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Abstract. We survey several mechanisms supporting the maintenance of cooperation for evolu-
tionary Prisoner’s Dilemma games. In these models players are located on the sites of a lattice or
graph and they can follow one of the pure strategies: cooperation (C) or defection (D). Their total
income comes from Prisoner’s Dilemma games with their neighbors. We discuss the consequences
of different evolutionary rules determining the time-dependence of the strategy distribution and
compare the results of spreading mechanisms of cooperation.

1. Introduction. Evolutionary Prisoner’s Dilemma games are widely used to describe

the emergence of cooperative behavior among selfish individuals (for reviews see [1-6] and

further references therein). In the original Prisoner’s Dilemma game two players should

simultaneously choose between two options: defection (D) and cooperation (C) [7,8]. The

selfish players wish to maximize their own income in the knowledge of payoffs dependent

on their choices. The curiosity of Prisoner’s Dilemma game comes from the fact that the

choice of defection yields a higher income independent of the partner’s choice. However,

if both rational players choose defection then their individual income is lower than those

obtained for mutual cooperation when the maximum total payoff is shared equally. The

rational players cannot resolve this dilemma although we find many examples in the

nature where mutual cooperation (e.g., altruism and ethical norms) emerges among the

selfish individuals [9].

In the last decades several mechanisms (e.g., kin selection [10], application of retal-

iating strategies [11], and voluntary participation [12]) are reported which enforce the

appearance of cooperation in the societies (for a recent survey see the paper by Nowak

[13]). Now we will discuss two-strategy (C and D) evolutionary prisoner’s dilemma games

with N players (N → ∞) distributed on the sites of a lattice or graph. The players play
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iterated games with their neighbors and sometime they are allowed to modify their strat-

egy. More precisely, the players can adopt (learn) one of the neighboring strategies in a

way defined by the given evolutionary rules. The success of cooperators against defectors

depends on the payoffs, noises, connectivity structure, and some other details of the evo-

lutionary rule. Now we survey those spreading mechanisms of cooperation that increase

the density of cooperators and help the whole community to reach higher total income.

2. The models. The spatial versions of the evolutionary Prisoner’s Dilemma games

were introduced by Nowak et al. [14,15] and these cellular automata were capable to

explain the maintenance of cooperation for the iterated games with a limited range of

interaction if the players follow one of the two simplest strategies. For these strategies,

denoted shortly as D and C, the player chooses always defection and cooperation, re-

spectively. We assume that each players is located on a site x of a lattice or graph and

their strategy is denoted by two-dimensional unit vectors, namely

(1) sx = D =

(

1

0

)

or C =

(

0

1

)

.

The total payoff Ux of player x comes from games with the neighbors y ∈ Ωx, that is,

(2) Ux =
∑

y∈Ωx

s
+
x A · sy,

where s
+
x denotes the transpose of the state vector sx, the summation runs over sites of

the neighborhood Ωx. In the present discussion the self-interaction is excluded and the

rescaled payoff matrix

(3) A =

(

0 b

c 1

)

, 1 < b < 2 − c, c < 0.

will be considered in the limit c → −0 [14,15]. For these symmetric two-person games

both interacting players receive 1 if they follow the C strategy. Conversely, each player

receives 0 if both choose D. The highest payoff b is achieved by the defector against the

cooperator receiving nothing. The parameter b describes the strength of temptation to

choose defection. Notice, that the total payoff (b) for the defector-cooperator co-players

is less than those received by two cooperators.

In the spatial evolutionary games the equivalent players play repeated games with

their neighbors and they can modify their own strategy between games with neighbors.

For the non-spatial models the players are located on the sites x of a graph (network)

where the edges define the connected players (neighbors) and the degree zx gives the

number of neighbors for the player residing at site x.

For most of the evolutionary games the players wish to maximize their own total payoff

by adopting one of the more successful strategies available in their neighborhood. This

type of dynamics is analogous to the Darwinian selection in the ecological systems [16,17].

There are different ways (algorithms) defining how the players choose a new strategy. In

this work our discussion will be restricted to two strategy update mechanisms, namely,

synchronized update and random sequential pairwise comparison.
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2.1. Synchronized update. This evolutionary rule was suggested and studied by Nowak

et al. [14,15] and by many others (see e.g., [18]) during the subsequent years.

