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Abstract. Population geneticists study the variability of gene sequences within a species,

whereas phylogeneticists compare gene sequences between species and usually have only one

representative sequence per species. Stochastic models in population genetics are used to de-

termine probability distributions for gene frequencies and to predict the probability that a new

mutation will become fixed in a population. Stochastic models in phylogenetics describe the

substitution process in the single sequence that represents a species. These latter models are of

great practical use in inferring evolutionary trees, but they ignore population genetics. Here, we

consider the way that the two fields are linked. In a finite population with a low mutation rate,

most sites in a gene are monomorphic; therefore it is a reasonable approximation to represent a

species by a single sequence and to ignore within population variability. We show that population

genetics theory can be used to predict the substitution rates that will be seen in phylogenetic

models. However, a substitution in the phylogenetic sense is really the fixation of a new mutation

in the population genetics sense. Substitution rates are dependent on mutation, selection and

random drift, not just on mutation. An appreciation of the relationship with population genetics

is important when designing new empirical models for phylogenetics, for example, paired-site

models for RNA sequences with secondary structure and codon-based models for protein-coding

regions of DNA.

1. Introduction. This paper arises from the school on “Stochastic Models in Biological

Sciences” held at the Banach Centre in 2006. It is intended as a pedagogical introduction

to the population genetics models of allele frequencies and the phylogenetics models of

substitution rates. The aim is to show that these two types of models can be brought

together, and that an understanding of population genetics is useful when developing new

models in phylogenetics.

2000 Mathematics Subject Classification: 92D15.

Key words and phrases: population genetics, phylogenetics.

This research was supported by the Canada Research Chairs organization and by the Natural
Sciences and Engineering Research Council of Canada.

The paper is in final form and no version of it will be published elsewhere.

[145] c© Instytut Matematyczny PAN, 2008



146 P. G. HIGGS

Population genetics is the study of the variability of genes within populations. This is

a well-established discipline with a strong theoretical foundation dating back to the first

half of the twentieth century. A classic problem in population genetics is the calculation of

the frequency distribution of alleles at a genetic locus. (A locus is a site on a chromosome

where a particular type of gene is found and an allele is one of a number of alternative

versions of the gene that can be present at that locus.) By taking a sample of individuals

from a population, it is possible to estimate the frequency of each of the alternative

alleles in the population. The frequency of an allele will vary in time due to mutation,

selection and random drift. Stochastic models are used to study the way allele frequencies

change, and to predict the distribution of frequencies that is to be expected in different

circumstances.

Molecular phylogenetics is the use of nucleic acid or protein sequence data from differ-

ent species to construct evolutionary trees. Typically, a single sequence from each species

is used. The variability within each species is neglected, because differences in gene se-

quences between individuals in a species are assumed to be smaller than differences

between species. Stochastic models are also central to molecular phylogenetics. Phyloge-

netic models of DNA sequence evolution assume that substitutions of one nucleotide by

another occur as random events at points in a gene sequence. The sequences of different

species diverge over time due to the accumulation of many of these random substitutions

independently in different lineages. The models are defined in terms of a substitution

rate matrix in which the rates of different types of substitution depend on a number of

parameters whose values can be estimated by fitting the model to sequence data.

Population genetics was founded before the era of molecular biology. It is possible to

discuss the segregation of alleles for round and wrinkled peas or brown and blue eyes

in a meaningful way without even knowing that these genes are encoded by DNA. The

advent of experimental techniques for detecting alternative alleles, such as allozymes

and restriction fragment length polymorphisms, led to much more detailed molecular

input to population genetics, but these techniques still did not give the full sequence.

More recently, it has become possible to sequence DNA from many individuals in a

population, and to detect the specific sites in a gene where variability exists (known as

single nucleotide polymorphisms - SNPs). This type of information is useful for medical

studies, and in some cases, diseases can be linked to specific mutations. Because of the

medical relevance, intraspecific sequence data is now becoming more common for humans.

In most other species, we are still limited to only one sequence of any given gene, and we

must presume that this is a typical representative of the species. Nevertheless, variability

at the sequence level must exist in other species, as it does in humans.

The models of population genetics are defined from a mathematic point of view and are

as close as one comes in biology to first-principles theory. On the other hand, the models

of phylogenetics are empirical and have been built up to describe phenomena seen in

real sequence data. The important results regarding the probabilities of fixation of new

alleles as a function of mutation, selection and drift have been understood for a long time.

However, until recently, these things have largely been ignored in practical phylogenetic

studies. Substitution rate parameters in phylogenetic models are usually estimated merely
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with the goal of obtaining the phylogeny, and little attempt has been made to interpret

the substitution rates in terms of population genetics. Currently, with the increasing

availability of both inter- and intra-specific sequence data, the two fields are beginning to

touch on one another more closely than was formerly the case. Phylogenetic models are

becoming increasingly more complex, and this allows a closer link to population genetics

in the way the models are defined. Section 2 of this paper gives a brief introduction to

the ideas of gene frequency distributions and fixation probabilities that are key aspects

of population genetics. In Sections 3, 4 and 5, simple models of DNA sequence evolution

from phylogenetics are introduced, and simple simulations are presented as illustrations

of the way the two types of model are related. Sections 6 and 7 discuss more recent

models that deal with sequences coding for RNAs and proteins. We consider the way

that population genetics issues, like selection, fixation, and compensatory mutations, are

relevant to evolution of these molecules and the way that these effects can be built into

more realistic models of sequence evolution for use in molecular phylogenetics.

2. Stationary gene frequency distributions. We will consider a standard model in

population genetics for the gene frequency distribution at a locus with four alleles. This

applies to a single site in a DNA sequence that can be either A, C, G or T, under the

assumption that the site is neutral (i.e. there is no difference in fitness between the nu-

cleotides). Let ni(t) be the number of gene copies in the population at generation t that

have base i at that site. We will follow the convention that the total number of copies of

the gene is 2N . This applies to a diploid splecies where N is the population size, or to a

haploid species with population 2N . The frequencies of the bases are xi(t) = ni(t)/2N .

The Wright-Fisher model deals with constant population size and non-overlapping gen-

erations. Each gene copy at time t + 1 is descended from one randomly chosen copy at

time t. Let there be a probability u that there is a mutation from any base to any other

base in one generation. The probability, ai, that a new gene copy has i at this site is the

probability that its parent was i and there was no mutation plus the probability that its

parent was something other than i and there was a mutation to i.

