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Abstract. Given a vector field X on an algebraic variety V over C, I compare the following
two objects: (i) the envelope of X, the smallest algebraic pseudogroup over V whose Lie algebra
contains X, and (ii) the Galois pseudogroup of the foliation defined by the vector field X + d/dt

(restricted to one fibre t = constant). I show that either they are equal, or the second has
codimension one in the first.

1. Introduction. This note is a simple exercise in the “non-linear differential Galois
theory”. I refer for this theory to [Ma2], or [Ma1] (but this last paper is written in an
analytic context, and one should make the translation analytic → algebraic to recover
the situation of [Ma2]).

Let X be a complex algebraic variety (= a reduced scheme of finite type over C),
which I will suppose irreducible. As usual in this subject, I work birationnally, i.e. I
can replace freely X by an open dense Zariski subvariety. Therefore, I can suppose X
affine, non-singular, and even a finite étale covering X p→ U of U = Cn − Z, Z a closed
hypersurface. In that situation, I denote by x a (closed) point of X, and by (x1, . . . , xn)
the coordinates of p(x) ∈ U . I call these data “étale coordinates” on X.

Let ξ be a vector field on X; in étale coordinates, one has ξ =
∑
ai

∂
∂xi

, ai ∈ C[X]
(= ai regular over X). Recall the following definition (see loc. cit.).

Definition 1.1. The envelope E(ξ) of ξ is the smallest (algebraic) pseudogroup on X
whose Lie algebra LieE(ξ) contains ξ as solution.

Now, to ξ is associated naturally a differential equation, which, in étale coordinates,
is written dxi

dt = ai(x). Instead of this equation, it is equivalent to consider, on X × C,
the foliation {ωi = dxi−ai dt} (the Frobenius condition is obviously satisfied here). This
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foliation is also defined by the vector field ξ+ ∂
∂t , or any of its multiples. To this foliation is

associated its the Galois pseudogroup, which is the smallest pseudogroup on X×C whose
Lie algebra contains as solutions the vectors tangent to the leaves, i.e. the multiples of
ξ + ∂

∂t . Take a point a ∈ C; by restriction to X × {a}, we obtain a pseudogroup on X,
independent of a (because ξ + ∂

∂t is fixed by translations in t). I will call this restriction,
by abuse of terminology, the “Galois pseudogroup of ξ”. I will denote it by G(ξ), and its
D-Lie algebra will be denoted by LieG(ξ).

A natural question is the following: what is the relation between E(ξ) and G(ξ)? A
priori, they should not be very different. Before giving the general result, I will give a
few very simple examples.

2. Examples

(i) X = C, ξ = ∂
∂x . Of course, E(ξ) is the group of translations Ga over C, more precisely

the pseudogroup whose solutions are the translations, i.e. the pseudogroup x 7→ x̄, dx̄dx = 1.
On the other hand, to determine G(ξ), we must look at the foliation {dx − dt} of C2.
This foliation admits the first integral x − t. Therefore, the Galois pseudogroup of this
foliation is given by x̄ − t̄ = x − t. Setting t̄ = t = a, we find that G(ξ) reduces to the
identity.

(ii) X = C (or C∗), ξ = x ∂
∂x . The envelope is the pseudogroup associated to Gm, with

equation (on xx̄ 6= 0) xdx̄dx = x̄, or dx̄
x̄ = dx

x . On the other hand, the foliation is given
by dx = x dt, or better by the closed form dx

x − dt. The corresponding pseudogroup is
given by dx̄

x̄ − dt̄ = dx
x − dt. Setting t = t̄ = a, we find dx̄

x̄ = dx
x ; in other words we have

E(ξ) = G(ξ).

(iii) Take more generally X = Cn, and take for ξ a linear vector field ξ =
∑
aijxj

∂
∂xi

,
aij ∈ C. I write A = (aij), and I identify ξ and A. To state the result, I need a few
conventions. If G is an algebraic subgroup of G`(n) over C, I will identify G with the
pseudogroup G̃ on Cn whose solutions are the transformations of G(C) (cf. [Ma1]). Sim-
ilarly, I identify the Lie algebra LieG with the D-Lie algebra Lie G̃.

