > 0,

ui(0, x) = u0i(x), i = 1, . . . ,m , x ∈ RN ,
where m > 1 and pik > 0, to describe asymptotics near the blow up point.

1. Introduction. In this paper we present the results that describe solutions to the
system

uit − di∆ui =

m∏

k=1

u
pik
k , i = 1, . . . ,m, x ∈ RN , t > 0,

ui(0, x) = u0i(x), i = 1, . . . ,m, x ∈ RN ,
(1.1)

near the blow up point in terms of self-similar solutions to the system. Namely, we
are going to show that blowing up solutions to the system are asymptotically close to
the respective self-similar solutions. To formulate our results we have to introduce some
convenient notation according to the system under consideration, i.e. (1.1).

We observe that without loss of generality we can assume henceforth that

min
i

m∑

k=1

pik =

m∑

k=1

p1
k.(1.2)

Let

Am =
[
pik
]
, i, k = 1, . . . ,m,(1.3)

with row i and column k.
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Let

δ = det(Am − I),(1.4)

and suppose α = (α1, . . . , αm) satisfies

(Am − I)αt = (1, 1, . . . , 1)t.(1.5)

We notice that if δ 6= 0 then the unique solution α of (1.5) is given by

αk = δ−1 det
(
Dk(Am − I)

)
, k = 1, . . . ,m,(1.6)

where Dk(Am − I) denotes the matrix Am − I with column k replaced by the vector
(1, 1, . . . , 1)t.

Theorem 1.1 ([R3]). Let u be a solution of (1.1) defined in RN×(0, T ). Assume that
mini αi > 0 and maxi αi = α1, where the αi are given by (1.3)–(1.6). Suppose that one
of the conditions below holds :

N = 1, 2 or N ≥ 3, α1 ≥
N − 2

4
,(1.7)

d1∆u01
+A1u

1+1/α1

01
> 0.(1.8)

Then for some constant C > 0,

ui(x, t) ≤ C(T − t)−αi , i = 1, . . . ,m.(1.9)

This result makes it possible to proceed further in order to derive a finer description
of a solution near a blow up. Our approach starts with introducing similarity variables
in the following way:

ui(x, t) = (T − t)−αiUi(y, s),
y = x(T − t)−1/2, s = − log(T − t).(1.10)

Then the new functions Ui solve

Uis = di∆Ui −
1

2
y∇Ui − αiUi +

m∏

k=1

U
pik
k , i = 1, . . . ,m.(1.11)

Our task is to characterize all global bounded nonnegative solutions of the rescaled
system (1.11). Since t → T corresponds to s → ∞, the analysis of nonglobal solutions
of (1.1) is now equivalent to examining the large-time asymptotics of solutions of (1.11).
However, the last problem seems to be easier to solve. Consequently, our task is to
characterize all global bounded nonnegative solutions of the rescaled system (1.11). It
turns out that under some restriction on pik such solutions are constant. We can divide
the argument into two steps. We start with the assuring ourselves that as s→∞, Ui(y, s)
are independent of s, i.e. should approach a stationary solution of the system. Next, we
characterize such solutions as the constants. In this way we will show that the solution u
of (1.1) is “asymptotically self-similar”. Our main result is

Theorem 1.2. Let U = (U1, . . . , Um) be any nonnegative bounded solution of (1.11)
defined for (y, s) ∈ RN ×R. Assume that U 6≡ 0 where 0 = (0, . . . , 0) and maxi αi = α1.
If

min
i
αi > 0(1.12)
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and

N = 1, 2

or

N ≥ 3, 1 <

∑m
k=i p

i
kαk

αi
≤ N + 2

N − 2
, i = 1, . . . ,m,(1.13)

then

lim
s→∞

(U1, . . . , Um) = (Cα1
, . . . , Cαm)(1.14)

where (Cα1
, . . . , Cαm) are constant solutions of the system (1.11).