For the synchronized update the system is analogous to a cellular automaton where

the strategy distribution {sx(t)} is given in discrete time steps, i.e., t = 0, 1, 2, . . .. In

the subsequent time step the new strategy distribution {sx(t + 1)} is determined by the

payoff distribution Ux(t) that can be evaluated by using Eq. (2). According to the rule

suggested by Nowak and May [14], at time t + 1 the player x will follow the strategy of

the neighboring player having the highest total payoff at time t. The generalization of

this rule to arbitrary networks is straightforward and the results are discussed in papers

[19-22].

2.2. Random sequential pairwise comparison. In this case the players refresh their strat-

egy individually by repeating the subsequent elementary steps. We choose two neighbor-

ing players at the sites x and y at random and we evaluate their payoff (Ux and Uy) given

by Eq. (2). Player x adopts the neighboring strategy sy with a probability depending on

the payoff difference

(4) W [sx → sy] =
1

1 + exp [(Ux − Uy)/K]
,

where K (called temperature) characterizes the magnitude of noise [23-26]. It is worth

mentioning that this evolutionary rule allows irrational choices, that is the players can

adopt the less successful strategies with a low probability.

The above strategy adoption (learning) rules do not change the homogeneous states

(e.g., sx = D). These spatial distributions are called absorbing states and whenever one

of the homogeneous states is reached the system remains there forever. During Monte

Carlo simulations this phenomenon can be observed frequently for small system sizes

after a transient time whose average value increases very fast with N . For large systems

the inside of homogeneous regions remains unchanged because variation can occur only

for those sites where one of the neighbors follows the opposite strategy.

Henceforth we assume that the system is started from a random initial state for suffi-

ciently large sizes to avoid the mentioned small size effect. When repeating the described

elementary steps the system evolves towards a state which can be characterized by the

average density ρ of cooperators. Before considering the numerical results for different

neighborhood structures we briefly survey the prediction of mean-field theory.

3. Prediction of mean-field theory. Within the framework of mean-field theory the

system is characterized by the average density ρ of cooperators. This means that the

average number of cooperators in the neighborhood of a given player is zρ if each site

has z neighbors. Consequently, the average payoff for C and D strategies are

(5) UC = zρ and UD = zρb.

Assuming that the strategy adoption takes place between two randomly chosen play-

ers following D and C strategy then the dynamical rule with random sequential pairwise

comparison [defined by Eq. (4)] yields the following equation of motion for the concen-



200 G. SZABÓ

tration of cooperators:

∂ρ

∂t
= ρ(1 − ρ)[W (D → C) − W (C → D)](6)

= −ρ(1 − ρ) tanh

(

UD − UC

2K

)

.

In this system ρ tends to zero as t → ∞ since UD > UC independently of the initial

state and the value of z and K. Consequently, the cooperators die out for those evolu-

tionary Prisoner’s Dilemma games where the conditions of mean-field approximation are

satisfied. Here it is worth mentioning that ρ tends to 1 for b < 1 representing the so-called

stag-hunt game [5-8].

It is emphasized that the conditions of mean-field theory are satisfied for infinite range

of interaction in a large system (z = N −1), or even in a spatial model where the player’s

distribution is well mixed before they play game with each other.

According to the mean-field theory significant reduction is expected in ρ if the spatial

distribution of C and D strategies is random (uncorrelated). This phenomenon can be

observed in many models after starting the system from a random initial state (see below).

4. Spreading of cooperation for synchronized strategy update. Now we consider

a cellular automaton type system where the players are distributed on a square lattice

and their income comes from Prisoner’s Dilemma games with their first- and second

neighbors (z = 8). The strategies are refreshed simultaneously at times t = 1, 2, . . . in

such a way [14] that each player adopts the best strategy available in her neighborhood.

t=0 t=1 t=2

t=5 t=10 t=20

Fig. 1. Evolution of the spatial distribution of C (white) and D (black) strategies on a square
lattice for a cellular automaton rule based on the adoption of the best strategies from the nearest
and next-nearest neighbors in discrete time steps t if the system is started from a random initial
state at b = 1.31.
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In order to demonstrate the time evolution of the spatial distribution of strategies

Figure 1 shows six consecutive snapshots on an 80 × 80 portion of a larger system with

periodic boundary conditions. The system is started (t = 0) from a random distribution

of D and C strategies with ρ(t = 0) = 0.5. In agreement with the prediction of mean-

field theory a sudden reduction of ρ can be observed after the first step. In fact, only the

sufficiently large rectangular blocks of cooperators could remain alive against the invasion

of defectors. In the next steps the rectangular blocks of cooperators grow linearly with

time because along the horizontal and vertical boundaries (separating the domains of