Note that all the (closed) subpseudogroups of G̃`(n) are of the form G̃ for a suitable
G (this result, easy, can be left to the reader).

Now, let A = S+N , [S,N ] = 0, be the standard decomposition of A into a semisimple
and nilpotent part. The result is the following

Proposition 2.1. If ξ is semisimple, then E(ξ) = G(ξ). If ξ = S + N , N 6= 0, then
G(ξ) = E(S). One has E(ξ) ⊃ G(ξ), and LieE(ξ) = LieG(ξ) + Cξ (or CN , it is equiva-
lent). In particular, G(ξ) has codimension one in E(ξ).

The proof can be left to the reader (work directly, or use the general results of the
next sections). Just a few comments.

a) With the identification made above, E(ξ) is simply the smallest algebraic subgroup
of G`(n) over C whose Lie algebra contains ξ = A. Its determination is essentially
classical: use the Jordan normal form. The crucial point is given by the linear relations
over Q of the eigenvalues of A.
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b) G(ξ) is the Galois group of the system dxi
dt =

∑
aijxj , in the sense of the usual linear

theory [Ko], [vP-Si] (cf. loc. cit.). Therefore, the determination is also classical (again
use the Jordan normal form).

(iv) X = C2, ξ = xy ∂
∂x .

First method, elementary. To find E(ξ), one writes the flow of ξ, i.e. the solutions of
dx̄
dt = x̄ȳ, dȳdt = 0 with the initial conditions (x, y, t = 0). One has x̄ = xeyt, ȳ = y.

One fixes t = a ∈ C, and one looks at the differential equations of x̄ and ȳ in terms
of x, y, independently of a.

One has ∂x̄
∂x = x̄

x ,
∂x̄
∂y = ax̄; to have an equation independent of a, one replaces the

second equation by d
[

1
x̄
∂x̄
∂y

]
= 0.

To obtain the corresponding infinitesimal equations, one writes x̄ = x+εu, ȳ = y+εv,
ε2 = 0. One finds v = 0, x∂u∂x = u, d

[
1
x
∂u
∂y

]
= 0. The solutions are C1x

∂
∂x + C2xy

∂
∂x .

To find G(ξ), we must write the flow in a slightly different way, i.e. write x̄, ȳ at time
t̄ with initial conditions x, y at time t. This gives x̄ = xey(t̄−t), ȳ = y, therefore ∂x̄

∂x = x̄
x ,

∂x̄
∂y = (t̄− t)x̄. By restriction to t̄ = t = a, this gives x̄

∂x = x̄
x ,

∂x̄
∂y = 0, then x̄ = cx̄, ȳ = y,

c ∈ C. The solutions of LieG(ξ) are cx ∂
∂x , c ∈ C.

Second method. The preceding method has two inconveniences. First, it is not obvious a
priori that the equation obtained really defines pseudogroups (the verification, here easy,
is only made a posteriori). Second, the method is very particular to equations which can
be integrated explicitly, and does not generalize much.

I will give another method, which is similar to the one used in [Ma2], Chap. IV. The
vector field ξ is the Hamiltonian field of h = y for the symplectic form σ = 1

xydx ∧ dy.
Therefore the calculation of G(ξ) is a special case of loc. cit., §IV.5. I just give the result.

The foliation is given by {dy, dx − xy dt}, with the first integral y. If we replace
dx − xy dt by ω = dx

x − y dt − t dy, we get dω = 0. Therefore, the pseudogroup (in
x, y, t) is obtained by fixing y and ω. By restriction to t = a, we obtain that G(ξ)
is defined by fixing y and dx

x ; this is equivalent to the result obtained by the first
method.

