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Abstract. We report our recent results concerning integrability of Hamiltonian systems gov-
erned by Hamilton’s function of the form H = 1

2

Pn
i=1 p

2
i +V (q), where the potential V is a finite

sum of homogeneous components. In this paper we show how to find, in the differential Galois
framework, computable necessary conditions for the integrability of such systems. Our main re-
sult concerns potentials of the form V = Vk + VK , where Vk and VK are homogeneous functions
of integer degrees k and K > k, respectively. We present examples of integrable systems which
were obtained by applying our main theorem.

1. Introduction. In our previous papers [7, 8, 14, 15] we investigated integrability of
polynomial canonical systems given by Hamiltonian functions which have the form

H =
1
2

n∑
i=1

p2
i + Vk(q), (1)

where
q = (q1, . . . , qn) ∈ Cn, p = (p1, . . . , pn) ∈ Cn,

are the canonical coordinates and momenta, respectively, and Vk is a homogeneous poly-
nomial of degree k ∈ Z. Our aim was to find all such systems which are integrable in
the Liouville sense with meromorphic first integrals, and to show that the others are not
integrable. We developed tools and methods which allowed us, to a large extent, to re-
alise successfully this ambitious program for small k > 2. Also we obtained some results
concerning rational potentials.
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The next natural step is to consider the class of Hamilton equations with non-
homogeneous potentials. More precisely, in this paper we consider complex Hamiltonian
systems with n degrees of freedom governed by Hamilton function of the form

H =
1
2

n∑
i=1

p2
i + V (q). (2)

We assume that the potential V (q) is a finite sum of homogeneous components, that is,

V (q) :=
K∑
i=k

Vi(q), (3)

where Vi(q) is a homogeneous function of degree i. We say that V is integrable iff the
canonical equations

d
dt
q = p,

d
dt
p = −V ′(q), (4)

where V ′(q) := gradV (q), are integrable in the Liouville sense, i.e., they admit n first
integrals which are meromorphic and functionally independent in the prescribed domain
and, moreover they pair-wise commute with respect to the canonical Poisson bracket. The
integrability of such systems is important because many potentials interesting in physics
are not homogeneous. Here we only mention two examples: the generalised Hénon-Heiles
potential introduced in [2]

V =
1
2
(Aq21 +Bq22) + q21q2 +

ε

3
q32 ,

and the class of Yang-Mills-type potentials

V =
1
2
(a1q

2
1 + a2q

2
2) +

1
4
q41 +

1
4
a3q

4
2 +

1
2
a4q

2
1q

2
2 ,

see [17] and references therein.
A classification of integrable homogeneous potentials was only possible thanks to very

strong and effective conditions necessary for integrability. These conditions have been
formulated quite recently and were obtained from the analysis of linear equations (so-
called variational equations) which are the linearisation of canonical equations (4) along a
non-equilibrium particular solution. The existence of first integrals of Hamilton equations
(4) implies the existence of invariants of the monodromy as well as the differential Galois
group of the variational equations. For basic notions and theorems of differential Galois
theory see [16] and for the theory of monodromy group see e.g. [22]. For integrability
in the Liouville sense, conditions obtained from the analysis of the differential Galois
group of variational equations have an especially nice and useful form. In particular, the
main theorem of the differential Galois approach to the integrability developed by Baider,
Churchill, Morales, Ramis, Rod, Simó and Singer towards the end of the 20th century,
see [12, 1], says, that if the system is integrable in the Liouville sense, then the identity
component of the differential Galois group of variational equations is Abelian. For more
details and references see, e.g., [12, 13].

For homogeneous potentials differential Galois integrability analysis has appeared
very effective because for such potentials one can find, in a systematic way, particular
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solutions of equations (4). They have the form

(q(t),p(t)) := (ϕ(t)d, ϕ̇(t)d),

where ϕ(t) is a solution of ϕ̈ = −ϕk−1, and a non-zero d ∈ Cn is a solution of the system
of non-linear equations

V ′k(d) = αd, α ∈ C. (5)

Non-zero solutions of (5) are called Darboux points and in general this system has many
solutions, so we have many particular solutions. Additionally, we can determine the dif-
ferential Galois group of variational equations along such a particular solution. First of
all, the variational equations split into a product of second order equations. Moreover,
thanks to a clever Yoshida change of the independent variable [19], each of the second
order equations can be transformed into the Gauss hypergeometric equation for which
the differential Galois group is known. As a result, very useful necessary integrability
conditions in the form of restrictions on eigenvalues of the Hessian V ′′k (d) were obtained,
see [12].