D and C strategies) C invasions occur due to the support received by Cs from their

background. Quantitatively, along the horizontal and vertical boundaries the cooperators

receive UC = 5 meanwhile the defectors’ payoff is UD = 3b. The cooperator invasion

is stopped when two fronts meet, more precisely, when the regions of cooperators are

separated by defectors who can exploit two cooperators at least. This is the way how

the spatial distribution of strategies evolves towards a “frozen” pattern where the large

regions of cooperators are separated by (one-site thick) chains of defectors. The final

pattern depends on the initial state and the value of b (for details see refs. [14,15]).

In general, the average density of cooperators is determined by a dynamical balance

between the cooperator invasions and defector invasions. Defector invasions occur along

the irregular fronts. On the contrary, cooperator invasions can be maintained step by step

along the (horizontal and vertical) straight line fronts due to the simultaneous strategy

refreshment. This latter process is forbidden for random sequential updates providing a

less efficient way to maintain the cooperative behavior.

5. Spreading of cooperators for random sequential pairwise comparison. First

we consider the spreading of cooperators on a kagome lattice (z = 4) when the strategy

adoption mechanism is defined by the random sequential pairwise comparison described

above (see subsection 2.2). One can easily check that the cooperative behavior cannot

spread away from a single cooperator surrounded by defectors in the zero temperature

limit (K → 0). As well as for synchronized strategy updates, the adoption of cooperator

strategy can become attractive if the C players form compact colonies. On the kagome

lattice three cooperators forming a triangle (see Figure 2) can support the spreading of

cooperation in the zero temperature limit.

Figure 2 shows the possible variations in the spatial distribution of strategies for con-

secutive steps if initially three (neighboring) cooperators are located in the sea of defec-

tors. In this situation the highest income is received by the three cooperators

(UC = 2) meanwhile the neighboring defectors have a lower income (U
(n)
D = b) and

the rest of defectors receive nothing (U
(r)
D = 0). In the zero temperature limit the only

possible event is that one of the neighboring defectors adopts the cooperator strategy.

The total income of this new cooperative player, however, is decreased (U
(nn)
C = 1) and

becomes less than those of her neighboring defectors. Consequently, the most likely strat-

egy change is that this player turns back to defection again and a similar temporary

cooperation can occur several times in the neighborhood of the cooperator triplet. The

new-born cooperator strategy can be fixed if her most successful neighboring defector
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Fig. 2. Appearance of a new cooperator triplet (white bullets) in the sea of defectors (black
bullets) for the random sequential pairwise comparison rule (in the limit K → 0) if initially only
one cooperator triplet exists on the kagome lattice. Figures in bullets refer to payoff dependent
on the neighboring strategies. The arrows indicate the direction of possible transitions.

(Ums
D = 2b) has an opportunity to adopt strategy from the most successful cooperator

(Ums
C = 3). After these two consecutive steps two stable cooperator triplets (with a com-

mon player) occur and the iteration of this process yields a growing tree of cooperator

triplets. The growth of the tree of triangles can be stopped by defectors separating two

branches of trees formed by cooperator triplets.

For the present structure the above spreading mechanism of cooperation occurs if the

temptation to choose defection does not exceed a critical value, that is, b < bc(K = 0) =

3/2 in the limit K → 0. For finite temperatures the efficiency of this spreading process

is decreased by the irrational strategy adoptions. As a result, ρ decreases monotonically

when b is increased for fixed temperature K as demonstrated in Figure 3.

1.0 1.1 1.2 1.3 1.4 1.5
b

0.0

0.2

0.4

0.6

ρ

Fig. 3. Monte Carlo data for the average ρ density of cooperators versus b on the kagome
lattice at three different temperatures: K = 0.1 (squares); 0.2 (diamonds); 0.5 (triangles). The
zero temperature limit is illustrated by the dashed line.
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1.4

1.5

b c

Fig. 4. The critical value of b as a function of K when using pairwise comparison for three
different lattices where each site has four neighbors (triangles: kagome lattice; squares: square
lattice; pluses: Bethe lattice).