To find E(ξ) is a little more difficult. We will see later the following result: take
ϕ ∈ C(t), ϕ 6= 0, and denote by G(ξ, ϕ) the restriction to t = a (for a generic a) of the
Galois pseudogroup of the foliation of X ×C defined by ξ + 1

ϕ
∂
∂t . Then G(ξ, ϕ) ⊂ E(ξ),

with equality for ϕ “sufficiently general” (see §6, Prop. 6.2).
The foliation is defined by {dy, ω}, ω = dx

x − yϕ dt. One works as in loc. cit.
One has dω = dy ∧ ω1, ω1 = −ϕ dt, and dω1 = 0. One lifts these equations in a

suitable frame bundle, by defining ω̃ = ω + u dy, ω̃1 = ω1 − du, u ∈ C. One has again
dω̃ = dy∧ω̃1, dω̃1 = 0. Now, (dy, ω̃, ω̃1) give a prolongation of the foliation to X×Ct×Cu,
and an “admissible pseudogroup” is obtained if one fixes y, ω̃, ω̃1. It will be the Galois
pseudogroup of the prolongation if the calculation is “minimal”, i.e. if the class of ω1 in
the relative de Rham cohomology of X ×Ct/Cy is not zero. This will be the case if ϕ dt
is not exact i.e. ϕ dt 6= dψ, ψ ∈ C(t). Suppose that this is the case: then, fixing t = a, one
finds that the prolongation of G(ξ, ϕ) to X × Cu is obtained by fixing y, dxx + u dy, du.
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I leave to the reader to go down to X, and to verify that the result is the same as the
one given above.

Remark. The same method permits, more generally, by a suitable modification of [Ma2],
§IV.5, to calculate the envelope of a symplectic integrable vector field. I leave this to
people who are interested.

3. First integrals. As in §1, let X be a complex algebraic variety. I denote by C[X]
(resp. C(X)) its regular (resp. rational) functions. Let ξ be a vector field on X. I denote
by K the field of first integrals of ξ, i.e. the subfield of C(X) annihilated by ξ. Similarly,
I consider the vector field ξ + ∂

∂t on X × C, and I denote by L ⊂ C(X × C) its field of
first integrals. Obviously, K ⊂ L. One has the following result.

Proposition 3.1. The following statements are equivalent:

(i) One has L 6= K.
(ii) There exists f ∈ C(X) with ξf = 1. Furthermore L = K(t− f).

The proof was suggested to me by a remark of J. A. Weil.
(ii)⇒(i) is trivial. Now, let us suppose that ξ+ ∂

∂t admits a first integral g ∈ C(X×C)
depending effectively on t; one can write g = P

Q , P,Q ∈ C(X)[t], relatively prime (as
polynomials in t). One has (ξ + ∂

∂t )P/P = (ξ + ∂
∂t )Q/Q = c, with c ∈ C(X)[t]. Looking

at the degrees in t, one shows that, actually, c ∈ C(X).
Let P = a0 + a1t+ · · ·+ ant

n, an 6= 0. From (ξ+ ∂
∂t )P = cP , one deduces ξan = can;

therefore (ξ + ∂
∂t ) ( Pan ) = 0. Therefore P = P

an
is a first integral of ξ. The same result

holds for Q.
Now, note that ∂

∂t commutes with ξ+ ∂
∂t ; therefore the ( ∂∂t )

kP are also first integrals.
Taking k = n− 1, we get a first integral of the form t− f .

Finally, we must prove that L = K(t − f). The preceding results show that it is
sufficient to consider the first integrals which are polynomial in t. If R = a0 + · · ·+ ant

n,
an 6= 0, is such a first integral, an is a first integral by the preceding calculation. Now,
replace R by R− an(t− f)n and proceed by recurrence.

Example 3.2. Take the vector field ξ = (x + y) ∂
∂x + y ∂

∂y , corresponding to the Jordan
matrix

(
1 1
0 1

)
. One has ξ(xy ) = 1. A similar result holds for ξ = S + N , with N 6= 0

(notations of §2, iii)). On the other hand, I leave it to the reader to prove that ξf = 1
has no solution if ξ = S.