A possibility of more or less complete integrability analysis for non-homogeneous
potentials depends on the existence of (many) non-trivial particular solutions. Moreover,
it is equally important to have effective methods for determination of differential Galois
groups of variational equations along these solutions.

It seems that the first step in such analysis was made by H. Ito in [3, 4]. He obtained
necessary conditions for the integrability of polynomial potentials of degrees 3 and 4 from
an analysis of the monodromy group of the variational equations. The techniques used
in these papers do not have obvious generalisations to cases of polynomial potentials of
arbitrary degrees or to non-polynomial potentials.

The next important result was obtained by H. Yoshida [20, 21] for non-homogeneous
potentials with two degrees of freedom and later it was generalised to n degrees of freedom
by F. Mondejar [11]. It can be stated in the following form.

Theorem 1.1 (Mondejar, Yoshida). Assume that Hamiltonian system (2) with potential
of the form (3) satisfies the following conditions:

1. it admits a straight-line particular solution

(q(t),p(t)) := (ϕ(t)d, ϕ̇(t)d), (6)

where d ∈ Cn \ {0}, and ϕ(t) is a non-constant scalar function,
2. it is integrable in the Liouville sense with first integrals meromorphic in a connected

neighbourhood U of the phase curve Γ corresponding to the above solution and
functionally independent in U \ Γ.

Then the truncated systems given by the Hamiltonian functions

Hk =
1
2

n∑
i=1

p2
i + Vk(q) and HK =

1
2

n∑
i=1

p2
i + VK(q) (7)

are integrable in the Liouville sense. Moreover, the eigenvalues (λ(κ)
1 , . . . , λ

(κ)
n ) of the

Hessian matrices V ′′κ (d) with κ = k,K satisfy the following condition: each pair (κ, λ(κ)
j )

with κ = k,K, and j = 1, . . . , n belongs to one of the items from the following list:
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case κ λ

1. ±2 arbitrary

2. κ p+
κ

2
p(p− 1)

3. κ
1

2

„
κ− 1

κ
+ p(p+ 1)κ

«
4. 3 − 1

24
+

1

6
(1 + 3p)2 , − 1

24
+

3

32
(1 + 4p)2

− 1

24
+

3

50
(1 + 5p)2 , − 1

24
+

3

50
(2 + 5p)2

5. 4 −1

8
+

2

9
(1 + 3p)2

6. 5 − 9

40
+

5

18
(1 + 3p)2 , − 9

40
+

1

10
(2 + 5p)2

7. −3
25

24
− 1

6
(1 + 3p)2 ,

25

24
− 3

32
(1 + 4p)2

25

24
− 3

50
(1 + 5p)2 ,

25

24
− 3

50
(2 + 5p)2

8. −4
9

8
− 2

9
(1 + 3p)2

9. −5
49

40
− 5

18
(1 + 3p)2 ,

49

40
− 1

10
(2 + 5p)2

(8)

where p is an integer.

In order to prove this theorem an appropriate scaling of coordinates and time was
made. This introduces a parameter into the problem. For the limiting cases of the param-
eter the problem reduces to integrability of the truncated systems with only the lowest,
or highest, term in the potential expansion.

The question what can be added to the integrable Hamiltonian function without de-
structing its integrability has a long history and still is one of the most interesting prob-
lems of mechanics. KAM theorem says that most of the perturbations destroy integrability
but does not give indications about possible integrable perturbations. As a rule, a modi-
fication of an integrable potential gives rise a non-integrable one. A typical modification
is a truncation of non-homogeneous integrable potentials and this gives a non-integrable
system. The first example of this effect is given in [20] where the non-integrability of
truncated three-particle Toda lattice at any order was proved.

The weak point of Theorem 1.1 is that it does not put any restrictions on the terms
Vi, with k < i < K. Moreover, although it seems that Theorem 1.1 is optimal for
potentials which are sums of two homogeneous terms V = Vk + VK , of degrees k and K,
respectively, it is not the case. Namely, a sum of two integrable potentials Vk and VK can
be non-integrable.