(1) ai = xi(t)(1 − 3u) +
∑

j 6=i

xj(t)u

Each gene copy is sampled independently by copying from the previous generation. There-

fore, the probability distribution for the numbers of copies of each allele at the next

generation (time t + 1) is a multinomial distribution:

(2) p(nA, nC , nG, nT ) =
(2N)!

nA!nC !nG!nT !
anA

A anC

C anG

G anT

T .

For clarity, we have omitted the t+1 in all the ni(t+1) in equation 2. Using equations 1

and 2 repeatedly allows us to simulate a population history over many generations. If we

keep track of the value of ni(t) at each time for any one of the four bases, we can calculate

the probability, Φ(n), that ni(t) = n. As 2N ≫ 1, this can be viewed as a continuous

probability distribution φ(x), where x = n/2N . After a long time, φ(x) converges to the

stationary distribution in equation 3, which can be calculated using diffusion theory (see



148 P. G. HIGGS

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

φ(
x)

Fig. 1. Stationary frequency distribution for the case θ = 0.025. The solid line is calculated from
equation 3. The result from simulation of the the model for 108 generations with 2N = 500 and
u = 2.5× 10−5 is superimposed as a dashed line, and is almost indistinguishable.

Wright [1], chapter 13, Crow and Kimura [2], chapter 9, or Durrett [3], chapter 1).

(3) φ(x) =
Γ(4θ)

Γ(θ)Γ(3θ)
xθ−1(1 − x)3θ−1

The parameter θ = 4Nu controls the shape of this distribution. The mutation rate, u,

is very small in real cases (often quoted as of order 10−9 per site per generation), whereas

the effective population size might be only around 104. Usually, therefore, θ ≪ 1, and

both x and (1−x) are raised to negative powers in equation 3. Hence, φ(x) has a U-shaped

distribution that diverges as x tends to 1 or 0. The gamma functions in equation 3 are

just constants that ensure the probability distribution is normalized. Figure 1 shows an

example of the shape of the distribution for θ = 0.025.

When θ ≪ 1, most of the weight of the probability distribution is close to 0 or to 1.

As the four bases are equivalent in this model, there is a probability of 1/4 that any base

will have frequency close to 1, and a probability of 3/4 that it will have frequency close

to 0. A site is described as monomorphic if almost all the population has the same base

at this site. For concreteness, we will say it is monomorphic if the most common base

has a frequency greater than 95%. The site is polymorphic if its most common base has

frequency less than 95%. If θ is small, most sites will be monomorphic most of the time,

but they will occasionally pass through periods of polymorphism as they flip from being

monomorphic for one base to being monomorphic for some other base.

The process of flipping from one state to another is called fixation. Consider a site

that is completely monomorphic - let’s say 100% A. If a mutation to a C occurs, there

is just one gene copy that has C at this site. The frequency of C in the population will

vary in time due to random drift (i.e. the multinomial sampling described by equation 2).

The C allele has two possible fates. With a very small probability, pfix, it will spread

through the population until xC is close to 1. In this case, we say that the C mutation
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has become fixed in the population. However, with a probability 1 − pfix, random drift

leads to the disappearance of C, and the population remains dominated by the A allele.

The probability of fixation of a neutral mutation, given that it begins with just one

copy out of 2N , can be shown to be pfix = 1/2N (Crow and Kimura [2] chapter 8). This

can be calculated from diffusion theory, but it can also be obtained with the following

simple argument. If we trace the lines of any two gene copies in the current population

backwards in time, there comes a point where they coalesce, i.e. the two gene copies

have the same ancestor. If we trace back the lines of descent of all genes in the current

generation, they eventually coalesce to the a single gene copy that is the last common

ancestor (LCA) of the whole of the current population. Now suppose a mutation occurred

in the LCA generation. If it occurred in the gene copy that is the LCA itself, then it

becomes fixed in the population at the current generation. If it occurs in any of the

2N − 1 gene copies that is not the LCA, then it dies out before the current generation.

Hence pfix = 1/2N .

We can now calculate the probability that the population flips between the four al-

ternative monomorphic states. For the population in the A state, the mean number of C

mutations per generation in the whole population is 2Nu. Each of these has a probability

1/2N of being fixed. Thus, the rate of flipping from state A to state C (or between any

other two bases) is r = 2Nu × 1/2N = u. This is a fundamental property of neutral

evolution: the rate of evolution of the population is equal to the rate at which mutations

occur in a single individual. It should be borne in mind that this is only true for a neutral

mutation. For an advantageous mutation, r > u, and for a deleterious mutation, r < u.

3. Can the population be represented by a single sequence? We now begin

to see the potential link between the population genetics and phylogenetics viewpoint.

In phylogenetics, it is assumed that a population can be represented by a single gene

sequence and that variation within the population is not important. If most sites in a

gene are monomorphic, then this assumption seems reasonable at first sight. A single

DNA site can be in states i = A, C, G or T. A phylogenetic model describing the

evolution of the site is defined by a rate matrix rij in which each off-diagonal element

is the rate of substitution from state i to state j. The diagonal elements are defined

as rii = −
∑

j 6=i rij . It is necessary to insist on the distinction between substitutions

and mutations. In a population genetics model, a mutation is a change in a single gene

copy (due to replication error or chemical damage) that can be passed on to the next

generation. In a phylogenetics model, a substitution is a change in the sequence that is

being used to represent the population. A substitution arises as the result of the fixation

of a mutation. Substitution rates are influenced by random drift and selection, as well as

mutation.

The fundamental quantities to be calculated in a phylogenetic model are the transition

probabilities Pij(t), defined as the probability that the site will be in state j after time t

given that it was initially in state i. These probabilities satisfy the rate equation:

(4)
dPij

dt
=

∑

k

Pikrkj .
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For simple choices of the rij matrix, this equation can be solved analytically. For more

general cases, it can be solved numerically.

The simplest model of this type is the Jukes-Cantor (JC) model [4], in which rij = u,

for all i 6= j and rii = −3u. In this section, u is a substitution rate, i.e. it is the rate at

which the sequence representing the population changes. In the previous section, u was

a mutation rate. However, we saw that fixation and mutation rates are equal for neutral

mutations; therefore, it should be possible to link the two models directly and have u be

the same in both models. We now show that this is possible, but it is necessary to be

careful.