Remark 3.3. If, instead of ξ + ∂
∂t , we take ξ + ct ∂∂t , c ∈ C, the same method gives

the following result. Denote again by K (resp. L) the field of first integrals of ξ (resp.
ξ + ct ∂∂t ). Then, the following statements are equivalent

(i) L 6= K.
(ii) Let Λ = {k ∈ Z; ∃a ∈ C(X), with ξa + cka = 0}. Λ is obviously a subgroup of

Z. Then Λ 6= {0}. In that case, let ` > 0 be the generator of Λ, and let a ∈ C(X)
satisfy ξa+ c`a = 0. Then at` ∈ L, and L = K(at`).
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4. Prolongation

(i) Let, as before, E(ξ) be the envelope of ξ. I recall a method to describe it, given
in [Ca2]. For k ≥ 0, let Rk (X), or Rk , be the space of k-frames on X, i.e. of invertible
k-jets (Cn, 0) → X (n = dimX). It is a principal bundle (or “torsor”) on the group Γk
of invertible k-jets (Cn, 0) → (Cn, 0). Let X p→ U , U ⊂ Cn, and (x;x1, . . . , xn) étale
coordinates on X as in §1. Then the coordinates on Rk (U) are (xi,α), 1 ≤ i ≤ n, |α| ≤ k,
|α| = α1 + · · · + αn, with xi,0 = xi, det(xi,j) 6= 0 and Rk (X) = X×U Rk (U). On
lim
←
Rk (U), put

Di =
∑
j,d

xj,d+εi

∂

∂xj,α
and Dα = Dα1

1 · · ·Dαn
n ;

denote by the same letters the lifting of these operators to Rk (X). Now, the vector field
ξ =

∑
ai

∂
∂xi

on X has a canonical lifting Rk ξ on Rk (X). This lifting is fixed by Γk ; and,
in étale coordinates,

Rk ξ = ξ +
∑

1≤|α|≤k

Dαai
∂

∂xi,α

(see e.g. [Ol]). Then the pseudogroup E(ξ) on X is defined by a collection of closed
subvarieties Zk ⊂ J∗k (X), J∗k (X) the space of invertible jets of order k from X to X.
(Maybe after restricting X) Zk is a subgroupoid of J∗k (X). This is equivalent to giving
a Z̃k , equivalence relation in Rk stable by Γk (see [Ma1] or [Ma2]). After restricting
again X, such an equivalence relation is given by a quotient Rk

π→ Sk , and one has
Z̃k = Rk×Sk Rk (see references in loc. cit.).

But, practically by definition, Z̃k is the smallest equivalence relation on Rk for which
Rk ξ is vertical, i.e. tangent to the fibers of π. In terms of first integrals, this means the
following: if Kk is the subfield of C(Rk ) of first integrals, then Kk is the field of functions
C(Sk ). Then, E(ξ) = {Zk } can be described by the successive first integrals of the Rk ξ
(observe that a first integral of Rk ξ is also one for R` ξ, ` ≥ k).

(ii) We will now give a similar description of G(ξ). A priori, we could do the same thing
with X replaced by X×C, and ξ replaced by the family of all the multiples of ξ+ ∂

∂t . But,
as explained in [Ma2] (see I.6 to I.8), it is sufficient to work with the transverse frame
bundles of the foliation. Choosing X ×C→ C as a transverse projection, this transverse
frame bundle is identified with Rk × C.

The prolongation of the foliation to Rk × C is given by the vector field Rk ξ + ∂
∂t : to

prove that, it is sufficient to prove that the corresponding differential equations dxi,α
dt =

Dαai coincide with the variational equation of order k (cf. loc. cit. I.8), which is obvious.
Let now Z ′k ⊂ J∗k (X × C) be the equations of order k of the Galois pseudogroups of

the foliation {ξ+ ∂
∂t}. We have a description of Z ′k similar to that one of Zk . Call Ik the

subfield of C(Rk × C) of first integrals of Rk + ∂
∂t . Choosing a general a ∈ C, this field

can be identified with its restriction to C(Rk ) = C(Rk × {a}); and Z ′k is described by
Lk as Zk is by Kk .

(iii) Now, we are in a position to apply the results of §3, by just replacing ξ by Rk ξ and
X by Rk . We obtain the following result:
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Theorem 4.1. (i) We have always G(ξ) ⊂ E(ξ).
(ii) If G(ξ) 6⊂ E(ξ), there exists a k ≥ 0 such that Lk 6= Kk . In that case, there exists

an f ∈ C(Rk ) satisfying Rk (ξ)f = 1, and one has Lk = Kk (f). If this is true for k, it
is also true for ` ≥ k, with the same function f .