We emphasize that the assumptions of Theorem 1.2 imply the growth rate esti-
mates (1.9) since condition (1.7) is satisfied. Therefore Ui can be defined by the sys-
tem (1.1) and formulas (1.10).

2. Preliminaries. First, we recall some auxiliary facts established in [R3] and [R2].
We put

bk =
αk
α1

, k = 1, . . . ,m,(2.1)

assuming that α1 6= 0 and bk > 0 (the last condition is guaranteed if mink αk > 0). We
also define

r =
m∑

k=1

bkp
1
k =

1 + α1

α1
.(2.2)

Let us consider the following kinetic system corresponding to (1.1):



u′i =

m∏

k=1

u
pik
k

ui(0) = u0i,

i = 1, . . . ,m.(2.3)

Lemma 2.1. The set

∂M = {(u1, . . . , um) : ui ≥ 0, F (u1, . . . , um) = (F1 . . . , Fm−1)(u1, . . . , um) = 0;

Fj(u1, . . . , um) = uj+1 − aj+1u
bj+1/bj
j , j = 1, . . . ,m− 1},

where aj are constants given by the conditions

a1 = 1, bi

i∏

j=1

a
bi/bj
j =

m∏

k=1

( k∏

j=1

a
bk/bj
j

)pik
, i = 2, . . . ,m.(2.4)

is an invariant manifold for (2.3).

Definition 2.1 (Invariant region). Let
du

dt
+ Au = f(t, u), u = (u1, . . . , um). A re-

gion D is called a regular invariant region for this system, if the conditions u0 ∈ C2,
u0 ∈ ∂D imply that (t, u(x, t)) ∈ D (where u denotes the solution of this system).
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Lemma 2.2. Let

u = (u1, . . . , um), F (u) = (F1(u), . . . , Fm−1(u)),

Fi(u) = ui+1 − ai+1u
bi+1/bi
i , i = 1, . . . ,m− 1

and

M =
{
u : F (u) ≤ 0, ui ≥ 0, i = 1, . . . ,m

and (di+1 − di)∆u0i ≤ 0 for u0i = ui(0) ∈ C2
}
.

Then M is a regular invariant region for (1.1) if
bi+1

bi
≤ 1 for all i = 1, . . . ,m− 1 (i.e.,

u0 ∈ C2, u0 ∈ ∂M imply that u(x, t) ∈M for all t < T ).

3. Asymptotical self-similarity of solutions. In this section we consider the nat-
ural question about a finer description of u near blow up. Assuming estimates on the
growth rate established in [R3], i.e.

ui(x, t) ≤ C(T − t)−αi , i = 1, . . . ,m.

we define the following change of both independent and dependent variables

Ui(y, s) = (T − t)αiui(x, t)
y = x(T − t)−1/2, s = − log(T − t).(3.1)

We introduce the system corresponding to new functions and variables called the
similarity variables

Uis = di∆Ui −
1

2
y∇Ui − αiUi +

m∏

k=1

U
pik
k , i = 1, . . . ,m.(3.2)

We argue by means of the invariant region technique. The utility of the method
consists in the possibility of rewriting the system (1.1) to a system of inequalities. Nev-
ertheless, all are the scalar ones. Moreover, it turns out that adapting a technique used
to discuss the scalar problem is then available.

Applying Lemma 2.2 we can rewrite the system (1.1) (so respectively (3.2)) as follows,
provided that initial values belong to ∂M :

uit − diui ≤Miu

∑i−1

k=1
bkp

i
k

1 u

∑m

k=i
bkp

i
k/bi

i , i = 1, . . . ,m(3.3)

and

Uis − di∆Ui +
1

2
y∇Ui + αiUi ≤Mi

i−1∏

k=1

U
bkp

i
k

1

m∏

k=i

U
bkp

i
k/bi

i

= MiU

∑i−1

k=1
bkp

i
k

1 U

∑m

k=i
bkp

i
k/bi

i ,

(3.4)
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where

M1 = A1 =

m∏

k=1

( k∏

j=1

a
bk/bj
j

)pik
,

Mi =

i−1∏

k=1

( k∏

j=1

a
bk/bj
j

)pik m∏

k=i

( k∏

j=i

a
bk/bj
j

)pik
, i = 2, . . . ,m.