If we simulate the evolution of a population evolving according to the Wright-Fisher

model (as in section 2), we can use it to generate a time series, such as GGGGGTT-

TAAAAATTTTCCCCCCAA..., which lists the state the population is in at each gener-

ation. We will consider three different ways of choosing the base to represent the state of

the population below, but the application of the JC model to the time series is the same

in each case. The JC model is a Markov model where it is assumed that the probability

of being in a given state at any point in time depends only on the state at the previous

generation. The transition probabilities in a fixed period of 1 generation are Pij(1), ob-

tained from solution of equation 4. The time series can be summarized by the matrix of

observed numbers of substitutions Sij , which is simply the count of the number of times

that state j follows state i in the time series. It is straightforward to calculate Pij(t) by

solving equation 4 for the JC model (detailed solutions are given by Li [5], Durrett [3] and

Higgs and Attwood [6]). The probability that the base at time t is the same as the initial

base is Pii(t), and the probability that it is different from the initial base, irrespective of

the which two bases these are, is D(t), where:

(5) D(t) = 1 − Pii(t) =
3

4
(1 − exp(−4ut)).

The total number of steps in the time series is Stot =
∑

i

∑
j Sij . The number of times

that i and j are different is Sdif =
∑

i

∑
j 6=i Sij . Therefore, the observed probability that

the states are different at two successive steps is D̂ = Sdif/Stot. The ‘hat’ denotes the

value estimated from the data. By substituting D̂ into equation 5 and inverting it, we

obtain an estimate of ut.

(6) ût = −
1

4
ln(1 − 4D̂/3).

It is not possible to estimate u and t separately from the observed transition matrix

because transition probabilities are dimensionless, and they always depend on products

of rates and times.

We simulated the Wright-Fisher model for 108 generations with parameters as in

Figure 1 and used this to generate time series, from which we estimated ut by the method

above. The most obvious way to generate the time series is to select one random individual

from the population at each generation and to use the nucleotide from this individual

to represent the population. This corresponds to the usual case in phylogenetics, where

only one sequence from a species is available. A second method is to use the consensus

state of the population, i.e. the nucleotide that is most frequent in the population at
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Table 1. Alternative methods of estimating the substitution rate u from simulation data

method interval t Stot Sdif D̂ ut u

random individual 1 108 6803246 0.0680 2.38× 10−2 2.38× 10−2

consensus state 1 108 254002 2.54× 10−3 8.48× 10−4 8.48× 10−4

counting fixations 1 108 7384 7.38× 10−5 2.46× 10−5 2.46× 10−5

random individual 103 105 13311 0.1331 0.0488 4.88× 10−5

consensus state 103 105 9416 0.0942 0.0335 3.35× 10−5

counting fixations 103 105 7154 0.0715 0.0251 2.51× 10−5

random individual 104 104 4952 0.4952 0.270 2.70× 10−5

consensus state 104 104 4772 0.4772 0.253 2.53× 10−5

counting fixations 104 104 4705 0.4705 0.247 2.47× 10−5

each generation. A third method is by counting the fixations, which can be done in the

following way. If a population is monomorphic for base i (i.e. xi > 0.95), we use i as the

base in the time series. We then continue to use i in the time series until such point as

the population becomes monomorphic for another base j. In this method, the population

is still considered to be in state i in the period during which it is polymorphic, and

the transition to state j is only deemed to have occurred when the population becomes

monomorphic for j.

These three methods generate different time series from the same simulation. The

estimates of ut from the three time series are shown in the top three lines of Table 1. We

know in the simulation that the samples were taken at an interval of t = 1 generation.

Thus ut = u in the table. The true mutation rate is u = 2.5 × 10−5. The result obtained

from counting the fixations is consistent with this, as we expected. However, the time

series from the consensus sequence overestimates u by a factor of over thirty, and the

random individual time series overestimates by a factor of a thousand. It is clear that the

first two methods are inconsistent.

To see why these estimates are wrong, consider Figure 2(a), which shows the genealog-

ical tree generated by tracing the ancestors of each gene copy back through time until

the LCA. Consider, initially, two randomly chosen gene copies in the same generation.

The probability that they have the same parent in the previous generation is 1/2N , and

the probability that they have different parents is 1− 1/2N . Hence, the probability that

their common ancestor existed T generations in the past is

(7) F (T ) =
(
1 −

1

2N

)T−1 1

2N
≈

1

2N
exp(−T/2N),

where the approximation assumes that N ≫ 1. From this, the mean time back to the

common ancestor is 2N generations. Now consider two randomly chosen gene copies at

two successive generations, as in the time series method. These are the black dots in

Figure 2(a). These are usually not direct ancestors of one another. The length of the

chain connecting them is 2T + 1 generations, and the 1 is negligible compared to the 2T .
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Fig. 2. (a) The lines of descent of gene copies in a population over a few generations. The black
dots indicate a randomly sampled individual at each generation. (b) The relationship between
gene copies sampled at large intervals from a population. (c) Illustration of a gene tree within a
species tree.

For this reason, the probability that they are different is much larger than if they were

direct ancestors. By combining equations 5 and 7, the probability that these two gene

copies are different is

(8)

∫ ∞

0

D(2T )F (T )dT =
3

4

16Nu

1 + 16Nu
.

In our case, 16Nu = 0.1, and this probability is 0.068, which is exactly what we obtained

for the observed D̂ in line 1 of Table 1. If this value of D̂ is used inappropriately in

equation 6, an incorrect estimate of u is obtained.

The estimate of u from the consensus sequence is also very inaccurate. This is because,

when a neutral mutation spreads through a population, its frequency does not necessarily

increase in a steady sweep. The frequency of the new base may wander up and down

past the 50% mark several times during the transition period before it eventially goes

to fixation. Therefore, the number of changes of the consensus base is more than the

number of fixations. If the consensus base changed in the recent past, it is probable that

the population is polymorphic, and it is quite likely that the consensus will change back

to the old consensus base in the near future. On the other hand, if the consensus base did

not change for a long time, the population is probably monomorphic and the consensus

base is much less likely to change in the near future. Thus, the probability of change of

the consensus base depends on past history, so the consensus base changes are not well

described by a Markov model.