(I wrote Kk (f) instead of Kk (t− f); this is equivalent, f being transcendental over K;
otherwise, it would be a first integral by a classical lemma; see e.g. [Ro]).

Examples. In the linear case (Example 2(iii)) the dichotomy occurs already for k = 0.
But this is not always the case. For instance, if ξ = xy ∂

∂x the equation ξf = 0 has no
solution, but the equation (R1ξ)f = 1 has one.

Explicitly, denoting by (x, y;x1, y1, x2, y2) the coordinates on R1(X), with here
X = C2, we have

R1ξ = xy
∂

∂x
+ (x1y + xy1)

∂

∂x1
+ (x2y + xy2)

∂

∂x2
, and f =

x1

xy1
.

This reflects the fact that (by both methods) we had to make a prolongation to order
one to calculate G(ξ).

Remark 4.2. With ξ+ct ∂∂t instead of ξ = ∂
∂t , starting from Remark 3.3 and arguing as in

§4, we get the following result (with obvious notations, similar to those of Theorem 4.1).

(i) One has G(ξ, ct ∂∂t ) ⊂ E(ξ).
(ii) If G(ξ, ct ∂∂t ) 6= E(ξ), there exists a k ≥ 0 such that Lk 6= Kk , Lk the field of

first integrals of ξ + ct ∂∂t . Then 0 6= Λ =
{
k ∈ Z | ∃a ∈ C(Rk ), Rk ξa + cka = 0

}
;

let ` > 0 be the generator of Λ, and let a ∈ C(Rk ) satisfy R̀ ξa + c`a = 0. Then
Lk = Kk(at`) [= Kk(a)], and the same is true for all m ≥ k.

5. Lie algebras. Consider again ξ + ∂
∂t . It remains to analyze the relations between

LieG(ξ) and LieE(ξ) when G(ξ) 6= E(ξ).
For that purpose, we have to recall briefly the relation between Lie pseudogroups

and their Lie algebras (cf. [Ma1] or [Ma2]). Let X be a smooth C-variety, T = TX its
tangent bundle, and OX (resp. ΩX) the sheaf of regular functions (resp. 1-forms) on X.
The ingredients are as follows.

(i) Denote by Jk T the space of k-jets of sections of T , and by J∗k (X) the groupoid of
k-jets of invertible maps from X to X. Then Jk T is canonically isomorphic to the
normal bundle along the identity of J∗k (X).

(ii) Denote by Dk the sheaf of linear differential operators of order ≤ k on X, and put
D =

⋃
Dk . Then Dk is an OX -bimodule, and Jk (T ) is the vector bundle associated

to Dk ⊗OX ΩX by the contravariant correspondence “vector bundles” ↔ “coherent
sheaves” (cf. e.g. [Gr]). In particular, the sheaf Jk T of sections of Jk T is the dual
over OX of Dk ⊗OX ΩX .

(iii) Let Rk
π→ X the frame bundle of X of order k and T (Rk ) its tangent bundle. Then

the sections of Jk T are canonically isomorphic to the sections of T (Rk ) stable
by Γk (definition in §4). Localizing over X, one gets an isomorphism of sheaves
Jk T ∼ [π∗T (Rk )]Γk . Of course, one has also a similar result for the fibers over a
point a ∈ X.



ON THE ENVELOPE OF A VECTOR FIELD 245

Denoting by ρ the map Jk T → π∗T (Rk ), one has, in particular, ρ(jk ξ) = Rkξ

for a vector field ξ on X. I leave to the reader to give the explicit expression in étale
coordinates of ρ, using the expression of Rk given in §4.

Now, let Z = {Zk } be a pseudogroup on X, with Zk a closed subvariety of J∗k (X).
Restricting X if necessary, we can suppose that all the Zk are smooth, and the maps
Zk → Z̀ (0 ≤ ` ≤ k) are smooth and surjective. Let Lk = LieZk be the normal bundle
of the identity on Zk . Then Lk is a vector subbundle of Jk T , and the sections of its dual
L∗k are a quotient L∗k of Dk ⊗O Ω1; the collection of the L∗k is a D-module L∗ (similarly,
for each k ≥ 0, the first prolongation p1Lk contains Lk+1).

