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Abstract. We show how using the differential Galois theory one can find effectively necessary
conditions for the integrability of Hamiltonian systems with homogeneous potentials.

1. Introduction. We consider complex Hamiltonian system defined in a simply con-
nected open set in C2n by a holomorphic Hamiltonian function H = H(q,p), where
q = (q1, . . . , qn) and p = (p1, . . . , pn) denote the canonical coordinates and the momenta,
respectively. For such systems the equations of motion have the canonical form

d
dt
q =

∂H

∂p
(q,p),

d
dt
p = −∂H

∂q
(q,p), (1)

where t denotes the complex time. In order to simplify notation we denote z = (q,p),
and rewrite the above system in the form

d
dt
z = XH(z). (2)
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Let ϕ(t) be a particular solution of the above equation and Γ the corresponding phase
curve. The variational equation along Γ has the form

d
dt
x = Ax, where A =

∂XH

∂z
(ϕ(t)). (3)

To this equation two groups are attached: the monodromy group M and the differential
Galois group G. Because of the Hamiltonian nature of the equation both these groups
are subgroups of Sp(2n,C). Properties of these groups reflect properties of solutions
of the variational equation, and, to some extent, properties of nonlinear equation (2).
For example, as is well known, if equation (2) admits a holomorphic (meromorphic) first
integral F (z), then the variational equation has a polynomial (rational) first integral f(z).
This implication is basic for an application of the differential Galois theory to finding
necessary conditions of integrability. Simply, the existence of a first integral of linear
equations implies that its differential Galois group admits a rational invariant. Thus, for
integrable system the differential Galois group of the variational equation cannot be too
big.

In particular, if the system considered is integrable in the Liouville sense with mero-
morphic first integrals, then the identity component of the differential Galois group of
the variational equation along a particular solution is Abelian, see, for example, [5, 6]. As
numerous applications show, this gives a very strong necessary condition for integrability.
For an overview of these results, see [7].

In spite of great successes of this differential Galois approach one can ask for stronger
tools. In fact, there exist examples of evidently non-integrable systems for which the above
mentioned necessary conditions for the integrability are fulfilled. Moreover, a true need
for a stronger condition for integrability appears in investigations of systems depending
on parameters.

In [8], see also [2], it was proposed to apply the described ideas for variational equations
of arbitrary order. The simplest way to derive higher order variational equations is the
following. We represent a solution of equation (2) as a formal series

z = ϕ(t) + εz1 +
1
2!
ε2z2 + · · · , (4)

where ε is a formal parameter. Inserting this expansion into equation (2) and comparing
coefficients of the same powers of ε, we obtain an infinite chain of equations

d
dt
zp = Azp + fp(z1, . . . ,zp−1), p = 1, 2, . . . , (5)

where f1 = 0. Each of equations in this chain has the same homogeneous part which
coincides with the right hand sides of variational equation (3). Term fp in the right
hand side of p-th variational equation (denoted VEp) depends on solutions of previous
equations in the chain. As it was shown in [8], there is an appropriate framework allowing
to define the differential Galois group of VEp with p ∈ N. Moreover, the following theorem
was proved.

Theorem 1.1 (Morales-Ramis-Simó, [8]). Assume that a holomorphic Hamiltonian sys-
tem is integrable in the Liouville sense with the first integrals which are meromorphic in
a connected neighbourhood U of the phase curve Γ corresponding to a non-equilibrium
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solution, and are functionally independent in U \ Γ. Then, for each p ∈ N, the identity
component (Gp)◦ of the differential Galois group Gp of p-th order variational equations
VEp along Γ is Abelian.

Another proof of this theorem can be found in [2].
There are only a few examples of application of the above theorem with p > 1, see [7].

The reason is that the VEp with p ≥ 2 are much more complicated systems than VE1.
This is why no systematic studies of higher variational equations have been made.