The situation is much better, however, if we only consider samples taken at broadly

spaced intervals of time, rather than at every generation. Table 1 shows what happens
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if we sample at intervals of t = 103 and 104 generations from the same simulation as

before. Stot is now the simulation length divided by the interval. D̂ is larger than before

because the time between each sample is larger; hence the estimates of ut are also larger.

However, after dividing by t, the estimates of u are better than before. When t = 103,

the estimate from the random invidiual is only out by a factor of 2, and when t = 104,

it is out by less than 10%. The estimate from counting fixations is consistent, whatever

the sampling interval. The estimate from the consensus sequence is between that of the

other two methods.

The typical time to coalescence of all the lines of descent in a population of 2N

gene copies can be shown to be 4N . The interval of 103 in Table 1 is equal to 4N , and

the interval is 104 is much larger than this. When the interval is large, the relationship

between the sampled sequences looks like Figure 2(b). The genealogies of the populations

at each of the sampling times are now separate from one another. The LCA of each

population is descended from a random individual in the previous population. Only the

branches of the tree that link to individuals at the times of sampling are drawn in the

figure. The population is constant in size: the figure does not imply that the population

passes through repeated bottlenecks. If the sampling interval is much larger than the

coalescence time, most of the changes between two successive samples occur on the line

separating the populations rather than within the genealogy of each population. For this

reason the different estimates of the substitution rate all converge.

Let us recap: we asked whether it is valid to represent the whole population by a single

sequence and treat model it as though it were a Markov substitution process, such as

the JC model. If we use either the random individual method or the consensus sequence

method to generate the time series, the straightforward answer is ‘no’. It is not possible

to tell the probability of the nucleotide state at time t + 1 simply from the state at

time t. Further information about the nucleotide frequencies in the population and the

genealogical structure of the population is required. Therefore the assumptions of the

Markov model do not hold. However, the fixation process is fairly well described by a

Markov process when the allele frequency distributions are U-shaped. Hence, the method

of counting fixations gives a very good estimate. When dealing with real data, we do not

have a complete history of the fixation process through time; nevertheless, if we sample

the population at intervals wider than the coalescence time of the population, using either

a random individual or the consensus sequence, the process is quite closely described by

a Markov model and the estimate of the substitution rate is very close to the true rate

of fixations. Therefore, it seems that approximating the population by a single sequence

might not be such a bad idea after all, which is comforting, because phylogeneticists have

been doing this all along!

4. The simplest tree. Of course, the sequences used in phylogenetics do not consist

of samples taken at broad intervals of time from a single lineage. Instead they consist of

samples from separate species at the current time. Furthermore, we have many sites in

a sequence, not just one. However, if a Markov substitution model applies for a single

lineage, it will also apply for species on a tree. We will show this using the simplest

possible tree: just two species.
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We begin with a population of 2N = 500, each of which has a sequence of length

2000. Evolution follows the neutral Wright-Fisher model. Each sequence is copied from

the sequence of a randomly chosen parent sequence at the previous generation. Mutations

occur independently at each site when the sequence is copied. After 10000 generations, a

speciation event occurs, as in Figure 2c. The population is split randomly into two halves

of size 2N = 250, and these then evolve independently of one another for a period of

T = 20000 generations. On the first generation after the split, the two populations are

allowed to immediately double back to 2N = 500, after which they remain constant in

size. At the end of the simulation, one random individual is chosen from each of the two

populations and the matrix of observed substitutions is calculated by comparing these

two sequences.

In this example, we will use a more complex model for the mutation rates due to

Tamura and Nei (TN) [7], which is defined by the matrix

(9) r =

A G T C

A

G

T

C




∗ κ1uπG uπT uπC

κ1uπA ∗ uπT uπC

uπA uπG ∗ κ2uπC

uπA uπG κ2uπT ∗




.

In the TN model, πi is the frequency of base i. The four frequencies may be all different,

as long as they sum to 1. The parameter u controls the rate of mutations between purines

and pyrimidines (these are known as transversions). Transitions between purines (A and

G) occur a factor κ1 times faster than transversions, while transitions between pyrimidines

(T and C) occur a factor κ2 times faster. The ∗ denotes the fact that the matrix elements

on the diagonal must be equal to minus the sum of the other elements on the row. The

TN model is one of a class of phylogenetic models that are time reversible, i.e. they satisfy

the rule πirij = πjrji for all i and j. For more examples of such models, see Higgs and

Attwood [6].

The TN model is usually used as a substitution rate model in phylogenetics, but here

we are using it to describe the mutation process. The probability that state i in the

parent mutates to state j in the offspring is rijδt, where δt is a small time step, in this

case, one generation. The probability that no mutation occurs and i remains unchanged

is 1 -
∑

j 6=i rijδt. We used the following parameters in this example: πA = πT = 0.2,

πC = πG = 0.3, κ1 = 3, κ2 = 2, and u = 2 × 10−5. The observed number of sites with i

in species 1 and j in species 2 is shown below.

(10)

A G T C

A

G

T

C




147 118 40 58

126 307 69 93

42 68 168 89

77 101 111 386




.

We will now use the TN model in its usual way as a substitution model for fitting the

data. The object is to show that the parameters estimated from the data are consistent
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with the known values used in the simulation. An analytical solution of the TN model

is possible [7], by first solving equation 4 to obtain the substituion probabilities Pij(t),

as a function of the rate parameters in equation 9, and then inverting these equations

to give estimates of the rate parameters. Parameter estimates depend on the observed

numbers of substitutions of three types: D̂1, the fraction of sites that differ by a purine

transition; D̂2, the fraction that differ by a pyrimidine transition; and D̂3, the fraction

that differ by a transversion. In section 3, we used D̂ to denote the fraction of times that

two successive states in the time series were different. Here, we are using D̂ to denote the

fraction of homologous sites in the two species that are different. These two quantities are

analogous. It is necessary to separate the observed substitutions into three types because

they depend on the rate parameters in different ways. After some algebra, the parameter

estimates are:

κ̂1ut = −
1

2πR

ln

(
1 −

πRD̂1

2πAπG

−
D̂3

2πR

)
,(11)

κ̂2ut = −
1

2πY

ln

(
1 −

πY D̂2

2πT πC

−
D̂3

2πY

)
,(12)

ût = −
1

2

(
1 −

πAπG

π2
R

−
πCπT

π2
Y

)
ln

(
1 −

D̂3

2πRπY

)
.(13)

In the above equations, πR = πA + πG and πY = πT + πC . Table 2 shows the estimates

calculated from the results in matrix 10. In a real phylogenetic problem we do not know

rates and times separately, so we must be satisfied with the relative rates in column

3 of Table 2. However, in the simulation, we know that the time since the speciation is

20000 generations. The time separating the species is, therefore, approximately twice this.