(3.5)

We now focus on the first inequality of (3.4) which in fact is scalar.

U1s − d1∆U1 +
1

2
y∇U1 + α1U1 −M1U

(1+α1)/α1

1 ≤ 0.(3.6)

From here we pursue the existing trail for the scalar equation. We refer also to Section 3
in [R4], where the case m = 2, di = 1 is discussed. According to this problem we start
with the assuring ourselves that as s→∞, U1 is necessarily self-similar, i.e. independent
of s. Therefore, U1 should approach a stationary solution of (3.6). From this point of view
we shall next analyze the global nonnegative and bounded solutions of the equation

d1∆U1 −
1

2
y∇U1 − α1U1 +M1U

(1+α1)/α1

1 = 0.

It turns out that they are constants. We set

U+∞
1 (y, s) = lim

sj→∞
U1(y, s+ sj)

U−∞1 (y, s) = lim
s′
j
→−∞

U1(y, s+ s′j).
(3.7)

This corresponds to limits limt→T u1(x, t) and limt→−∞ u1(x, t), respectively.
The first step of our analysis can be expressed as follows:

Proposition 3.1. If U1 is a bounded global solution of (3.6), then both limits U∞1
and U−∞1 exist and are independent of s. Moreover, U1(y, s + sj) → U±∞1 as sj → ±∞
uniformly on compact subsets of RN with lims→±∞∇U1(y, s) = 0 for almost every y.

Proof. Since the approach is completely parallel with the case of the single equation,
we shall just recall main ideas, pointing out differences emerging for the inequality (3.6).

We quote a technical result of Giga and Kohn ([GK1], Proposition 1).

Lemma 3.2. If u1 is a function satisfying (3.3) and if (1.9) holds, then

|∇ku1(x, t)| ≤ C(T − t)−β−k/2.(3.8)

This implies

Lemma 3.3. If U1 is a bounded function satisfying (3.6) defined on RN+1 then

|∇U1|+ |∇2U1| ≤ C ′, |U1s | ≤ C ′(1 + |y|).(3.9)

Our problem can be represented as

ρU1s − d1∇ · (ρ∇U1) +
1

r − 1
ρU1 −M1ρU

r
1 ≤ 0,(3.10)

where r = 1 +
1

α1
, ρ(y) = exp

(
− 1

4 |y|2
)
. We claim
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Lemma 3.4. If U1 solves (3.6) and is bounded then
∫ b

a

∫

RN
|U1s|2ρ dy ds ≤ E[U1](a)− E[U1](b),(3.11)

where a < b are real and

E[U1](s) =
d1

2

∫

RN
|∇U1|2ρ dy

+
1

2(r − 1)

∫

RN
|U1|2ρ dy −

M1

r + 1

∫

RN
|U1|r+1ρ dy.

(3.12)

Proof. We derive the above assertion analogously to Proposition 3 in [GK1]. Multi-
plying (3.6) by U1s and integrating over BR = {y : |y| < R} one gets

∫

BR

|U1s|2ρ dy

≤
∫

BR

(
d1U1s∇ · (ρ∇U1)− 1

2(r − 1)

d

ds
|U1|2ρ+

M1

r + 1

d

ds
|U1|r+1ρ

)
dy

= −d1

2

d

ds

∫

BR

|∇U1|2ρ dy +

∫

∂BR

U1s
∂U1

∂r
ρ dσ

− d1

2(r − 1)

d

ds

∫

BR

|U1|2ρ dy +
M1

r + 1

d

ds

∫

BR

|U1|r+1ρ dy.

(3.13)

By Lemma 3.3 we observe that the surface term tends to zero as R→∞. Therefore, the
integration from a to b and the passage with R to the limit gives

∫ b

a

∫

RN
|U1s|2ρ dy ds ≤ E[U1](a)− E[U1](b).(3.14)

This concludes the proof.