In [4] we have initiated a general program of a systematic study of general structure
of higher order variational equations and their Galois groups in a context of natural
Hamiltonian systems with homogeneous potentials. The motivation for this choice was
the following. In order to apply the above Theorem 1.1 one has to know a particular
phase curve of the relevant system. Generally it is not easy to find a particular solution
of a given system of nonlinear differential equations. However, for natural Hamiltonian
systems with homogeneous potentials we can find particular solutions in a systematic
way. In fact, let us consider a system with Hamiltonian function of the following form

H =
1
2

n∑
i=1

p2
i + V (q), q = (q1, . . . , qn), (6)

where V is a homogeneous function of degree k ∈ Z? := Z \ {0}. For it the equations of
motion have the canonical form

d
dt
q = p,

d
dt
p = −V ′(q), (7)

where V ′(q) := gradV (q). Now, let a non-zero vector d ∈ Cn be a solution of the equation

V ′(d) = γd, where γ ∈ C?. (8)

Such a vector is called a proper Darboux point of the potential V . It defines a two
dimensional plane in the phase space C2n, given by

Π(d) :=
{

(q,p) ∈ C2n | q = ϕd, p = ψd, (ϕ,ψ) ∈ C2
}
. (9)

This plane is invariant with respect to the system (7). Equations (7) restricted to Π(d)
have the form of one degree of freedom Hamilton’s equations

d
dt
ϕ = ψ,

d
dt
ψ = −γϕk−1, (10)

with the following phase curves:

Γk,e :=
{

(ϕ,ψ) ∈ C2 | 1
2
ψ2 +

γ

k
ϕk = e

}
⊂ C2, e ∈ C. (11)

In this way, a solution (ϕ,ψ) = (ϕ(t), ψ(t)) of (10) gives rise to a solution (q(t),p(t)) :=
(ϕd, ψd) of equations (7) with the corresponding phase curve

Γk,e :=
{

(q,p) ∈ C2n | (q,p) = (ϕd, ψd), (ϕ,ψ) ∈ Γk,e
}
⊂ Π(d). (12)

In this context significant obstructions to integrability were obtained just by dealing
with the first variational equations VE1. However, as we proved in [3], for k = ±2 no
obstruction can be found on the level of VE1, since the differential Galois group of this
equation Gal(VE1) is virtually Abelian.
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Here we report one of our results obtained for homogeneous potentials of degree k = 2.

Theorem 1.2. Let V be a homogeneous potential of degree k = 2, satisfying the following
assumptions:

1. it has a proper Darboux point, i.e., there exists a non-zero vector d such that
V ′(d) = γd with γ ∈ C?;

2. the Hessian matrix V ′′(d) is diagonalisable with eigenvalues

λ1 = ω2
1 , . . . , λn = ω2

n,

such that ω1, . . . , ωn are Z-linearly independent; that is, the equality

α · ω :=
n∑
i=1

αiωi = 0, with α ∈ Zn, (13)

implies that α = 0.
3. The Hamiltonian system (7) with potential V is integrable in the Liouville sense.

Then
V (q) =

1
2
qTV ′′(d)q. (14)

In other words, in an appropriate eigenbasis of V ′′(d), the Hamiltonian has the form

H =
1
2

n∑
i=1

(
p2
i + ω2

i q
2
i

)
. (15)

The interpretation of this theorem is the following. The particular solution considered
is periodic. In a neighbourhood of this solution we can perform the Birkhoff normalisation,
see, e.g., the first two chapters in [1]. It appears that if the system is integrable and
the non-resonance condition is fulfilled then the system is linear, and equivalent to the
classical oscillator.

Notice that on the one hand the assumptions of the theorem are minimal in the sense
that they put restrictions on the linear part of the vector field. On the other hand the
non-resonance condition (13) is very strong.

We started our analysis of higher order variational equations for systems with homo-
geneous potential just from the case of potential of degree two because, as we mentioned
already, the first variational equations do not give any restriction. Moreover, in this case
the particular solution as well as solutions of the first variational equations are given by
trigonometric functions. These facts simplify considerably the analysis.

In the rest of this paper we present the basic ingredients of the proof which is present
with all details in [4].