However, the point of coalescence of the two individuals from which the sequences were

taken is slightly before the speciation, as shown in Figure 2c. We kept track of the times

of common ancestors in this simulation, and it happens that the point of coalescence

is 97 generations before the speciation. Therefore, the time separating the sequences is

2×20097 = 40194. Using this value of t, we obtain the absolute values of the rates in the

final column of the table. These are close to the real values given above, within statistical

error.

Table 2. Estimates of rate parameters in a simulation of the TN model

Type of substitution Observed frequency Relative rate Absolute rate

Transitions between purines D̂1 = 244/2000 = 0.122 κ1ut = 2.58 κ1u = 6.4× 10−5

Transitions between pyrimidines D̂2 = 200/2000 = 0.100 κ2ut = 1.50 κ2u = 3.7× 10−5

Transversions D̂3 = 548/2000 = 0.274 ut = 0.795 u = 2.0× 10−5

In this case, sampling a random member of each population leads to a consistent

estimation of the rate matrix. In hindsight, this should not surprise us. This is a simulation

of neutral evoluton where each gene copy has the same fitness. The lineages of the two

sequences we used for data fitting are two typical lineages in the population. Mutations



156 P. G. HIGGS

occur on these lineages independently of any mutations occurring in other members of

the population. The matrix we used for mutations is the TN matrix; therefore it is not

surprising that the TN model fits the data correctly. In fact, the population makes no

difference in this simulation, and we could have gotten the same answer by simulating just

two sequences instead of two populations. This simulation therefore demonstrates what

we knew in advance from neutral evolution theory. The other point illustrated by this

simulation is that the coalescence point of the two genes is slightly before the point where

the species split. In cases where two speciation events occur shortly after one another, this

can lead to an effect known as lineage sorting in which the branching order of the genes

is not the same as the branching order of the species (Li [5], chapter 5). However, this is

not a serious issue in most phylogenetic studies as long as the time between speciation

events is large compared to N generations.

5. Adding natural selection. So far, things look good for the phylogeneticists: it seems

to be consistent to treat the population as though it were a single sequence. However, all

the models considered up to now are neutral. If selection is included, the fixation rate is

no longer the same as the mutation rate. In any model with selection, the ancestors of the

surviving individuals are those that were fitter than average at the time they existed. The

substitutions in the lineages leading to the sampled individuals are weighted by selection,

and they are not equivalent to the underlying mutations.

Suppose that the mutation process follows the JC model, so that the four bases are

equivalent under mutation, but let the bases have different fitnesses, wi. The multinomial

sampling formula still applies (equation 2), but the probabilities of the four states are

now dependent on the fitnesses of each state and on the mean fitness w.

(14) ai = xi(t)(1 − 3u)wi/w +
∑

j 6=i

xj(t)uwj/w.

As a specific example, consider the case where the A base is under positive selection:

wA = 1 + s, for some small positive selection coefficient s, and wi = 1 for the other

three bases. There are now three types of substitutions in this model. Substitutions

between any two bases other than A should be neutral, and these should occur at rate

r = u as in section 2. Substitutions to A from any other base are advantageous, and

these should occur at rate r = λ1u, where λ1 is 2N× the probability of fixation of an

advantageous mutation. Substitutions from A to any other base are deleterious, and these

should occur at rate r = λ2u, where λ2 is 2N× the probability of fixation of a deleterious

mutation. These fixation probabilities are known from diffusion theory (Crow and Kimura

[2], Durrett [3]):

(15) λ1 =
2N(1 − e−2s)

(1 − e−4Ns)
,

(16) λ2 =
2N(e2s − 1)

(e4Ns − 1)
.

From consideration of the fixation process, our expected substitution rate matrix looks
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like this:

(17) r =

A G T C

A

G

T

C




∗ λ2u λ2u λ2u

λ1u ∗ u u

λ1u u ∗ u

λ1u u u ∗




.

Recall that all the mutation rates are equal to u, and that the λ factors arise from the

population genetics, not directly from the mutations. This is another time reversible

substitution rate matrix for which the relevant quantities can be calculated using similar

methods as before. The stationary frequencies of the four bases under this model are

πA = λ1/(λ1 +3λ2) and πi = λ2/(λ1 +3λ2) for i 6= A. Due to selection, πA is larger than

the others. If this model is fitted to sequence data, the ratio λ1/λ2 can be obtained from

the observed value of πA:

(18) λ1/λ2 = 3πA/(1 − πA).

It is necessary to distinguish two types of substitutions. D̂1 is the fraction of substitutions

in which one is A and one is anything other than A, and D̂2 is the fraction of substitutions

in which the two bases are different but neither is A. Rate parameters can then be

estimated:

(19) λ̂1ut = −πA ln

(
1 −

D̂1

2πA(1 − πA)

)
,

(20) ût = −
1

3
ln

(
1 −

3D̂2 + D̂1

2(1 − πA)

)
−

λ̂1ut

3
.

We simulated a population evolving according to this population genetics model with

parameters 2N = 500, u = 2.5 × 10−5, and s = 1 × 10−3, and constructed time series for

the base state as in section 2. For these parameters, λ1 = 1.58, λ2 = 0.58, λ1/λ2 = 2.71

and the expected frequency of A is πA = 0.475. The sampling interval was 104 generations;

hence ut = 0.25 and λ1ut = 0.395. The results are shown in Table 3. As the sampling

interval is large, the random individual and consensus state methods are close to the result

from counting fixations, and all three methods give a good estimate of the substitution

process. Once again, as long as we are interested in intervals of time longer than the

coalescence time, it is reasonable to approximate the population by a single sequence and

to fit the data with a Markov model of substitutions. However, this example makes it

clear that the substitution model describes the fixation process, not the mutation process.

