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Abstract. Hydrogen atoms placed in external fields serve as a paradigm of a strongly coupled
multidimensional Hamiltonian system. This system has been already very extensively studied,
using experimental measurements and a wealth of theoretical methods. In this work, we apply the
Morales-Ramis theory of non-integrability of Hamiltonian systems to the case of the hydrogen
atom in perpendicular (crossed) static electric and magnetic uniform fields.

1. Introduction. The hydrogen atom placed in external static fields is an example of
atomic and fundamentally quantum system, whose classical dynamics may exhibit classi-
cally chaotic behaviour [2]. Such dynamical one-electron systems may be studied experi-
mentally [6, 14, 15] as well as by means of quantum chaos theory [2, 3, 16]. Investigation
of hydrogen or alkali atoms in a highly excited (the so-called Rydberg) state, interacting
with static and uniform magnetic fields gain over recent decades many interest (see e.g.
[3]). Such a system however can be considered effectively as a two-dimensional one due to
cylindrical symmetry and conservation of the z-component of the angular momentum for
an appropriate choice of the gauge for the vector potential of the magnetic field. However,
by adding an external and misaligned uniform electric field, one may break down such
a cylindrical symmetry. The resulting atomic system interacting with misaligned electric
and magnetic fields serves therefore as a truly 3-dimensional system with rich phase-space
structure [4]. An enormous amount of theoretical methods (e.g. theoretical classical and
quantum, experimental, numerical, perturbative and stability analysis, etc.) have been
employed to study that problem (see e.g. [17]).
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Recently, classical dynamics of some systems have been studied in rigorous mathe-
matical terms as far as their integrability is concerned [10, 16] due to a new theorem
of Morales-Ramis [12, 13]. For example the non-integrability in the Liouville sense of
the classical Zeeman Hamiltonian has been shown by Kummer and Saenz [8], who used
an adaptation to the Ziglin analysis [19]. Maciejewski and Przybylska have studied a
class of all meromorphically integrable 2D Hamiltonian systems [10]. Also, Mondéjar
and Ferrer [11] have discussed the non-integrability of the generalized van der Waals
Hamiltonian system recovering the result of [8]. Sawicki and Kuś [16] have studied clas-
sical non-integrability of a quantum chaotic Hamiltonian system originating from atomic
physics and quantum optics. This study demonstrates the importance of a better under-
standing of the classical dynamics and its correspondence with the quantum picture for a
wide range of systems. This in turn helps to address some fundamental questions within
the statistical theory of spectra of quantum systems, whose classical dynamics is chaotic.

The present work is motivated by recent investigations of multidimensional phase
space topology in terms of periodic orbits for the hydrogen atom in crossed electric and
magnetic fields [4]. The aim is to discuss an application of the Morales-Ramis theorem to
the problem of the hydrogen atom in crossed fields. As far as it could be traced back in
the literature, integrability of such atomic systems has not been studied yet within the
scope of the Morales-Ramis theory. The idea of applying Morales-Ramis theory to study
integrability and non-integrability of the system has been also inspired by yet another
recent work, where a classical non-integrability for a model Hamiltonian, which takes its
origins in atomic physics, has been proved [16]. Approach adopted for the case of crossed
electric and magnetic fields will be similar to the method considered for the case of van
der Waals Hamiltonian systems [11].

2. Integrability and non-integrability of Hamiltonian systems

2.1. General remarks. Let H be a complex analytical Hamiltonian function of the
classical system with n degrees of freedom:

H(q,p), q = (q1, . . . , qn), p = (p1, . . . , pn).

The canonical equations are given by:

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

, i = 1, . . . , n.

Such a Hamiltonian system is by definition completely integrable or Liouville integrable
if there are n integrals of motion, functions f1 = H, f2, . . . , fn that are

• functionally independent,
• mutually in involution with respect to the Poisson bracket, {fi, fj} = 0, i, j =

1, . . . , n.
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2.2. The Morales-Ramis theorem and non-integrability criterion. Consider an
n degrees of freedom Hamiltonian system [13, 1]

H(p,q) = T + V =
1
2
(
p2
1 + . . .+ p2

n

)
+ V (q1, . . . , qn),

where V is a complex homogeneous function of integer degree k 6= 0 and n ≥ 2.
First, one selects a particular solution c = (c1, . . . , cn) of the equation with the gra-

dient of the potential
c = V ′(c).

The solution c, called a homothetical point (see e.g. [1]), provides a particular solution
of the Hamiltonian system (homothetical solution):

q̇ = z(t)c,

ṗ = ż(t)c,

where the scalar function z(t) is a solution of the hyperelliptic differential equation

ż2 =
2
k

(
1− zk

)
.

The homothetical solution allows to compute the variational equation (VE) in its
vicinity parametrized with a new variable η:

η̈ = −z(t)k−2V ′′(c)η.

Assuming that the Hessian matrix V ′′(c) of second partial derivatives is diagonaliz-
able, one may consider its eigenvalues λi, i = 1, . . . , n. The eigenvalues {λi} are called
Yoshida coefficients [12, 13, 1]. One can note that λn = k − 1.