The cooperative strategies can be maintained (i.e., ρ > 0) for b < bc(K) where bc(K)

is a monotonously decreasing function of K as illustrated by triangles in Figure 4. Using

Monte Carlo simulations similar behavior is found for many other d-dimensional (d > 1)

lattices (e.g., two-dimensional square lattice with first- and second neighbor interactions

(z = 8), triangular lattice (z = 6), and body centered cubic lattice (z = 8)) which can be

spanned by overlapping triangles [27]. It is conjectured that overlapping triangles in the

connectivity structure can support the spreading of cooperators although for most of the

investigated structures the overlapping triangles can have two common lattice sites that

makes the spreading mechanism of cooperation more complicated. Only one exception is

found until now that does not satisfy this conjecture, namely, the one-dimensional lattice

with first- and second neighbor interactions (z = 4) whose behavior is strongly affected by

its one-dimensional character. The rigorous investigation of the evolutionary Prisoner’s

Dilemma game on this structure is in progress.

Significantly different behavior is found by Monte Carlo simulations when considering

the same model on the square and Bethe lattices for z = 4 as illustrated in Figure 4. For

both cases bc(K) has a local maximum for an optimum temperature and bc(K) tends to

1 if K → 0. These structures do not support the spreading of C strategies if K → 0 as

demonstrated in Figure 5.

Let us consider what happens if we have four cooperators forming a square (2×2) block

in the sea of defectors on the square lattice. For such an arrangement the cooperators have

the highest income (UC = 2), the neighboring defectors can exploit only one cooperator

(i.e., U
(n1)
D = b), and all the other defectors receive nothing. Consequently, the cooperators

will not adopt the defector strategy in the low temperature limit. At the same time

one of the neighboring defectors can easily adopt the C strategy and this event will

be so beneficial to one of the neighboring defectors (receiving 2b) that her strategy can
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Fig. 5. Relevant consecutive configurations during the destruction of a 2×2 block of cooperators
(located in the sea of defectors) when the strategy adoption is governed by random pairwise
comparison on the square lattice.

be adopted by both of her neighboring C players in the subsequent strategy adoption

process. Consequently, the stable block of four cooperators will be destroyed because the

rest of cooperators are not capable to survive in the zero temperature limit.

The (isolated) closed loops of cooperators remain stable configurations in those struc-

tures where the neighboring defectors are capable to exploit only one cooperator if the

irrational strategy adoption (Ux > Uy) is forbidden. The evolutionary rule defined by

Eq. (4), however, allows irrational choices (if K > 0) which are capable to destroy these

loops. After adopting a defector within the loops of cooperators the system behavior

becomes analogous to a one dimensional problem with z = 2 where the cooperator sites

are invaded by defectors with a constant average velocity. Consequently, in the absence

of an effective reconstruction mechanism (e.g., a cooperation spreading process described

above) the isolated loops of cooperators vanish exponentially with a typical relaxation

time proportional to exp [(2 − b)/K]. This feature causes serious difficulties when consid-

ering these systems by Monte Carlo simulations for sufficiently low temperatures.

The appearance of cooperators through noise effects is supported for those constella-

tions where the C strategies form colonies because within these colonies the cooperators

help each other. In general, the probability of a C − C pair is higher than ρ2 predicted

by the mean-field theory. This fact is due to the present evolutionary rule favoring the

appearance of C − C and D − D pairs that gives an extra advantage to cooperators

against defectors. For large temperatures, however, this type of correlation is reduced

and the system behavior can be well approximated by a mean-field theory predicting

bc = 1. Figure 4 shows that for the spatial models bc(K) → 1 if K goes to infinity. Here

we have to emphasize that the high temperature limit is analogous to the so-called weak

selection limit used in the biological literature, e.g., [28-30].

In agreement with the expectations the mean-field type behavior is enforced when

increasing the number of neighbors independently of the evolutionary rules [14,15,31-35].

In order to check this tendency for the pairwise comparison, the above investigations were

repeated on many other lattice structures characterized by z = 4, 6 and 8. According to

the preliminary numerical results the highest critical value of bc (namely, bc(K = 0) =

3/2) is found on the kagome lattice in the limit K → 0.

The existence of an optimum temperature in the maintenance of cooperation is ac-

companied by a proper temperature-dependence in the density of cooperators for a fixed
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Fig. 6. Average density of cooperators as a function of temperature K on the square lattice for
b = 1.03.

b value as shown in Figure 6 [26]. This behavior resembles the coherence resonance [36-38]

that was already predicted for some evolutionary games [39] and many other noise driven

excitable systems [40].