Table 3. Estimating the substitution rate parameters from simulation data for the single site

model with selection

method πA D̂1 D̂2 λ1/λ2 λ1ut ut

random individual 0.472 0.298 0.154 2.68 0.429 0.280

consensus state 0.477 0.288 0.149 2.73 0.411 0.266

counting fixations 0.482 0.281 0.143 2.80 0.398 0.251
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To make this model for selection at a single site more practical for phylogenetics, it

would be necessary to generalize it to deal with a whole sequence. There is no reason that

the preferred base at every site should be A, so it would be necessary to allow different

sites to have different preferred bases. Also, there is no reason why the same strength

of selection should apply at every site, so it would be preferrable to include some kind

of distribution of selection strengths across sites. These complications go beyond what

is usually done in phylogenetics, where one substitution matrix is typically used to fit

the average properties of a heterogenous bunch of sites. We will not pursue this here.

Instead, we will consider two cases that are relevant for practical phylogenetic studies

and that illustrate the importance of population genetics in the substitution process -

pairs of sites in the stem regions of RNAs and triplets of sites in codon-based models for

coding regions of DNA.

6. RNA pairs and codon triplets. RNA molecules such as ribosomal RNA and trans-

fer RNA have secondary structures that are strongly conserved over evolutionary time.

Each site in a stem region of an RNA structure is paired with another site on the opposite

side of the stem. These pairs of sites evolve under the constraints of base-pair comple-

mentarity. In the simplest population genetics model for a pair of interacting sites, we

suppose that the four combinations that form a Watson-Crick pair (AU, UA, GC, CG)

are all equally fit (w = 1), and that all the other combinations are less fit (w = 1 − s)

because the secondary structure is destabilized. In real RNA sequence alignments we

frequently observe pairs of species that differ by pairs of mutations in the stem regions:

for example, an AU pair in one species and a GC pair in another. This requires two

mutations at separate sites. As mutation rates are very low, it is unlikely that both these

mutations occurred simultaneously in the same gene copy. There must have been genes in

the population where the sites did not match. In this example, the mismatch state would

be either GU or AC. When the second mutation occurred in the mismatched sequence,

the GC matching pair would be created. These pairs of mutations are called compen-

satory mutations, because the second mutation compensates for the deleterious effect of

the first.

If the population is initially monomorphic for the AU pair, the rate of fixation of ei-

ther GU or AC mismatch states is λ2u (equation 16). If the mismatch state is fixed,

the rate of fixation of the compensatory mutation GC (or of return to AU) should

be λ1u (equation 15). From this argument, the net rate of the complementary change

would be slow, because it would be dominated by the slow rate of fixation of the ini-

tial deleterious mutation. However, this arguments fails to capture the nature of the

complementary substitution process. If Ns ≫ 1, and u/s ≪ 1, it is very unlikely that

a mismatch state will be fixed in the population, but there is nevertheless a continual

rate of deleterious mutations to mismatch states all the time. For a large population,

the frequency of a mismatch state in a population that is dominated by a matched

state is u/s, determined by mutation-selection balance. Mismatch sequences will thus

be present in the population at a low level, although we will typically not see them

if we only sample one individual from the population. The rate of creation of GC se-
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quences in an AU population is 2N × 2u/s × u, where the second 2 comes from the

fact that there are both GU and AC mismatches. Although the GC sequence is advan-

tageous with respect to the mismatch, it is neutral with respect to the majority of the

population, which is still AU. The probability of fixation of the neutral GC sequence is

therefore 1/2N . Thus, the net rate of the compensatory substitution is 2u2/s, which is

much larger than λ2u in the parameter range that we are considering. A more detailed

calculation of the rate of compensatory subtitutions is given by Stephan [8]. The allele

frequency distribution, analagous to Figure 1 can also be calculated for this situation

(Higgs [9]).

Analysis of real RNA sequence alignments shows that pairs of compensatory subsi-

tutions are frequent, and are often more frequent than single substitutions to mismatch

states (Higgs [10]). The observation that double substitutions are more frequent than

single substitutions is counter-intuitive initially, but the above argument shows how it

can be explained in terms of population genetics.

An important aspect of real RNA structures is that GU and UG pairs occur quite

frequently, and they are usually treated as weakly matching pairs rather than as mis-

matches. GU and UG pairs would therefore have a smaller selective disadvantage s than

other mismatch pairs. As a result, changes that are double substitutions (AU ↔ GC

or UA ↔ CG), which can go via GU or UG intermediates, occur more frequently than

double transversions (such as AU ↔ UA), which can only go via true mismatches. Also

the severity of a mismatch mutation depends on the context of the structure in which it

occurs. Free energies of helix formation depend on stacking interactions between neigh-

bouring pairs, not just on individual pairs. A mismatch occurring in a very strongly

bonded helix might be almost neutral, because the helix would still form easily when the

mismatch is present, but the equivalent mismatch occurring in a weakly bonded helix

might make the helix unstable, and therefore have a much more negative effect. At sites

where the mismatch is nearly neutral, it would be relatively easy for the single mismatch

to be fixed. We do in fact see a substantial number of sites with mismatches (especially

GU and UG), as well as sites that appear to evolve almost exclusively via compensatory

pairs.

Ribosomal RNA is one of the most frequently used genes in phylogenetic studies.

Therefore it is of interest to develop realistic substitution rate models for the evolution of

paired sites in RNA. When fitting substitution rate models to sequence data, we will be

averaging over many sites with different selection regimes. A good model must therefore

allow for all the types of substitutions that might occur - in particular, it must allow both

single substitutions and compensatory double substitutions as possibilities. The relative

rates of these processes can be estimated by fitting to real data. Among the first to use

a model of this type were Tillier and Collins [11], although a variety of previous models

had been proposed that only allowed single substitutions. Savill et al. [12] compared a

large number of models for paired sites and used statistical tests to determine which gave

better fits to sequence data. It was found that models that allowed double substitutions

always fitted the data better than those that did not, and that the estimated rate of

double substitutions was relatively large.
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We have since gone on to implement RNA-specific models in a software package known

as PHASE, that uses the Bayesian Markov Chain Monte Carlo technique for phylogenetic

inference (Jow et al. [13], Hudelot et al. [14]). In phylogenetics, we are interested in de-

termining the relative likelihood of alternative trees, given the sequence data. Standard

single-site models assume that sites evolve independently and the full likelihood is a prod-

uct of likelihoods of sites. RNA-pair models account for the strong correlation between

the two sites in each pair. If this is ignored, relative likelihoods of alternative trees can

be seriously in error. We therefore recommend using a base pair model for phylogenetics

with RNA sequences, and we also recommend using a rate model that allows double

substitutions, because this is an essential part of the way compensatory substitutions are

fixed in populations. As we have emphasized in this article, the substitution rate model

in phylogenetics needs to describe the fixation process, not the mutation process.