2. Structure of higher order variational equation along a Darboux point. Here
we assume that the Hamiltonian system (7) has a particular solution (q(t),p(t)) :=
(ϕd, ϕ̇d) associated to a proper Darboux point d of the potential V which is homogeneous
of degree k. We can rewrite equations (7) in the form of Newton equations

q̈ = F (q), (16)
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where F (q) = −V ′(q). We put

q = q0 + εq1 +
1
2!
ε2q2 +

1
3!
ε3q3 + · · · , (17)

where q0 = ϕ(t)d, and ε is a formal small parameter. Inserting the above expansion into
equation (16) and comparing terms of the same order with respect to ε we obtain an
infinite sequence of equations. The first of them, q̈0 = F (q0), is identically satisfied by
assumptions. For further purposes we need the next three equations:

q̈1 = F ′(q0)q1, (18)

q̈2 = F ′(q0)q2 + F ′′(q0)(q1, q1), (19)

q̈3 = F ′(q0)q3 + 3F ′′(q0)(q1, q2) + F (3)(q0)(q1, q1, q1). (20)

From the above system the following structure of VEp follows. VE1 is a linear homo-
geneous equation given by (18). In contrast, the VEp with p ≥ 2 are generally non-
homogeneous linear systems. Their linear parts are the same as that of VE1. Moreover,
the second term in VE2 is a quadratic form in the solutions of VE1. A bigger complexity
appears in VE3 given by (20). The second term in the right hand side of this equation
is a bilinear form in solutions of VE1 and VE2, while the third term is a cubic form in
solutions of VE1. As a consequence, for the Picard-Vessiot extension PVp of VEp we get
the tower of inclusions

K ⊂ PV1 ⊂ PV2 ⊂ · · · ⊂ PVp ⊂ PVp+1 ⊂ · · ·

Let us assume that the Hessian matrix V ′′(d) is diagonalisable. Then, without loss of
generality, we can assume that it is diagonal, and we put V ′′(d) = diag(λ1, . . . , λn). Let
us denote also

qj = (q1,j , . . . , qn,j), for j ∈ N. (21)

Then, system of equations (18), (19) and (20) reads

q̈i,1 =− λiϕ(t)k−2qi,1, (22)

q̈i,2 =− λiϕ(t)k−2qi,2 + ϕ(t)k−3Θi(q1, q1), (23)

q̈i,3 =− λiϕ(t)k−2qi,3 + 3ϕ(t)k−3Θi(q1, q2) + ϕ(t)k−4 Ξi(q1) (24)

where 1 ≤ i ≤ n, and Θi, and Ξi are polynomials of their arguments

Θi(q1, q2) =
n∑

α,β=1

θiα,β qα,1qβ,2, (25)

where

θiα,β = ∂α∂βFi(d) = −∂α∂β∂iV (d) = − ∂3V (d)
∂qα∂qβ∂qi

, (26)

and

Ξi(q1) :=
n∑

α,β,γ=1

ξiα,β,γqα,1qβ,1qγ,1, (27)

where
ξiα,β,γ = ∂α∂β∂γFi(d) = −∂α∂β∂γ∂iV (d). (28)



178 G. DUVAL AND A. J. MACIEJEWSKI

The first order variational equations VE1 given by (22) have the form of a direct
product. Thus we have a perfect splitting of the problem. In order to perform effectively
analysis of VE2 and VE3 we have to split the problem into smaller subsystems. We
can do this in the following way. We set to zero all the variables qi,1 except qα,1 in the
system (22)–(23). We get a system of n independent subsystems of VE2 which we denote
by VEγ2,α, for 1 ≤ γ ≤ n. Such a system has the form

q̈α,1 =− λαϕ(t)k−2qα,1,

q̈γ,2 =− λγϕ(t)k−2qγ,2 + ϕ(t)k−3θγα,αq
2
α,1.

}
(29)

We denote by PVγ
2,α the corresponding Picard-Vessiot extension. In a similar way, for

two fixed indices α 6= β, we distinguish other n subsystems VEγ2,(α,β) of VE2. They are
subsystems of (22)–(23) obtained by putting qi,1 = 0 except for i ∈ {α, β}. They are of
the form

q̈α,1 =− λαϕ(t)k−2qα,1,

q̈β,1 =− λβϕ(t)k−2qβ,1,

q̈γ,2 =− λγϕ(t)k−2qγ,2 + ϕ(t)k−3
[
θγα,αq

2
α,1 + 2θγα,βqα,1qβ,1 + θγβ,βq

2
β,1

]
.