The Theorem of Morales-Ramis says [13, 1] that if the Hamiltonian system with the
homogenous potential of order k is meromorphically completely integrable, then each pair
(k, λi) has to match one of the items shown in table 1 [13, 1].

Table 1. Theorem of Morales-Ramis: all possible pairs (k, λi) for homogeneous integrable po-
tential of integer degree k and eigenvalues {λi} of its Hessian matrix (p-arbitrary integer number)
[12, 13] (see also [1])

Pairs (k, λi)

1. (k, p+ p(p− 1) k
2
) 10. (−3, 25

24
− 1

24
( 12

5
+ 6p)2)

2. (2, z), z ∈ C 11. (3, − 1
24

+ 1
24

(2 + 6p)2)

3. (−2, z), z ∈ C 12. (3, − 1
24

+ 1
24

( 3
2

+ 6p)2)

4. (−5, 49
40
− 1

40
( 10

3
+ 10p)2) 13. (3, − 1

24
+ 1

24
( 6
5

+ 6p)2)

5. (−5, 49
40
− 1

40
(4 + 10p)2) 14. (3, − 1

24
+ 1

24
( 12

5
+ 6p)2)

6. (−4, 9
8
− 1

8
( 4
3

+ 4p)2) 15. (4, − 1
8

+ 1
8
( 4
3

+ 4p)2)

7. (−3, 25
24
− 1

24
(2 + 6p)2) 16. (5, − 9

40
+ 1

40
( 10

3
+ 10p)2)

8. (−3, 25
24
− 1

24
( 3
2

+ 6p)2) 17. (5, − 9
40

+ 1
40

(4 + 10p)2)

9. (−3, 25
24
− 1

24
( 6
5

+ 6p)2) 18. (k, 1
2
( k−1

k
+ p(p+ 1)k))
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3. The physical model for the crossed fields

3.1. The Hamiltonian. The hydrogen atom in perpendicular (crossed) static and uni-
form electric and magnetic fields can be cast in the following form, using atomic units
[2, 5]:

H =
1
2
p2 − 1

r
+
B

2
Lz +

B2

8
(
x2 + y2

)
+ Fx, (1)

where the magnetic field B placed along the z-direction is in units of 2.35 × 105 T and
the electric field F oriented along the x-direction is in units of 5.14× 109 V/cm.

It can be shown that under appropriate scaling, instead of considering three param-
eters E, B, F one may have only two scaled parameters E0 = B−2/3E, F0 = B−4/3F ,
where the scaling factor depends on B.

3.2. The Kustaanheimo–Stiefel transformation. The Kustaanheimo–Stiefel (KS)
transformation [9] along with the regularization to a new time variable τ reduces the
Hamiltonian (1) of the problem to the system of four coupled anharmonic oscillators.
Introduction of new variables u = (u1, u2, u3, u4) by the nonlinear KS transformation
[9, 5] given by

r = Tu,

with

T =


u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1

 ,

allows in particular r = (x, y, z) to be written in the following form:

x = 2(u1u3 + u2u4),

y = 2(u1u2 − u3u4),

z = u2
1 − u2

2 − u2
3 + u2

4.

Additionally, there is a constraint on the new conjugate momenta P:

Lz = u4P1 − u1P4 = u3P2 − u2P3.

3.3. The Hamiltonian in four dimensions. Making an additional transformation to
a new time τ [5]:

dt

dτ
= 4u2

leads to a new Hamiltonian H:

4 = H =
1
2
(
P2 + ω2u2

)
+ 2BLzu2 + 2B2u2(u2

1 + u2
4)(u

2
2 + u2

3)

+ 8Fu2(u1u3 + u2u4), (2)

where ω2 = −8E and u2 = r = u2
1 + u2

2 + u2
3 + u2

4. The Hamiltonian H describes in fact
four one-dimensional and coupled anharmonic oscillators.
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4. Application of the Morales-Ramis theorem. In order to prove a complete non-
integrability, let us consider the case of physical parameters which obey the constraint(

1
2
ω2 + 2BLz

)
u2 = 0.

This is equivalent to the choice of the (initial) energy E such that:

E =
1
2
BLz.

A similar reasoning (carried out for a different value of the energy of another physical
problem) has been used earlier in [11]. This leads to a simplification of the total system and
allows to meet assumptions of the Morales-Ramis theorem with respect to the potential
form.

4.1. Homothetical points. The potential V is of degree k = 6 and has the form

V (u) = 2B2u2(u2
1 + u2

4)(u
2
2 + u2

3) + 8Fu2(u1u3 + u2u4).