The extinction process of cooperators at the edges of coexistence region (K = Kc1 and

Kc2) exhibits the features of a critical transition belonging to the directed percolation

universality class [25,41]. In other words, ρ vanishes as

(7) ρ ≃ |K − Kc|
β .

where Kc = Kc1(b) or Kc2(b) and β = 0.58(1) for the two-dimensional systems. The alge-

braic behavior of ρ is accompanied with a power law divergency in the density fluctuation,

correlation length, and relaxation time. This universal behavior is related to the existence

of an absorbing state (for details see [42]). As mentioned above the present system has

two homogeneous absorbing states, therefore the extinction of defectors (appearing for

suitable values of parameters) has similar features [6,25,41].

The relevance of the above mentioned topological features is confirmed by the gener-

alized versions of mean-field (or pair) approximations when we determine the probability

of each possible configuration on a set of small clusters formed by n lattice sites (for

technical details see [6]). Evidently, this method becomes more and more reliable if we

choose a larger n. As mentioned above, when we increase the value of b the traditional

mean-field theory (n = 1) predicts a sudden change from the homogeneous D state to

the homogeneous C state at b = bmf
c (K) = 1 independently of the temperature. The pair

approximation (n = 2) is already capable to describe qualitatively the coexistence of C

and D strategies, however, the numerical results show poor agreement with the Monte

Carlo data, particularly at the zero temperature limit where its prediction becomes qual-

itatively wrong (b
(pa)
c (K) → 2 if K → 0). The three- and five-site approximations on



206 G. SZABÓ

the kagome lattice and also the four- and nine-site approximations on the square lattices

could reproduce the Monte Carlo data with an adequate accuracy [25] because these

clusters of sites take into account the loops in the connectivity structures.

There is another way to demonstrate the importance of small (entangled) loops in the

connectivity structures. Namely, the evolutionary prisoner’s dilemma game can also be

studied on the (loop-free) Bethe lattice with using the generalized versions of mean-field

theories. Similar Monte Carlo results are expected on a sufficiently large random regular

graph that becomes locally similar to the Bethe lattice because the typical (minimal) loop

size is proportional to lnN [42]. In Figure 4 the plus symbols represent the Monte Carlo

data obtained on a random regular graph of degree z = 4 if we use the same evolutionary

rules for N = 106. To reproduce this behavior with the generalized mean-field theory

we had to extend this analysis to the level of eleven-site clusters. The K-dependence of

the critical value of temptation (b
(rrg)
c (K)) on the random regular graph is qualitatively

similar to those found on the square lattice, although b
(rrg)
c (K) is significantly larger than

b
(sl)
c (K) for arbitrary temperatures. The high temperature (weak selection) behavior of

a similar evolutionary prisoner’s dilemma game was analyzed by Ohtsuki et al. [28] on

finite graphs, and their results allow the coexistence of C and D strategies within a range

of b (if K → ∞). It is hoped that the asymptotic behavior in these types of models will

be clarified within a few years.

One of the most relevant messages of the numerical data plotted in Figure 9 is that

the kagome lattice provides the best lattice connectivity structure to achieve the highest

critical bc value for low temperatures. For the opposite case (K → ∞), the loop-free

structures can help the maintenance of cooperative behavior most efficiently if the num-

ber of neighbors (degree) is fixed (here z = 4). In the subsequent section we will consider

the effect of inhomogeneous degree distribution on the density of cooperators if the con-

nectivity structure is defined by the so-called scale-free networks.

6. Enhancement of cooperation on scale-free networks. In this section we discuss

briefly the results of Santos et al. [44,45] who considered two-strategy prisoner’s dilemma

games with several evolutionary rules on a random network suggested by Barabási and

Albert [46]. One of the applied strategy adoption rule was similar to the mentioned

pairwise comparison at a low temperature. It is reported that the average density of

cooperators was surprisingly large (ρ > 0.8) in the whole region of temptation (1 < b < 2)

and the relevant results are not affected significantly by the details of evolutionary rules.