 (30)

Let us fix three indices α, β, γ ∈ {1, . . . , n} such that α 6= β, and consider the “extracted”
system EXγ

2,(α,β) of the form

q̈α,1 =− λαϕ(t)k−2qα,1,

q̈β,1 =− λβϕ(t)k−2qβ,1,

q̈γ,2 =− λγϕ(t)k−2qγ,2 + 2ϕ(t)k−3θγα,βqα,1qβ,1.

 (31)

Although this system is not a subsystem of VEγ2,(α,β), it is not difficult to prove the
following fact.

Proposition 2.1. The differential Galois group G2 = Gal(VE2) is virtually Abelian iff
groups Gal(VEγ2,α) and Gal(EXγ

2,(α,β)) with α, β, γ ∈ {1, . . . , n} and α 6= β, are virtually
Abelian.

In order to prove this proposition concerning Gal(VEγ2,α) one can invoke the same
arguments as in Section 1.4 of [3]. Namely, the restriction to a subsystem gives a surjective
morphism of the differential Galois group of the whole system and the differential Galois
group of its subsystem.

To prove the statement of Proposition 2.1 concerning Gal(EXγ
2,(α,β)) we use the fol-

lowing observation. We consider a linear non-homogeneous system

ẋ = Ax+B1 +B2, x ∈ Kn, (32)

where K is a differential field, and A ∈ M(n,K), bi ∈ Kn for i = 1, 2. Let x1,x2 ∈ Kn,
satisfy

ẋi = Axi +Bi for i = 1, 2. (33)

Then x̂ = x1 + x2, is a particular solution of (32).
Let L̂/K and L̂i/K denotes the Picard-Vessiot extensions of (32), and (32), respec-

tively. By Ĝ and Gi we denote the corresponding differential Galois groups. By the above
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observation we have the inclusion L̂ ⊂ L1 ·L2, where the product denotes the composition
of fields. Hence, Ĝ is an algebraic subgroup of G1 ×G2. Thus if G1 and G2 are virtually
Abelian, then Ĝ is virtually Abelian. Moreover, if L̂ = L1 · L2, then we have also the
inverse implication.

Now, we have to find the necessary and sufficient conditions which guarantee that the
groups Gal(VEγ2,α) and Gal(EXγ

2,(α,β)) are virtually Abelian.

3. Some theoretical facts. Hereafter we assume that all differential fields considered
have the same algebraically closed field of constants C.

Let us recall that the Picard-Vessiot ring T (F/K) of a Picard-Vessiot extension F/K
is the set of those elements of F which are holonomic over K, i.e, the elements y ∈ F
such that y is a solution of a certain linear differential equation with coefficients in K.

In our considerations a fundamental role is played by the concept of second level
integrals.

Definition 3.1. Let F1/K and F2/K be Picard-Vessiot extensions, and F1 ⊂ F2. An
element Φ ∈ F2 such that Φ′ ∈ T (F1/K) is called an integral of the second level. Similarly,
if moreover Φ′ ∈ K (i.e, Φ is a primitive integral over K), we say that Φ is an integral of
the first level.

Obviously, a first level integral is an integral of the second level. Moreover, let us
observe that any second level integral is holonomic over K, hence belongs to T (F2/K).

In what follows, we frequently meet the following tower of Picard-Vessiot extensions

K ⊂ F1 ⊂ F2,

with F2/F1 generated by second level integrals Φ1, . . . ,Φq. Hence, the group H :=
Gal(F2/F1) is a vector group, and if the generating integrals are independent over F1,
then it is isomorphic to Cq. We therefore get the following exact sequence of algebraic
groups:

0 −→ H = Cq −→ Gal(F2/K) −→ Gal(F1/K) −→ 0. (34)

Moreover, if we denote by K̃ the algebraic closure of K in F1, the former coincides with
the algebraic closure of K in F2.

In [4] we proved the following theorem which allows to decide whether the differential
Galois group of extensions F2/K is virtually Abelian.