Therefore, the equations for homothetical points read:

0 = −u1 + 2(4Fu3 + 2B2u1(u2
2 + u2

3))u
2

+ 4u1(4F (u1u3 + u2u4) +B2(u2
2 + u2

3)(u
2
1 + u2

4)),

0 = −u2 + 2(4Fu4 + 2B2u2(u2
1 + u2

4))u
2

+ 4u2(4F (u1u3 + u2u4) +B2(u2
2 + u2

3)(u
2
1 + u2

4)),

0 = −u3 + 2(4Fu1 + 2B2u3(u2
1 + u2

4))u
2

+ 4u3(4F (u1u3 + u2u4) +B2(u2
2 + u2

3)(u
2
1 + u2

4)),

0 = −u4 + 2(4Fu2 + 2B2u4(u2
2 + u2

3))u
2

+ 4u4(4F (u1u3 + u2u4) +B2(u2
2 + u2

3)(u
2
1 + u2

4)).

(3)

In order to find a solution of the above equations, we first consider a lemma.

Lemma 4.1. The Hamiltonian system (2) of crossed electric and magnetic fields for a
choice of parameters such that ω2/2 + 2BLz = 0, has homothetical points which satisfy

u1u2 = u3u4. (4)

Proof. Subtracting the fourth equation of the set (3) multiplied by u1 from the first
equation of the set (3) multiplied by u4 one gets (the same when the third equation
multiplied by u2 is subtracted from the second multiplied by u3):

8F (−u3
1u2 + u2

1u3u4 + (u3u4 − u1u2)(u2
2 + u2

3 + u2
4)) = 0.

By substituting u3u4 with u1u2 one verifies that the above equation is satisfied. Thus the
solutions of (3) have to obey the condition u1u2 = u3u4.

Remark. Note that the condition (4) corresponds to y = 0 in Cartesian coordinates.

Let us now take a particular case which obeys the condition (4):

u1 = u3, u2 = u4. (5)
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Note that for such a choice, it follows that u2 = 2(u2
1 + u2

2) and r = u2 = x. Therefore
z = 0. This means that the desired homothetical points are situated along the direction
of the electric field (x axis in Cartesian coordinates).

In the special case (5) the equation set (3) reduces to

(−1 + 16Fu2 + 3B2u4)u1 = 0,

(−1 + 16Fu2 + 3B2u4)u2 = 0.

It has a nontrivial solution when

−1 + 16Fu2 + 3B2u4 = 0.

Choosing u1 = u2, it follows finally that a homothetical point is

c = u1 = u2 = u3 = u4 = ±

√
− 2F

3B2
+
√

3B2 + 64F 2

12B2
. (6)

4.2. Eigenvalues of the Hessian for a homothetical point. By denoting

α = 32c2(2B2c2 + F ),

β = 64c2(B2c2 + F ),

γ = 16c2(5B2c2 + 4F ),

δ = 32c2(B2c2 + F ) = β/2,

one may cast the Hessian matrix in the form

V′′(c) =


γ α β δ

α γ δ β

β δ γ α

δ β α γ

 .

The eigenvalues (Yoshida coefficients) of the Hessian matrix are

λ = {−16B2c4, 48B2c4, 16c2(3B2c2 + 4F ), 48c2(5B2c2 + 4F )}.

Taking the eigenvalues for the Hessian matrix at the homothetical point

c2 = − 2F
3B2

+
√

3B2 + 64F 2

12B2
,

one gets the following explicit formulas for the eigenvalues:{
− (−8F +

√
3B2 + 64F 2)2

9B2
,

(−8F +
√

3B2 + 64F 2)2

3B2
,

1,
15B2 + 32F (8F −

√
3B2 + 64F 2)

3B2

}
.

Since k = 6, according to the theorem of Morales-Ramis it remains to check if all of
these eigenvalues are described by one of these families:

(6, p+ 3p(p− 1)) ,
(

6,
1
2

(
5
6

+ 6p(p+ 1)
))

. (7)

It is easy to see that for a generic case (most of real values of F and B) the eigenvalues
found could not be written as an integer or a rational number of the form (7). Thus at fixed
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energy the Hamiltonian system for crossed electric and magnetic fields is not completely
integrable.

Note that even taking F = 0 (only magnetic field present, quadratic Zeeman effect)
the Hessian eigenvalues read {

−1
3
, 1, 1, 5

}
.

The pair (6,−1/3) is obviously not of the form given by (7). Therefore the Hamiltonian
system with only magnetic field is not completely integrable either. Thus we recover the
result of [8, 11].

For the crossed fields problem, some eigenvalues in general are irrational numbers
and therefore are not of the form given by (7). Therefore in conclusion, the Hamiltonian
system is not completely integrable by independent meromorphic integrals in involution.
Since there is not a complete system of meromorphic integrals, in particular there is no
complete system of analytic integrals for the crossed fields problem.

5. Conclusions. In this work, the criterion provided by the Morales-Ramis theorem has
been applied to the Hamiltonian system describing a classical hydrogen atom in external
uniform and static magnetic and electric fields, which are perpendicular to each other.
The present study shows a certain property of the homothetical point for a family of
parameters (e.g. energies). This property allows to show that the Hamiltonian system
considered is generally not integrable in Liouville sense.
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