The creation of the Barabási-Albert random network can start from three connected

sites and it is grown by adding a new site to the system in each elementary step. The new

sites are linked to two existing sites chosen randomly with probabilities proportional to

the actual degree (further details in [46]). After (N − 3) elementary steps the resultant

graph consist of N sites which can have different number of neighbors (z) in such a way

that the probability to find z neighbors at a given sites is proportional to f(z) ∼ 1/z3 if z

does not exceed a natural limit dependent on N . During the growth process the average

number of neighbors tends to 〈z〉 = 4. This connectivity structure contains sites (called

hubs) that has a large number of neighbors. In general, the large hubs are created at
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Fig. 7. Time-dependence of the frequency of cooperators on the sites of cooperator (x) and
defector (y) hubs and on their neighborhood (xn and yn). The plotted data are averaged over
1000 runs for R = 0.5 characterizing the effects of neglected links and noise.

the beginning of network creation and these sites are typically linked to other hub(s).

This latter feature plays a crucial role in the mechanism supporting the spreading of

cooperation as described by Santos et al. [44,45]. Now we will discuss this mechanism

throughout a numerical example.

Let us consider a small portion of players residing on two connected hubs and their

neighboring sites as illustrated schematically in the right hand plot of Figure 7. For sake

of simplicity we assume that the connected hubs (denoted by x and y) have Nxn =

Nyn = 49 neighbors whose further links are not denoted. Thus the whole subsystem

has N = 2 + Nxn + Nyn = 100 sites. It is also assumed that the number of neighbors

at the neighboring sites (xn and yn) is significantly less than 50. To demonstrate the

competition between the cooperator and defector hubs the system is started from an

initial state where sx(t = 0) = C and sy(t = 0) = D, and their neighborhood follows the

D and C strategies with the same probability, that is, ρxn(t = 0) = ρyn(t = 0) = 0.5. In

the model suggested by Santos et al. the evolutionary rule is controlled by the difference of

total payoffs favoring hubs. Consequently, the strategy adoption process can be simplified

in the subsystem.

During the strategy adoption process on this subsystem we choose randomly a player

to adopt strategy from one of her neighbors selected also at random. If one of the hubs

(x or y) has a chance to adopt strategy from the neighbors of low degree (xn or yn) then

nothing happens because generally Ux >> Uxn and Uy >> Uyn. In the opposite case,

the xn and yn players adopt the current strategy of players x and y, respectively. The

effect of the neglected interactions and learning connections are taken into consideration

by allowing the players xn and yn to adopt a strategy with a probability R from a player

selected randomly in the whole subsystem. The results of numerical investigations are

shown in Figure 7.

Figure 7 illustrates what happens if the connected hubs follow opposite strategies

at the beginning. Initially, the total income of the cooperator hub is lower then those

received by the defector hub because they practically have an equal number of coopera-
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tive co-players. However, each hub transfers her strategy to her neighborhood and these

changes in their neighborhood are beneficial to cooperator hubs and disadvantageous to

defector hubs. Consequently, after a short transient time the cooperator hubs become the

best players whose strategy is adopted by all the other (linked) players. This phenomenon

is robust if the degree of hubs exceeds significantly the maximum number of neighbors

for their co-players. The robustness of this mechanism can be confirmed by the present

numerical example within a wide range of parameters (Nx, Ny, R and b). Further sys-

tematic investigations are required to clarify the effect of noise (temperature) and degree

distribution on the average density of cooperators in the large N limit.

In the original models considered by Santos et al. the simulations were performed

for different values of N . For small sizes the result of simulation depends on the graph

and initial strategy distribution. As a result, the state of the isolated defector hub(s) can

remain practically unchanged during the simulations. A similar phenomenon is reported

by Gómez-Gardañes et al. [47] who have considered the same model with a synchronized

strategy update. Santos et al. [44,45] have checked the consequence of the removal of links

connecting large hubs. In agreement with the expectation, the numerical investigation

indicated a reduction in the average density of cooperators.

The additional effect of cooperation spreading mediated by the overlapping triangles

on the density of cooperators was also investigated by Santos et al. when considering the

model on another scale-free network suggested by Dorogovtsev et al. [48]. In this case

the network creation is slightly modified: the additional new sites are linked to both ends

of an edge selected at random. This creation procedure yields a network that can be

spanned by (one-site) overlapping triangles meanwhile the degree distribution remains

practically unchanged. On this network the simulations indicated a slight increase in ρ

in comparison to results obtained on the Barabási-Albert network.

The topological conditions of the mentioned mechanism are well satisfied for the

scale-free networks as well as for many other connectivity structure exhibiting connected

large hubs. There exist, however, many other non-regular (social) networks where the

inhomogeneity in the degree distribution is not so relevant (e.g., Erdős-Rényi graphs

[49] and Watts-Strogatz small-world structure [50]). The numerical investigations of the

evolutionary prisoner’s dilemma games on different non-regular structures have demon-

strated some improvement in the cooperative behavior related to the inhomogeneity in

the number of neighbors [21,51-55].