Theorem 3.2. Let K ⊂ F1 ⊂ F2 be a tower of Picard-Vessiot extensions such that F2/F1

is generated by integrals of the second level over K. Then G2 := Gal(F2/K) is virtually
Abelian iff G1 := Gal(F1/K) is virtually Abelian and any second level integrals Φ ∈ F2

can be expanded in the form

Φ = R1 + J, with R1 ∈ T (F1/K) and J ′ ∈ K̃,

where K̃ is the algebraic closure of K in F1.

We can interpret this result in the following way. The fact that Gal◦(F2/K) is Abelian
implies that any given second level integral can be computed thanks to the first level
integral and the exponential of integrals over K̃.
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The following two lemmas can be deduced from the above theorem and they will be
useful to find obstructions to integrability.

Lemma 3.3. Let L/K and L1/K be Picard-Vessiot extensions with L1 ⊂ L, and L1 =
K(I1, . . . , Is), where I ′i ∈ K, for i = 1, . . . , s. Assume that there exists a C-linear combi-
nation I of these integrals Ii which is transcendental over K. Assume further that there
exist Φ ∈ L and w ∈ K? such that

Φ′ = wI, that is, Φ =
∫
wI.

Then the Galois group Gal(L/K) is virtually Abelian iff there exists a constant c such
that

cI −
∫
w ∈ K.

Equivalently, Φ can be computed thanks to a closed formula of the form

Φ = P (I) + J with P (I) :=
c

2
I2 + gI ∈ K[I], and J ′ ∈ K.

Lemma 3.4. Let L/K and L1/K be Picard-Vessiot extensions with L1 ⊂ L, and L1 =
K(E1, . . . , Es), where E′i/Ei ∈ K, for i = 1, . . . , s. Assume that L contains an element

Φ :=
∫ r∑

i=1

wiMi, (35)

where wi ∈ K?, and

Mi = Mi(E1, . . . , Es) ∈ C[E1, E
−1
1 , . . . , Es, E

−1
s ],

is a monomial, for 1 ≤ i ≤ r. Moreover, M1, . . . ,Mr are not mutually proportional, i.e.,
Mi

Mj
6∈ K for i 6= j.

Then, we have:

1. Each separate integral Φi :=
∫
wiMi ∈ L.

2. If the extension L/L1 is generated by Φ, then L/K is virtually Abelian iff for each
1 ≤ i ≤ r, there exists ci ∈ C, such that

Φi + ci
Mi

∈ K.

For a proof we refer the reader to [4].

4. The second order variational equations for k = 2. According to Proposition 2.1,
in order to find necessary and sufficient conditions which guarantee that Gal(VE2) is
virtually Abelian, we have to decide whether the differential Galois groups of VEγ2,α and
EXγ

2,(α,β) are virtually Abelian.
In order to simplify notations it is convenient to re-scale the problem. First, we notice

that if the Darboux point satisfies V ′(d) = γd, then d is an eigenvector of V ′′(d) with
the corresponding eigenvalues λn = γ(k − 1). Clearly, it is convenient to set γ = 1. For
k 6= 2 we can always do this, because if d satisfies V ′(d) = γd, then d̃ := δd, with δ

chosen such that δk−2γ = 1, satisfies V ′(d̃) = d̃.
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For k = 2 this trick does not work. However, in this case if the Darboux point satisfies
V ′(d) = γd with γ 6= 1, then we replace the potential V (q) by V (q)/γ. As this change
is equivalent to a re-parametrisation of the time, it does not change the integrability
property of the system. That is, the system with the potential V (q) is integrable iff the
system with the potential V (q)/γ is integrable.

As we consider only one Darboux point, we can assume, without loss of generality,
that γ = ωn = 1.

We fix the energy of particular solution to e = 1/2. Now, since k = 2, a particular
solution ϕ(t) with energy e = 1/2 satisfies ϕ̇2 +ϕ2 = 1, see (11). Thus, we can take, e.g.,
ϕ(t) = sin t.

The first order variational equation

q̈1 := −ϕk−2V ′′(d)q1 = −V ′′(d)q1 (36)

is a matrix second order equation over the ground differential fieldK = C(ϕ, ϕ̇) = C
(
eit
)
.