Our aim is to find necessary conditions for the integrability of non-homogeneous
potentials which are stronger than those given by Theorem 1.1. We show that in the case
when V is a sum of only two homogeneous terms one can find new necessary conditions for
the integrability which are supplementary to those given by Theorem 1.1. We formulate
our result in the following form.
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Main Theorem 1.2. Assume that a Hamiltonian system (2) satisfies the following con-
ditions:

1. the potential V is a sum of two homogeneous terms

V = Vk + VK , (9)
where k ∈ Z? and m = K − k ∈ N;

2. there exists a non-zero vector d ∈ Cn such that

V ′k(d) = αkd, V ′K(d) = αKd, (10)

for a certain non-zero αk and αK .
3. both Hessian matrices V ′′k (d) and V ′′K(d) are simultaneously diagonalizable, and

C−1V ′′κ (d)C = ακ diag(λ(κ)
1 , . . . , λ(κ)

n ), (11)

for κ = k,K and a certain non-singular matrix C;
4. the system is integrable in the Liouville sense.

Then, for each j ∈ {1, . . . , n}, either (λ(k)
j , λ

(K)
j ) = (λ(κ1)

j , λ
(κ2)
j ), or (λ(K)

j , λ
(k)
j ) =

(λ(κ1)
j , λ

(κ2)
j ), where λ(κ1)

j and λ(κ2)
j belong to an item of the following table:

case λ
(κ1)
j λ

(κ2)
j

1.
1

8κ1
[4m2r21 − (κ1 − 2)2]

1

8κ2
[4m2r22 − (κ2 − 2)2]

2.
1

8κ1
[m2(2l + 1)2 − (κ1 − 2)2] λ

3.
4m2(3l + 1)2 − 9(κ1 − 2)2

72κ1

4m2(3p+ 1)2 − 9(κ2 − 2)2

72κ2

4.
4m2(3l + 1)2 − 9(κ1 − 2)2

72κ1

m2(4p+ 1)2 − 4(κ2 − 2)2

32κ2

5.
4m2(3l + 1)2 − 9(κ1 − 2)2

72κ1

4m2(5p+ 1)2 − 25(κ2 − 2)2

200κ2

6.
4m2(5l + 2)2 − 25(κ1 − 2)2

200κ1

4m2(5p+ 1)2 − 25(κ2 − 2)2

200κ2

7.
4m2(5l + 2)2 − 25(κ1 − 2)2

200κ1

4m2(3p+ 1)2 − 9(κ2 − 2)2

72κ2

(12)

where λ ∈ C, m = K − k, l, p are integers, and r1, r2 are rational numbers satisfying

r1 + r2 = p+ 1/2 or r1 − r2 = p+ 1/2.

We deduce the above theorem from an analysis of the variational equations along a
straight line solution whose existence is guaranteed by the second assumption. In fact,
this solution is the same as in Theorem 1.1. But now we do not rescale coordinates and
time in order to remove coupling of terms with various degrees of homogeneity.

The conditions given by our theorem put restrictions on pairs of eigenvalues λ(k)
i and

λ
(K)
i of the respective matrices V ′′k (d) and V ′′K(d), corresponding to the same eigenvector.

Moreover, these conditions put simultaneous restrictions on both degrees of homogeneity
k and K.
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As we will explain in the next section, the problem of determination of the differential
Galois group of the variational equations in the relevant problem is not, in general,
tractable. However, under the third assumption of the theorem, the variational equations
split into a product of second order equations. Additionally, on the zero energy level
each of these second order equations can be transformed into a Riemann P equation. We
formulate a theorem that determines all the cases with Abelian identity of the differential
Galois group for our variational equations. The proof of Theorem 1.2 consists in the
application of this theorem.

Theorems 1.1 and 1.2 together give the strongest known necessary integrability con-
ditions for non-homogeneous potentials consisting of two homogeneous parts. Comments
about their applications together with the most interesting integrable examples with first
integrals of degree four in the momenta are given in Section 4. All details are contained
in the forthcoming article [9].

2. Discussion of the general case. Let us start from the general form of potential
(3) and assume that there exists a non-zero solution d ∈ Cn of the following system of
non-linear equations

V ′i (d) = αid, i = k, . . . ,K, (13)

with some nonzero αi ∈ C.
The existence of d guarantees that Hamiltonian system (4) possesses a straight-line

particular solution of the form

q(t) = ϕ(t)d, p(t) = ϕ̇(t)d, (14)

provided ϕ is a solution of the scalar equation

ϕ̈ = −
K∑
i=k

αiϕ
i−1. (15)

The variational equations along this particular solution are[
Q̇

Ṗ

]
=
[

0n En

−V ′′(ϕd) 0n

] [
Q

P

]
, (16)

where En and 0n are the n-dimensional identity and zero matrix, respectively. As V ′′i (q)
is a homogeneous function of degree i− 2, we have