We now turn to models for amino acid sequences. A 20× 20 substitution rate matrix

can be used to describe the rate of substitution of any amino acid to any other. The earliest

of these is the PAM model (Dayhoff et al. [15]), and more recent versions include those

of Jones et al. [16], Adachi and Hasegawa [17], Müller and Vingron [18], and Whelan and

Goldman [19]. These papers describe several different methods by which rate parameters

can be estimated by fitting sequence data. As many parameters are being estimated, a

very large set of sequences is required (alignments of many genes, each containing many

sequences).

These models are called empirical models, because the rates are estimated from se-

quence data without any prior theory of which rates should be high or low. Nevertheless,

the resulting matrices show some important trends that can be understood from first prin-

ciples. The amino acid sequences evolve because mutations occur in the DNA sequences

that code for them. Amino acid substituions are therefore influenced by the genetic code

(i.e. the mapping from codons to amino acids). Amino acid changes that can be achieved

by a DNA mutation at a single codon position occur more frequently than those that

require two or three DNA mutations. Substitution rates are also influenced by selection

at the protein level. Natural selection is, in general, conservative. Changes between amino

acids that have very different physical properties tend to be disruptive of protein structure

and function; therefore, they have a sizeable selective disadvantage and they tend not to

be fixed in the population. Changes between amino acids with very similar properties are

much more likely to be nearly neutral with respect to protein function; therefore they

are more likely to be fixed in the population. A simple demonstration of this is given by

Higgs and Attwood (Figure 4.6 of [6]) using the matrix of Jones et al. [16]. The set of

amino acid pairs for which substitutions occur most frequently is a subset of the amino

acid substitutions that can be achieved by a single mutation, i.e. all the rapid substitu-

tions can be achieved by a single mutation, but not all the single mutation changes are

rapid. Once again, this illustrates that the substitution process is describing fixation of

new variants in the population, and is dependent on selection, not just mutation.

When a DNA sequence is translated to an amino acid sequence, information is lost,

because more than one codon codes for each amino acid. Therefore, it is desireable to

develop substitution rate models for coding sequences that work directly at the DNA
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level. Although 4-state models can describe single sites in DNA, in order to describe the

effects of the genetic code and selection on proteins, we need 64-state models that treat

triplets of sites in a codon as a single unit. Codon-based models are often used (Muse and

Gaut [20], Yang and Nielsen [21], Yang et al. [22], Pond and Muse [23]) in which each

codon can mutate to any other codon that differs at a single position. Differences in base

frequences and differences between transitions and transversions can be accounted for in

a similar way to the TN model (equation 9). An additional important parameter in these

models is ω, the ratio of non-synonymous to synonymous substitution rates. Variants

of these models allow ω to differ between genes (lower ω indicates stronger stabilizing

selection), or between sites (high ω indicates unusual sites where beneficial mutations

have occurred).

In these models, all non-synonymous substitutions are equivalent. The model of Gold-

man and Yang [24] is more interesting, in that it allows non-synonymous substitution rates

to depend on the difference in the physical properties of the amino acids coded by the

two codons. A physical property distance matrix due to Grantham [25] is used, and it is

assumed that the substitution rate decreases exponentially with this distance. This builds

in the fact that conservative amino acid substitutions occur more frequently than disrup-

tive ones, as was observed with the empirical matrices. A similar idea is used by Higgs et

al. [26] using a different distance matrix. In this case, the distance between amino acids

is a weighted sum of the differences in several different physical properties. The weights

are estimated from the data. This gives an indication of which physical properties have

the strongest influence on substitution rates.

A further feature of the model used by Higgs et al. [26] is that it allows changes

between codons that differ at two or three positions, not just those that differ at a single

position (as in all the codon models mentioned previously). Parameters are included in

the model that control the relative rates of double and triple changes to single changes.

It is found that double and triple changes occur less frequently than single changes, but

they do occur. Statistical tests show that if the rates of double and triple changes are

fixed to be zero, the fit to the data is much worse than if these rates are allowed to be

non-zero. We interpret this as an indication that double and triple changes are being

fixed in the population at the same time, even if they did not occur simultaneously as

mutations. The situation seems to be similar to that occurring in RNA pairs. There is

one case in codon-based models where the analogy with compensatory substitutions in

RNA is quite good. The two blocks of serine codons, UCN and AGY, are not accessible to

one another by a single mutation. It is necessary to pass through an intermediate codon

for cysteine or threonine. At a site where serine is the favoured amino acid, the two

codon blocks can exchange via compensatory substitutions. However, in most double or

triple changes, the final amino acid is different from the initial one, and the intermediate

amino acid is different from either of these. The compensatory substitution model then

seems less applicable, because it is not clear that the intermediate state is less fit than the

initial and final states. Nevertheless, double and triple substitutions seem to be important

when fitting the data. Similar conclusions have been reached by Whelan and Goldman

[27] and Kosiol et al. [28]. The case of double substitutions between the two blocks of
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serine codons was also studied by Averof et al. [29], who argue that these occur as a

result of mutational events that affect two neighbouring bases simultaneously, rather

than because of compensatory substitutions. It should also be remembered that in the

empirical amino acid substitution models discussed above, all amino acid substitutions

are allowed. There is no restriction that substitution rates must be zero if the amino acids

are not interchangeable via a single mutation. Thus, there seems to be no need to make

this restriction in codon-based models either. The bottom line in phylogenetic studies is

that we want to infer which is the best tree. We are most likely to get a reliable answer

for the tree if we use a model of evolution that gives a good fit to the sequence data.