The above models on non-regular networks involve intrinsically an inhomogeneous

strategy adoption probability due to the entanglement between connectivity structure

and dynamical rules [52,53]. Namely, the strategy adoption becomes asymmetric between

two neighbors if they have a different number of neighbors when using the above described

evolutionary rules. In the following section we discuss particular cases where the spatial

network is regular while the dynamical rule is inhomogeneous.

7. Enhancement of cooperation for inhomogeneous dynamics. Remarkable in-

crease of cooperation is observed for several systems where the inhomogeneous imitation

activity is built into the models artificially to characterize the asymmetric and different
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influence of players to each other [51,55,56]. For example, Wu et al. [55,56] have consid-

ered a model where the influence of player y on her neighbor x is quantified by a random

parameter wxy (0 < wxy 6= wyx < 1) affecting the preferential selection of a neighbor

whom the strategy can be adopted from.

The numerical justification of the enhancement of cooperation will be demonstrated

for one of the simplified versions of the model [57] suggested originally by Wu et al.

[55,56]. For sake of simplicity we assume that wxy is described by one of the two possible

values in such a way that the spatial distribution wxy is quenched during the simulations.

Now our investigation will be focused on the spatial distribution of wxy that provides the

highest enhancement of cooperation.

In the present model we have two types of players (denoted as A and B) distributed

randomly on a two-dimensional lattice before the start of simulation. The fixed spatial

distribution of players is defined by a set of site variables nx = A or B and characterized

by densities ν and (1− ν). Independently of nx the players can follow one of the sx = C

or D strategies and their total payoff Ux comes from one Prisoner’s Dilemma game with

the neighbors as given by the expression (2).

The type of players becomes relevant in the iterated strategy adoption processes

controlling the variation of strategy distribution. More precisely, the pairwise comparison

evolutionary process (detailed in Section 2.2) is modified:

(8) W (sx → sy) = wxy

1

1 + exp[(Ux − Uy)/K]

where temperature K characterizes the uncertainties (noises) and the pre-factor wxy is

given as

(9) wxy =

{

1, if ny = A,

w, if ny = B,

and the fixed value of w (0 < w < 1) describes the strength of reduced teaching activity

if the site y is occupied by a player of type B. This means that here the players A

and B have different teaching activity (or efficiency). Such a feature can occur in some

communities where the young and old (or attractive and repulsive) persons have different

capability to transfer their own strategy.

Figure 8 summarizes the results of Monte Carlo simulations when varying the density

of B players on a kagome lattice for fixed b and K values. In this system the stationary

states obtained for ν = 0 and 1 are equivalent because the homogeneous reduction of

strategy adoptions yields only slower evolution towards the same stationary state. The

largest increase in ρ can be observed if the portion of A and B types players are ap-

proximately equivalent. Notice that the increase of the density of cooperators (∆ρ) varies

linearly with the concentration of the minority type of players, i.e., ∆ρ ≃ αν if ν << 1

and ∆ρ ≃ α(1 − ν) if (1 − ν) << 1 where α increases monotonously with (1 − w). The

increase of the density of cooperators may be so large that defectors can die out within

a range of ν as demonstrated in Figure 8 by data for w = 0.1.

Unfortunately the clear and simple explanation of this mechanism is not yet known

although similar behaviors are found on the square lattice, too. For both two-dimensional
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Fig. 8. Density ρ of cooperators as a function of ν (density of players with reduced teaching
activity) for w = 0.1 and 0.2 on the kagome lattice at b = 1.03 and K = 0.5.

structures the improvement vanishes in the low temperature limit and remains remarkable

even if K → ∞. The main features of this phenomenon are reproduced qualitatively well

by the pair approximation [57].

The hidden curiosity of this mechanism becomes striking when repeating the same

analysis with choosing other possibilities in the randomness of wxy. For example, signif-

icantly smaller variations of ρ are observed for those cases when the learning (instead

of teaching) activity is blocked at the B type players by defining the pre-factor wxy in

Eq. (8) as

(10) wxy =

{

1, if nx = A,

w, if nx = B.