We rewrite it as a first order equation

ẋ1 = Ax1, where A :=
[

0n En

−V ′′(d) 0n

]
∈ sp(2n,C). (37)

It is easy to show that the matrix A has eigenvalues ±iω, where ω2 = λ, and λ is an
eigenvalue of V ′′(d). Thus, the entries of the fundamental matrix X1 of equation (37)
belong to a ring of the form

R1 := C
(
eit
) [

e±iω1t; . . . ; e±iωnt; t
]
, (38)

where ω2
1 , . . . , ω

2
n are the eigenvalues of V ′′(d).

With this notation and assumptions the VEγ2,α can be rewritten in the form

ẍ =− ω2
αx,

z̈ =− ω2
γz +

θγα,α
sin t

x2,

 (VEγ2,α)

where, to simplify notation, instead of blind variables qα,1 and qγ,2, we introduce x and
z. In a similar way we rewrite the EXγ

2,α in the form

ẍ =− ωαx,
ÿ =− ωβy,

z̈ =− ωγz + 2
θγα,β
sin t

xy.

 (EXγ
2,(α,β))

The last equations in (VEγ2,α) and (EXγ
2,(α,β)) have the same form

z̈ = −ω2z +
b(t)
sin t

, (39)

with eiωt and b(t) belonging to R1.
Now, we consider equation (39) over the field K = C(eit). Our aim is compute the

Picard-Vessiot extension L/K. Let L1 be the Picard-Vessiot extension of K containing
b(t), ḃ(t), and all solutions of z̈ = −ω2z. Since b(t) is holonomic over K, it belongs to the
Picard-Vessiot ring T (L1/K). Moreover, according to the classical method of variation
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of constants, the extension L/L1 is generated by the second level integrals over K. These
integrals are described in the following lemma.

Lemma 4.1. With the above notation the following statements hold true:

1. If ω = 0, then L/L1 is generated by∫
b(t)
sin t

dt and
∫
tb(t)
sin t

dt. (40)

2. If ω 6= 0, then L/L1 is generated by∫
eiωtb(t)

sin t
dt and

∫
e−iωtb(t)

sin t
dt. (41)

The following two lemmas give necessary and sufficient conditions which guarantee
that the groups Gal(VEγ2,α) and Gal(EXγ

2,(α,β)) are virtually Abelian.

Lemma 4.2. The Galois group Gal(VEγ2,α) is virtually Abelian iff either θγα,α = 0, or
θγα,α 6= 0, and ωα, ωγ ∈ Q?.

Lemma 4.3. The Galois group Gal(EXγ
2,(α,β)) is virtually Abelian iff either θγα,β = 0, or

θγα,β 6= 0, and ωα, ωβ , ωγ ∈ Q?.

In order to prove the above lemmas we use basic Lemma 3.3 and 3.4. The key point
is to show that integrals of the form (40) and (41) are not algebraic over the field of
meromorphic functions on C.

5. Outline of proof of Theorem 1.2. In order to see how to prove this theorem, we
first show what can be deduced from the assumptions just by considering the VE2.

We assumed in the theorem the existence of a Darboux point d satisfying V ′(d) = d.
Moreover, we assumed also that V ′′(d) = diag(ω2

1 , . . . , ω
2
n−1, ω

2
n), with ωn = 1. The

non-resonance condition (13) implies that ωi 6∈ Q. Now, because V ′′(d)d = d, we have
d = [0, . . . , 0, 1]T .

Applying Lemma 4.2 to VEγ2,α, we obtain that θγ2,α = 0, for all α, γ ∈ {1, . . . , n − 1}
except α = γ = n. Recall that θγ2,α are proportional to appropriate partial derivatives of
V calculated at d, see (26). In this way we proved that

∂2
α∂γV (d) = 0, (42)

for all α, γ ∈ {1, . . . , n− 1}, except for α = γ = n.
In a similar way, applying Lemma 4.2 to EXγ

2,(α,β), we prove that

∂α∂β∂γV (d) = 0, (43)

for all α, β, γ ∈ {1, . . . , n− 1}, except for α = β = γ = n.
We showed that all third order partial derivatives of V evaluated at d, except for