V ′′(ϕd) =
K∑
i=k

V ′′i (ϕd) =
K∑
i=k

ϕi−2V ′′i (d), (17)

and the variational equations (16) can be rewritten in the compact form

Q̈ = −
( K∑
i=k

ϕi−2(t)V ′′i (d)
)
Q. (18)

We do not know how to determine in general the differential Galois group of this system
of coupled equations. That is why we assume that all matrices V ′′i (d), for i = k, . . . ,K

are simultaneously diagonalisable, and

C−1V ′′i (d)C = αi diag(λ(i)
1 , . . . , λ(i)

n ) for i = k, . . . ,K, (19)
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where C is a certain non-singular matrix. This matrix determines the transformation
Q = Cη that splits variational equations into a direct product of the second order scalar
equations

η̈j = −Aj(t)ηj , where Aj(t) =
K∑
i=k

αiλ
(i)
j ϕi−2(t), j = 1, . . . , n. (20)

The second order autonomous equation (15) can be rewritten as a Hamiltonian system
with one degree of freedom. Then the choice of the value of energy e of this system
determines a particular solution ϕ(t). The corresponding phase curve is a hyperelliptic
curve defined by

ϕ̇2 = 2e− 2
K∑
i=k

αi
i
ϕi. (21)

Each of equations (20) can be transformed into a second order linear equation with
rational coefficients by the transformation

t→ z := ϕ(t). (22)

Since
d2

dt2
= ż2 d2

dz2
+ z̈

d
dz
,

after transformation (22) variational equations take the form

η′′j + pη′j + qjηj = 0, j = 1, . . . , n, ′ ≡ d
dz
, (23)

with coefficients

p =
z̈

ż2
=

1
2
P ′(z)
P (z)

, qj =
Aj(t)
ż2

=
Qj(z)
P (z)

, (24)

where

P (z) := 2e− 2
K∑
i=k

αi
i
zi, and Qj(z) :=

K∑
i=k

αiλ
(i)
j zi−2 for j = 1, . . . n. (25)

If the system (4) is integrable in the Liouville sense, then the identity component of
the differential Galois group of variational equations (20) as well as equations (23) is
Abelian. The differential Galois group of the system (23) is contained in the product of
the differential Galois groups of each of these equations. If for one of these second-order
equations the identity component is not Abelian, then the identity component of the
whole system (23) is not Abelian.

Determination of the differential Galois group of the second order linear equation with
rational coefficient is in principle always possible. There exists an effective closed algo-
rithm, the so-called Kovacic algorithm [6], which solves this problem. In fact, using it we
can decide if the differential Galois group of the considered equation is virtually Abelian.
However, in practice, it can be done effectively only for equations without parameters.
But the nature of the formulated problem is such that we have a lot of parameters because
we want to distinguish all integrable potentials.
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Here we want to point out that an equation of the form (23) with coefficients given
by (24) has several remarkable properties. For example, it is possible to prove that for
generic values of the energy, the monodromy group of this equation is a reflection group.

3. Sketch of the proof of the main theorem. We recall that in our main theorem
we assumed that the potential V is a sum of only two terms

V = Vk + VK , (26)

where Vk and VK are homogeneous potentials of integer degrees k 6= 0 and K 6= 0,
respectively, and K − k = m ≥ 1. Moreover, we assumed also existence of a non-zero
solution d of the systems

V ′k(d) = αkd, V ′K(d) = αKd, (27)

with αk, αK ∈ C? := C \ {0}. And finally we assumed existence of a non-singular matrix
C such that

C−1V ′′κ (d)C = ακ diag(λ(κ)
1 , . . . , λ(κ)

n ),

for κ ∈ {k,K}. Hence, in this case, the coefficients of variational equations (23) simplify
to the form

p =
kKzk(αKzm + αk)

2z (kαKzK +Kαkzk − ekK)
, qj = −

kKzk(αKλ
(K)
j zm + αkλ

(k)
j )

2z2 (kαKzK +Kαkzk − ekK)
, (28)

where m = K − k, and j ∈ {1, . . . , n}.
Let us note that the variational equations depend on a chosen value e. For a generic

value of e, the number of singularities of these equations is big. For example, for k ≥ 2,
each of the variational equations has K + 1 singularities. This is why analysis of these
equations with a generic value of e is highly complicated as was already mentioned above.
However, for e = 0 the coefficients p and qj simplify considerably

p =
kK(αKzm + αk)