The last inequality is basic to the further elaboration.

Lemma 3.5. Assume that U1 is a bounded solution of (3.6) on RN+1 and a se-
quence sj → +∞ (respectively, sj → −∞) is monotonically increasing (decreasing) with
sj+1 − sj → ±∞ as j → ∞. Let U j1 (y, s) = U1(y, s + sj) converge to a limit U±∞1 uni-
formly on compact sets of RN+1 with ∇U j1 (y,m) → ∇U±∞1 (y,m) almost everywhere
in RN for all integer m. Then U±∞1 does not depend on s and E[U∞1 ], E[U−∞1 ] are
independent of the choice of {sj}.

Proof. This lemma is an analogue of Proposition 4 in [GK1]. We consider sj →∞.
By Lemma 3.4, putting U1 = U j1 , a = m, b = m+ sj+1 − sj in (3.11) we get

∫ m+sj+1−sj

m

∫

RN
|U j1s|2ρ dy ds ≤ E[U j1 ](m)− E[U j1 ](m+ sj+1 − sj)

= E[U j1 ](m)− E[U j+1
1 ](m).

(3.15)

Lemma 3.3 yields that |∇U j1 | < C, |U j1 | < c for all i. Thus, we can pass with j → ∞
in (3.15) and since E[U j1 ](m)→ E[U∞1 ](m), sj+1 − sj →∞, we see that

lim
j→∞

∫ K

m

∫

RN
|U j1s|2ρ dy ds ≤ 0, m < K.(3.16)
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Therefore, we must have

lim
j→∞

∫ K

m

∫

RN
|U j1s|2ρ dy ds = 0.(3.17)

It follows by |U j1s| ≤ C(1 + |y|) (i.e. (3.9)) and a lower-semicontinuity of the integral
in (3.17) that also

∫ K

m

∫

RN
|U∞1s |2ρ dy ds = 0(3.18)

for even m and K, so U∞1 is necessarily independent of s.
Now, we discuss properties of E[U∞1 ]. We argue by contradiction. Let s̆j be such a

sequence that s̆j satisfies assumptions of Lemma 3.5, Ŭ j1 (y, s) = U1(y, s + s̆j), Ŭ∞1 =

lims̆j→∞ Ŭ j1 and E
[
U∞1

]
6= E

[
Ŭ∞1

]
. Let E

[
U∞1

]
≤ E

[
Ŭ∞1

]
, sj < s̆j (we can obtain it

passing to a subsequence). We use Lemma 3.4 setting in (3.11) a = sj , b = s̆j . Then
∫ s̆j

sj

∫

RN
|U1s|2ρ dy ds ≤ E[U1](sj)− E[U1](s̆j) =

= E
[
U j1
]
(0)− E

[
Ŭ j1
]
(0)→ E

[
U∞1

]
− E

[
Ŭ∞1

]
< 0.

(3.19)

Thus, for j large enough, there is a contradiction with a nonnegativity of the integral
in (3.19). We conclude that E

[
U∞1

]
= E

[
Ŭ∞1

]
, i.e. E[U∞1 ] is independent of s̆j . We

complete the proof considering the case sj → −∞ similarly.
Finally, by (3.9) we have

|∇U1| ≤ C ′, |U1s| ≤ C ′(1 + |y|),
then for some subsequence {sj}, sj → ∞, U1(y, s + sj) → U∞1 (y, s) uniformly on com-
pact sets. The bound |∇2U1| ≤ C assures that ∇U1(y,m + sj) → ∇U∞1 (y,m) almost
everywhere for every integer m and some subsequence sj . Clearly, we can take such a
subsequence to sj+1 − sj →∞, also. Then we obtain a desired conclusion.

Summarizing Lemmas 3.4 and 3.5, we infer Proposition 3.1.

To complete the classification of bounded solutions of (3.2) we prove that such solu-
tions of corresponding stationary problem are constant.