It is worth mentioning that the spatial distribution of wxy becomes equivalent for the

cases defined by Eqs. (9) and (10) if the (periodical) spatial arrangement of players A and

B is resembling the black and white squares on the chessboard. Interestingly, this type

of dynamical inhomogeneity yields only a slight change in ρ that may be either positive

or negative depending on the model parameters.

From the mentioned numerical results one can conclude that the random distribution

of influential players representing asymmetric teaching-learning activity in the community

can also support the maintenance of cooperative behavior [52,55-57]. In the following

section we will compare the strength of all the above mentioned mechanisms.

8. Summary. In the present work we have surveyed the spreading mechanisms of co-

operation supporting the cooperative behaviors in the evolutionary prisoner’s dilemma

games. The discussion is restricted to systems where the players can use only two strate-
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gies (C and D) and the interaction between them is described by a fixed network

(graph).

On the square lattice it is shown that along the horizontal and vertical fronts (sep-

arating C and D domains) the cooperator invasion is supported by their background

until the income of exploiting defectors do not exceed a threshold value dependent on the

neighborhood. The advance of C players along these straight line fronts can be directly

utilized by synchronized strategy update rules that maintain the invasion with a con-

stant velocity. These type of C invasion can be stopped when the front lines collide, more

precisely, when the C domains are separated from each other by one-site thick layers of

defectors.

The noisy rules make the straight line fronts irregular that can prevent the expansion

of C domains. Despite it, the C invasion can occur for some regular connectivity structures

even if the strategy adoption is controlled by random sequential pairwise comparison in

the zero temperature limit. It is demonstrated that the one-site overlapping triangles in

the connectivity structure (for z = 4) help the spreading of cooperation. In this case

one can observe growing trees of cooperator triplets whose growth can be stopped by

defectors separating two branches of the cooperator trees. In some sense this phenomenon

is similar to those observed for the cellular automaton type rules and its efficiency is

weaker as demonstrated in Figure 9 where the b-dependence of ρ is compared for different

connectivity structures and evolutionary rules.

The numerical and analytical investigations of the systems with random sequential

update indicate that the cooperation vanishes in the zero temperature limit for those

connectivity structures which can not be spanned by overlapping triangles. In these latter

cases, however, there exists an optimum temperature (noise level) where cooperators can

exist with a sufficiently high density as illustrated in Figure 9. This means that the

irrational strategy adoptions can also help the survival of cooperators forming colonies.

It is found, furthermore, that the loop-free (non-spatial) connectivity structures provide

the best regular connectivity structure for the cooperators to exist in the high temperature

limit.

For the non-regular connectivity structures the connected large hubs support the

emergence of cooperative behavior. The corresponding mechanism is robust on the scale-

free graphs and capable to maintain cooperation with a high density (ρ > 0.8) in the whole

region of payoff b (see Figure 9). In the models suggested by Santos et al. the enhanced role

of large hubs comes from the fact that the players compare their total income increasing

with the number of neighbors. It is found that the efficiency of this mechanism is reduced

significantly if the strategy adoption rule is based on the normalized payoff difference [e.g.,

(Ux/zx − Uy/zy) where zx is the number of neighbors at the site x]. For the non-regular

connectivity structures the players are not equivalent and the symmetry between the

neighboring players is broken for most of the evolutionary rules we can apply. It turns

out that the asymmetry in the master-follower role between two neighboring players can

also result in an improvement in the cooperative behavior.

Further systematic investigations of the discussed phenomena are in progress. The

current studies can explore the interference between the mentioned mechanisms. We have
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Fig. 9. Comparison of the density of cooperators as a function of b for different connectivity
structures. The dashed line shows the results on the kagome lattice at the zero temperature limit.
Open squares represent data for the square lattice with pair-wise comparison at the optimum
temperature (K = 0.4) [26]. Diamonds denote Monte Carlo data obtained by Santos et al. [44,45]
on the scale-free Barabási-Albert network. Closed squares refer to data on the square lattice with
first- and second-neighbor interactions when using synchronized strategy update suggested by
Nowak and May [14]. Stars refer to evolutionary game with a modified pairwise comparison
where the teaching activity is blocked by a factor of w = 0.1 for half of the players distributed
randomly on a square lattice at K = 1.0 [57].

to emphasize that recently the research of evolutionary games expands progressively. In

the last years further promising results were reported including the consideration of the

multilevel selection [58,59], the co-evolution of strategy distribution and connectivity

structure [60,61], and the separation of learning and interaction graphs [62,63].
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