Let now Z̃k be the equivalence relation on Rk corresponding to Zk . Then the de-
scription of Lk in terms of Z̃k is the following: we take (locally on X) the vector fields on
Rk which are tangent to the equivalence classes of Z̃k , and are Γk -invariant (note that
Z̃k is stable by Γk ). If Z̃k is given by a projection Rk

π→ Sk , this means that we take
the vector fields on Rk which are Γk -invariant and tangent to the fibers of π.

To apply this to our situation we need one more definition. Let ξ be the given vector
field on X. To ξ we can associate Dk ξ, i.e. Dk ⊗O Ω1/P , P the sub-OX -module annihi-
lating ξ. Outside of the singularities of ξ, the dual over OX is the rank one bundle Jk ξ
generated by jk ξ over X. We denote the direct limit of Dk ξ by Dξ, and the inverse limit
of Jk ξ by Jξ. Then, the theorem is the following.

Theorem 5.1. If G(ξ) 6= E(ξ), then LieE(ξ) = LieG(ξ)⊕ Jξ.

It is sufficient to prove this for every k. Write E(ξ) = {Zk }, Zk ⊂ J∗k (X), and similarly
G(ξ) = {Z ′k }; suppose Z ′k 6= Zk . As, by definition, Zk is the smallest subgroupoid of
J∗k (X) whose Lie algebra contains jk ξ, we have jk ξ ∈ LieZk , jk ξ /∈ LieZ ′k .

On the other hand, the description of LieG(ξ) and LieE(ξ) in terms of first integrals,
and the results of §4 show that LieZ ′k has codimension one in LieZk , as vector bundles
on X. Therefore, LieZk = LieZ ′k ⊕ Jk ξ. This proves the theorem.

This result explains what we have obtained in the examples: either ξ is a solution of
LieG(ξ), and G(ξ) = E(ξ), or the solutions of LieE(ξ) are obtained by adding ξ to the
solutions of LieG(ξ).

Remark 5.2. The same result holds for ∂
∂t replaced by ct ∂∂t , with the same proof. I omit

the details.

6. Generalization. I just sketch the results. They are based on the following beautiful
result by Rosenlicht [Ro].

Theorem 6.1. Let ξ be a vector field on X as before, and take ϕ ∈ C(t), ϕ 6= 0. Denote
by η the vector field ξ + 1

ϕ
∂
∂t on X × C. Let K (resp. L) be the subfield of C(X) (resp.

C(X ×C) of first integrals of ξ (resp. η). Then K = L unless ϕ has one of the following
forms:

(i) ϕ = ψ′, ψ ∈ C(t).
(ii) ϕ = cψ

′

ψ , ψ ∈ C(t).
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Consider now the Galois pseudogroup of the foliation defined by η, and denote by
G(ξ, ϕ), its restriction to t = a, for a general value a ∈ C. Using the arguments of
prolongation of §4 and the preceding theorem, we get the following result.

Proposition 6.2. If ϕ does not belong to the exceptional cases (i) or (ii), then G(ξ, ϕ) =
E(ξ).

This is precisely the result mentioned in Example 2(iv).
It remains to analyze the exceptional cases. Suppose we are in case (i). Then we

remark that the map X × C → X × C, (x, t) 7→ (x, s = ψ(t)) maps η to the vector
field ξ + ∂

∂s . From results by Casale on the behavior of the Galois pseudogroup under
projections, it follows that G(ξ, ϕ) = G(ξ, 1) (see [Ca1]). Therefore, we are reduced to a
case already studied.

Of course, if f ∈ C(Rk ) satisfies (Rk ξ)f = 1, then f−ψ is a first integral of Rk ξ+ 1
ϕ

∂
∂t ,

or, equivalently, a differential invariant of η. But the preceding result shows that, actually,
(f − ψ) generates the “new” differential invariants of η.

The case ϕ = cψ
′

ψ is treated similarly. I omit the details.
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