Proposition 3.6. If U1 is a stationary, global and bounded solution of (3.6), so
satisfies

d1∆U1 −
1

2
y∇U1 −

U1

r − 1
+M1U

r
1 ≥ 0,(3.20)

then U1 is a constant such that U1 ≤ [M1(r − 1)]−1/(r−1) provided N = 1, 2 or N ≥ 3

and 1 < r <
N + 2

N − 2

(
i.e. α1 ≥

N − 2

4

)
.

Proof. As we have mentioned, U1 is a subsolution of a corresponding scalar equation,
namely U1(y) ≤ U1(y), where

d1∆U1 −
y

2
∇U1 −

U1

r − 1
−M1U

r

1 = 0.(3.21)
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However, the above problem has been studied by several authors, so we can employ the
known result (cf. Theorem 1 of [GK1], also [GS]) to infer that (3.21) has only constant
global solutions: U1 ≡ 0 or U1 ≡ K, where

K =
( α1

M1

)α1

=
[
M1(r − 1)

]−1/(r−1)
(3.22)

provided N = 1, 2 or N ≥ 3, 1 < r <
N + 2

N − 2
.

We slightly transform (3.20) into

∇ · (ρ∇U1)− ρ

r − 1
U1 +M1ρ |U1|r ≥ 0(3.23)

with ρ(y) = exp(− 1
4 |y|2). Multiplying (3.23) by −U1, integrating over RN and integrating

by parts in the first term, we get∫

RN
|∇U1|2ρ dy +

1

r − 1

∫

RN
|U1|2ρ dy −M1

∫

RN
|U1|r+1ρ dy ≤ 0.(3.24)

This yields ∫

RN
|∇U1|2ρ dy ≤

∫

RN
|U1|2ρ

(
M1|U1|r−1 − 1

r − 1

)
dy.(3.25)

Consequently, by |U1| ≤
[

1
M1(r−1)

]1/(r−1)

or |U1| = 0 we obtain
∫

RN
|∇U1|2ρ dy ≤ 0 or U1 ≡ 0.(3.26)

Thus U1 is some constant. Moreover, U1 ≡ 0 or 0 < U1 ≤ K = [M1(r − 1)]−1/(r−1) if we
assume that r is subcritical.

Now we return to the system (3.4). If one considers the asymptotic behavior of Ui as
s→∞, then the assertion proved for U1 yields

Uis − di∆Ui +
y

2
∇Ui + αiUi ≤MiK

∑i−1

k=1
bkp

i
kU

∑m

k=i
bkp

i
k/bi

i , i = 2, . . . ,m,(3.27)

where K is given by (3.22).
Therefore, for the problem (3.27) for each i we can repeat the analysis analogous to

that shown for (3.6) in the above Propositions and Lemmas, to conclude that Ui(y, s)
(i = 2, . . . ,m) should approach, as s → ∞, a stationary solution of (3.27) and then,

if 1 <
m∑

k=i

bk
bi
pik ≤

N + 2

N − 2
, N ≥ 3 or N = 1, 2, the only global bounded nonnegative

solution of (3.27) independent of s is a constant. Moreover, since y is the blow up point,
the argument parallel to that presented for the equation in [GK3] excludes the trivial
solution. On the other hand, we know that Ui are the solutions of system (3.2). Then
Ui → Cαi as s→∞, where Cαi are constants satisfying (3.2).

It remains to give some thought to the case when initial data do not belong to ∂M .
Then one can find u01

and u 01
such that

u0i ≤ u0i =
i∏

j=1

a
bi/bj
j (u01

)bi(3.28)
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and

u 0i =

i∏

j=1

a
bi/bj
j (u 01

)bi ≤ u0i .(3.29)

Clearly, as ui and u i ∈ ∂M , we conclude the same asymptotics properties as above for
corresponding U i and U i. Moreover by comparison

U ∞ ≤ U∞ ≤ U∞ .(3.30)

In this way we have showed that the solution u of (1.1) is “asymptotically self-similar”.
Thus, the proof is complete.
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