2z (kαKzm +Kαk)
, qj = −

kK(αKλ
(K)
j zm + αkλ

(k)
j )

2z2 (kαKzm +Kαk)
. (29)

Hence, for e = 0, each of the variational equations has m+ 2 singularities. Moreover, we
simplify them further introducing new independent variable

x = − kαK
Kαk

zm. (30)

After this transformation the j-th variational equation in (23) takes the form

d2η

dx2
+
(
k + 2m− 2

2mx
+

1
2(x− 1)

)
dη
dx

+

(
−
kλ

(k)
j

2m2x2
+
kλ

(k)
j −Kλ

(K)
j

2m2x(x− 1)

)
η = 0. (31)

So, it is a Riemann P equation in the standard form, see e.g. [18]. In fact, if we rewrite
it in the form

d2η

dx2
+
(

1− α1 − α2

x
+

1− β1 − β2

x− 1

)
dη
dx

+
(
α1α2

x2
+

β1β2

(x− 1)2
+
γ1γ2 − α1α2 − β1β2

x(x− 1)

)
η = 0, (32)
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we find out that

α1 =
1

4m

(
2− k +

√
(k − 2)2 + 8kλ(k)

j

)
, α2 =

1
4m

(
2− k −

√
(k − 2)2 + 8kλ(k)

j

)
,

γ1 =
1

4m

(
K − 2 +

√
(K − 2)2 + 8Kλ(K)

j

)
, β1 =

1
2
,

γ2 =
1

4m

(
K − 2−

√
(K − 2)2 + 8Kλ(K)

j

)
, β2 = 0.

The differences of the exponents at the singular points x = 0, x = 1 and x = ∞ are
respectively

α = α1 − α2 =
1

2m

√
(k − 2)2 + 8kλ(k)

j , β = β1 − β2 =
1
2
,

γ = γ1 − γ2 =
1

2m

√
(K − 2)2 + 8Kλ(K)

j .

(33)

The reduced form of equation (32) is

d2v

dz2
+

1
4

{
1− α2

z2
+

1− β2

(z − 1)2
− 1− α2 − β2 + γ2

z(z − 1)

}
v = 0. (34)

We denote by (ρ1, ρ2), (σ1, σ2) and (τ1, τ2) the exponents at the respective singular points
z = 0, z = 1 and z =∞, for this equation. One can find that

ρ1,2 =
1
2
(1± α), σ1,2 =

1
2
(1± β), τ1,2 = −1

2
(1∓ γ). (35)

Let us notice that the differences of exponents for the reduced Riemann equation are the
same as for equation (32), i.e.,

ρ := ρ1 − ρ2 = α, σ := σ1 − σ2 = β, τ := τ1 − τ2 = γ. (36)

Let us assume that the potential is integrable. Hence, by differential Galois integrabil-
ity obstructions, the identity component of the differential Galois group of the variational
equations (31) with j = 1, . . . , n, is Abelian. Thus, our task is to determine necessary
and sufficient conditions imposed on the parameters k, K and λj which guarantee that
this is the case. For the Riemann P equation the Kimura theorem, see [5], specifies all
the values of the parameters of this equation for which the identity component of the
differential Galois group is solvable. However, a solvable group is not necessarily Abelian.
This is why, first, we have to find all the parameters’ values for which the differential
Galois group of the Riemann P equation is actually Abelian. They are specified in the
following theorem.

Theorem 3.1. The identity component of the reduced Riemann P equation (34) is
Abelian if and only if either

A: at least one of four numbers ρ+ σ + τ , −ρ+ σ + τ , ρ− σ + τ , ρ+ σ − τ , is an odd
integer, and moreover either two among numbers ρ, σ are rational, or at least one
among numbers ρ, σ, τ is an integer and there is no logarithmic singularity; or

B: the numbers ρ or −ρ and σ or −σ and τ or −τ belong (in an arbitrary order) to
some of the following fifteen families:
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1 1/2 + l 1/2 + s arbitrary complex number
2 1/2 + l 1/3 + s 1/3 + q

3 2/3 + l 1/3 + s 1/3 + q l + s+ q even
4 1/2 + l 1/3 + s 1/4 + q

5 2/3 + l 1/4 + s 1/4 + q l + s+ q even
6 1/2 + l 1/3 + s 1/5 + q

7 2/5 + l 1/3 + s 1/3 + q l + s+ q even
8 2/3 + l 1/5 + s 1/5 + q l + s+ q even
9 1/2 + l 2/5 + s 1/5 + q

10 3/5 + l 1/3 + s 1/5 + q l + s+ q even
11 2/5 + l 2/5 + s 2/5 + q l + s+ q even
12 2/3 + l 1/3 + s 1/5 + q l + s+ q even
13 4/5 + l 1/5 + s 1/5 + q l + s+ q even
14 1/2 + l 2/5 + s 1/3 + q

15 3/5 + l 2/5 + s 1/3 + q l + s+ q even

where l, s, q ∈ Z.