7. Towards more realistic models. Maximum likelihood methods in phylogenetics

require the calculation of the likelihood that a known set of sequences evolved on a pro-

posed tree. The maximum likelihood priciple is to select the tree for which this likelihood

is the largest. The likelihood calculation is facilitated by the assumption that sites evolve

independently; hence the likelihood for the whole sequence is the product of the likelihood

of the sites. This assumption is made for convenience and practicality: it is clearly not

true. The sites in RNA pairs or in codon triplets are obviously not independent, but it is

relatively easy to incorporate this by using a model with a larger number of states that

treats a pair or a triplet as a single unit, as in the previous section. In reality, correlations

between different parts of a sequence occur in a way that cannot be parcelled up into

neat pairs and triplets. For example, in RNA, stacking interactions between neighbouring

pairs are important for the stability of the helix [10][30], so each pair is influenced by its

neighbours, which are influenced by their neighbours, and so on. Similar correlations exist

in protein structures too, and not just between neighbours along the chain. Residues in a

protein can be in close proximity spatially even if they are not close along the backbone

of the sequence.

In general, the fitness of a molecule depends on the whole molecule. Sites in a molecule

are linked, so selection acting at one site can influence the fate of mutations occurring at

other sites. Recent work has begun to take this into account. In both RNA and protein

sequence evolution, the structure of the molecule tends to be more conserved than the

sequence. The structure acts as a constraint on the evolution of the sequence. In order

for a sequence to fold to a given structure, that structure must be thermodynamically

favourable in comparison to other structures that the sequence could form. Computational

methods are available that predict the energy of a sequence when folded to a specified

structure. In the RNA case, thermodynamic parameters for formation of various kinds of

base pairs and loop structures are known from experimental measurement (Freier et al.

[30]). These are incorporated into routines that calculate the energy of a sequence when

folded to a specified secondary structure. In the protein case, separation of secondary

and tertiary structure is not so simple. An amino acid interacts with its close neighbours

within the tertiary structure. There is no convenient, experimentally measured energy

scale for these interactions, but pseudo-energies can be calculated statistically by an-

alyzing the contacts that occur in many known examples of protein structures (Jones

[31]). The more frequent the observed contacts between two amino acids (relative to the
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expectation in random sequences), the lower should be the pseudo-energy for interaction

of these amino acids. It is then possible to calculate the pseudo-energy of any sequence

when threaded onto the known structure of a real protein.

Given either a real energy or a pseudo energy function, the evolution of sequences

on a fixed structure can be studied. This has been done for proteins (Robinson et al.

[32], Rodrigue et al. [33]) and RNAs (Yu and Thorne [34], Thorne et al. [35]). It is

assumed that fitness depends on energy: mutations that lower the energy are treated as

advantageous and those that increase the energy are treated as deleterious. Substitution

rates are calculated in these models as functions of population genetics parameters N , s

and u, as in equations 15 and 16. This leads to the intriguing possibility that by fitting

data in the form of single sequences per species, as in phylogenetics, it is possible to

estimate parameters that are relevant to population genetics, i.e. one can do population

genetics without data on within-species variation [35].

In all these studies, it is assumed that a sequence can mutate into any sequence

that differs from it by one mutation. For a nucleic acid sequence of length L, there are 4L

possible sequences and 3L other sequences to which each sequence could mutate in a single

step. Multiple substitutions could, in principle, be incorporated into this framework, but

have not yet been included, for reasons of computational complexity. It can be seen that

this type of model is of a different level of complexity to those considered in all the previous

sections, because the number of states increases exponentially with the sequence length,

whereas in the previous cases it is fixed independently of L (e.g. 4 for a single site model

or 64 for a codon model). In the likelihood calculations for standard models, the quantity

calculated is a sum over the likelihoods of all possible histories of sequence evolution that

could have existed in the interior portions of a tree. This requires solution of equation 4,

which involves determining the eigenvalues of the rij matrix. For the models discussed

in this section, an alternative method is used in which possible histories of substitution

along the tree are sampled using a Markov Chain Monte Carlo method. This allows model

parameters to be estimated in a Bayesian framework.

8. Conclusions. Here we will summarize the central points considered in this article.

Population genetics and phylogenetics are both fields in which stochastic models have

been developed to explain biological data. The models used in the two fields have largely

been independent of one another because they have focused on different kinds of data:

within-species variation in the case of population genetics and between-species variation

in the case of phylogenetics. As the volume of useful sequence data for phylogenetics has

increased over the past decades, the potential for meaningful estimation of large numbers

of parameters from the data has also increased. This has driven the development of ever-

more-complex models in phylogenetics, supported by the observation that more complex

models can often be shown to fit real data better than simpler ones.

Phylogenetic models have now reached the level of complexity where it is desirable

to think about population genetics parameters in the model specification. However, this

raises the main issue with which we began this paper. Phylogenetic models consider

a substitution process as a Markov process going on in a single sequence. This ignores
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variability among members of a population, which is the whole raison d’etre of population

genetics. Is this a valid thing to do? We concluded that, in many cases, the answer is ‘yes’.

If mutation rates are very small and population sizes are not too large, as is very often

the case, most sites in a gene sequence will be monomorphic, and differences between

species will usually be larger than differences between members of the same species. A

randomly sampled member of the population will then be reasonably representative of the

species as a whole. We have shown that Markov substituion rate models can be used to

fit data consisting of randomly sampled sequences taken from the populations of separate

species, or from the lineage of one species at broad intervals of time. The substitution

rates estimated in this way correspond to the rates of fixation of new sequence variants in

the population. In the case of neutral evolution, the fixation rate is equal to the mutation

rate, so fitting the substitution model gives a direct estimate of the mutation rates.

However, in any model applied to real data, this will not be the case. The substitution

matrix will give an estimate of fixation rates, which depend on selection and random drift,

in addition to mutation. A clear example of the qualitative difference between mutation

and fixation rates is given by compensatory mutations, which are known to be frequent

in RNA and which also appear to be occurring in protein coding sequences.

When specifying the functional form of the substitution models to be used in phylo-

genetics, it is necessary to allow for the types of complexity that we expect to see in the

fixation rates. This complexity is a consequence of the fact that there really is a popula-

tion genetics process generating the sequence data that we analyze in phylogenetics.
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