∂3
nV (d), vanish. But the second order partial derivatives of V are homogeneous functions

of degree zero. Using the Euler identity, we deduce that if at least one of the indices α,
β, or γ is equal to n, then ∂α∂β∂γV (d) = 0. Hence, also ∂3

nV (d) = 0. As a consequence,
all third order partial derivatives of V evaluated at d vanish, and VE2 is a copy of
VE1, see (23). In this way, the non-homogeneous term in VE3, see (20), depends only on
solutions of VE1.
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Thus, it is clear that we can try to prove the theorem using induction. In order to
describe the general step of this induction we represent V as a power series

V (q) =
∞∑
|α|≥0

1
α!
∂αV (d) · q̃α, (44)

where q̃ = q − d = (q1, . . . , qn−1, qn − 1). In the above we used the standard multi-index
notation. That is

α = (α1, . . . , αn) ∈ Nn, |α| :=
n∑
i=1

αi, α! = α1! · · ·αn!, qα := qα1
1 · · · qαn

n ,

and
∂α := ∂α1

1 · · · ∂αn
n , where ∂αi

i :=
∂αi

∂qαi
i

.

Taking into account that V ′(d) = d, we have also by the Euler identity V (d) = 1/2, and
the above expansion can be written in the form

V (q) =
1
2
(
ω2

1q
2
1 + · · ·+ ω2

n−1q
2
n−1 + q2n

)
+
∑
|α|≥3

1
α!
∂αV (d) · q̃α. (45)

Thus, we have to prove that

∂αV (d) = 0, for all α with |α| = m ≥ 3.

The vanishing of all these coefficients in the Taylor expansion given by (45), is going to
be made by successive use of the VEp and justify the title of our paper.

Let us assume that it is true for 3 ≤ m ≤ p. Then VEp has the following simple form:

ẍi = −ω2
i xi, 1 ≤ i ≤ n,

ÿj = −ω2
j yj +

∑
|α|=p

ξjα
sinp−1(t)

xα, 1 ≤ j ≤ n,

 (46)

where x = (x1, . . . , xn), and

ξjα :=
1
α!
∂αFj(d).

To prove the inductive step we have to show that ξjα = 0 for j = 1, . . . n, and all multi-
indices such that |α| = p. To this end we show first that we can apply Lemma 3.4 in this
case.

Let K = C(eit) be our ground field, and L := PVp be the Picard-Vessiot extension of
VEp over K. The field L contains

L1 := PV1 = K(eiω1t, . . . , eiωn−1t),

According to Lemma 4.1, the field L contains a second level integral of the form

Φj =
∫ ∑
|α|=p

ξjαeiωjt

sinp−1(t)
xα. (47)

In particular if we choose

x = (x1, . . . , xn) = (eiω1t, . . . , eiωnt), with ωn = 1,
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then
xα = ei(α1ω1+···+αnωn)t = ei(α·ω)t,

and L contains an integral of the form

Φj =
∑
|α|=p

ξjα

∫
1

sinp−1(t)
ei(α·ω+ωj)t =

∑
|α|=p

ξjαTp−1,α·ω+ωj
, (48)

where

Tr,ω :=
∫

eiωt

sinr(t)
, (49)

for r ∈ Z and ω ∈ C. In order to apply Lemma 3.4, we consider the monomials

Mα := ei(α·ω+ωj)t,

with fixed j. As ω1, . . . , ωn are Z independent, one can easily prove that they are not
mutually proportional. So, we can apply Lemma 3.4. Now, according to the first point of
this lemma we have that each term in the sum (48) is an element of L, i.e.,

ξjαTp−1,α·ω+ωj
∈ L.

Moreover, according to the second point of Lemma 3.4, we know that if Gal(L/K) is
virtually Abelian, then there exists a constant c such that

ξjαTp−1,α·ω+ωj + c

ei(α·ω+ωj)t
∈ K.

It follows that ξjαTp−1,α·ω+ωj is meromorphic on C. But one can show that Tp−1,α·ω+ωj is
not meromorphic, and hence ξjα = 0. This is the case for j ∈ {1, . . . , n} and multi-indices
α such that |α| = p satisfying the condition (α·ω+ωj) ∈ Z. Thanks to the non-resonance
assumption this condition is fulfilled iff j = n and α = α0 := (0, . . . , 0, p). However, using
the Euler identity one can easily show that also ξjα0

= 0, and this finishes the proof of
the inductive step.
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