For the proof of this auxiliary theorem, see [9]. Now, to prove our Theorem 1.2 it is
enough to apply, case by case, Theorem 3.1 to equation (34). For details, see [9].

4. Applications and remarks. Let us consider a potential of the form

V = Aq21 +Bq22 + Vκ(q1, q2), A,B ∈ C, (37)

where Vκ is a homogeneous potential of integer degree κ 6= 2. For κ = 3 and κ = 4
we know all integrable polynomial potentials, see [7, 8]. This is why we can apply our
Theorem 1.2. Here we give four examples of integrable potentials which were found in this
way and which admit an additional first integral of degree 4 with respect to the momenta.
Two of them are examples of harmonic perturbations of cubic integrable potentials

V =
1
2
q21q2 +

8
3
q32 +

a

2
(q21 + 16q22),

I = 18p4
1 − 12p1p2q

3
1 + 36p2

1q
2
1q2 − q41(q21 + 6q22) + 6aq21(6p2

1 + q21(3a− 2q2)),

and

V =
i
√

3
18

q31 +
1
2
q21q2 + q32 +

a

2
(q21 + 6q22),

I = 36
√

3p4
1 + 72ip3

1p2 − 36p1p2q1(−6
√

3a2 + 3iaq1 + q1(
√

3q1 + 3iq2)) + 1296
√

3a4q22

+ 18iaq31(q21 + i
√

3q1q2 + 6q22) + 9
√

3a2q21(7q21 + 12q22) + 36p2
1(iq

3
1 − 6

√
3a2q2

+ 2
√

3q21(a+ q2) + 6iq1q2(2a+ q2)) + 216
√

3a3(p2
2 + 2q2(q21 + q22)) + q31(−5

√
3q31

+ 18iq21q2 − 9
√

3q1q22 + 36i(p2
2 + q32)).

The other two are examples of harmonic perturbations of quartic integrable potentials

V =
4
3
q41 + q21q

2
2 +

1
6
q42 +

a

2
(4q21 + q22),

I = 9p4
2 + 12p2q1q

2
2(3p2q1 − 2p1q2) + 6(p2

1 + p2
2)q

4
2 + 18bp2

2q
2
2 + q42(3b+ 2q21 + q22)2,
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and

V =
1
32
q41 +

3
16
q21q

2
2 +

1
4
q42 +

a

2
(q21 + 4q22),

I = 256p4
1 + 32p2

2q
4
1 + q81 − 128p1p2q

3
1q2 + 32p2

1(q
4
1 + 6q21q

2
2) + 4q41q

2
2(q21 + q22)

+ 32aq21(16p2
1 + q21(8a+ q21 + 2q22)).

Let us consider a generalisation of potential (37) to n degrees of freedom

V =
1
2
qTSq + Vκ(q), S = ST . (38)

Then, we meet the following two problems with application of Theorem 1.2. It is easy to
check that the second assumption is equivalent to the following condition: the potential
Vκ has a Darboux point which is an eigenvector of matrix S. Moreover, even if we assume
that this is the case we have another problem. The matrices S and V ′′κ (d) for n > 2 are
not, in general, simultaneously diagonalisable. Hence, the variational equations do not
split into a direct product of second order variational equations. For n = 2 if Vk and
VK have a common Darboux point d = (d1, d2) such that d2

1 + d2
2 6= 0, then the Hessian

matrices V ′′k (d) and V ′′K(d) are simultaneously diagonalisable. More about this problem
can be found in [9].

Clearly, we do not have problems with a common Darboux point in the case of ho-
mogeneous perturbations of n-dimensional radial potentials, i.e., when the potential has
the form

V = αr2s + Vκ(q), r2 =
n∑
i=1

q2i , (39)

where 2s ∈ Z, and Vκ is a homogeneous potential of integer degree κ 6= 2s. In this case,
if we want to apply Theorem 1.2, it is enough to assume that Vκ has a Darboux point d,
and V ′′κ (d) is diagonalisable. An integrability analysis of such potentials will be published
in [10].
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