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Abstract. There are many types of midconvexities, for example Jensen convexity, t-convexity,
(s, t)-convexity. We provide a uniform framework for all the above mentioned midconvexities by
considering a generalized middle-point map on an abstract space X.

We show that we can define and study the basic convexity properties in this setting.

1. Introduction. Convexity has found applications in many parts of science. The sim-
plest version of convexity is Jensen convexity (called also midconvexity). One can enu-
merate the following types of midconvexities:

(i) classical convexity in a linear space [9],
(ii) t-convexity [7],
(iii) (s, t)-midconvexities [7, 8],
(iv) (M,N)-convexity [6],
(v) metric convexity [1, 2],
(vi) convexity in Abelian groups (in particular in ZN ) [3].
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We are going to unify and study the above mentioned midconvexities in one abstract
theory. From now we assume that X is a nonempty set with multivalued operation

mX : X ×X ( X,

with possibly empty values, which satisfies

x ∈ mX(x, x) for x ∈ X. (1)

We interpret mX(x, y) as the set of middle-points between x and y. If there is no doubt
which middle-point function we have in mind we will write m instead of mX .

Example 1.1. Commonly used middle-point functions:

(i) X is a real vector space

• m(x, y) = {tx+ (1− t)y}, where t ∈ (0, 1) is fixed;

• m(x, y) = [x, y] = {tx+ (1− t)y : t ∈ [0, 1]};

• m(x, y) = {tsx+ (1− t)sy}, where t ∈ (0, 1) and s ∈ [1,∞) are fixed;

• m(x, y) = {tsx+ (1− t)sy : t ∈ [0, 1]}, where s ∈ [1,∞) is fixed;

(ii) (X, d) is a metric space

• m(x, y) = {z ∈ X : d(x, z) = td(x, y); d(z, y) = (1− t)d(x, y)}, where t ∈ [0, 1]
is fixed;

• m(x, y) = {z ∈ X : d(x, z) + d(z, y) = d(x, y)};

(iii) (X,+) is an Abelian group

• m(x, y) = {z ∈ X : 2z = x+ y};

(iv) (X,≤) is a linearly ordered set

• m(x, y) = {min(x, y)};

• m(x, y) = {max(x, y)};

• m(x, y) = {z : min(x, y) ≤ z ≤ max(x, y)};

(v) X = I where I is a subinterval of R and m(x, y) = {MI(x, y)}, where MI is a mean
on I.

Using middle-point function we will define midconvex set and prove some its char-
acteristic properties. Our aim is to show that one can build a natural convexity theory
based on middle-point functions. In particular we will present the method of determining
midconvex hull of a given set. In the last section we will define midconvex functions.

2. Midconvex sets. In this section we show how to define the natural convexity notions
based on the middle-point functions. We begin with the definition of convex set.

Definition 2.1. We say that a set W ⊂ X is mX-convex if

mX(a, b) ⊂W for a, b ∈W. (2)
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Condition (2) can be rewritten as follows

mX(W ×W ) ⊂W.

Evidently the set X is mX -convex.

Example 2.2.

(i) X = R, m(x, y) = {x+y
2 }. Then the set D of dyadic numbers is m-convex.

(ii) X = (0,∞), m(x, y) = {√xy}. Then the set of positive algebraic numbers is
m-convex.

Now we present some direct consequences of Definition 2.1.

Proposition 2.3. Intersection of a nonempty family of m-convex sets is m-convex.

Proof. Let {Wi}i∈I be a nonempty family of m-convex sets. Consider arbitrary a, b ∈⋂
i∈I Wi. Then

m(a, b) ⊂Wi for i ∈ I,

and hence
m(a, b) ⊂

⋂
i∈I

Wi.

Proposition 2.4. Let {Wi}i∈I be a nonempty family of m-convex sets directed with
respect to inclusion, i.e. such that for each i1, i2 ∈ I there exists i3 ∈ I with the property
Wi1 ⊂Wi3 , Wi2 ⊂Wi3 . Then

W :=
⋃
i∈I

Wi

is m-convex.

Proof. Consider arbitrary a, b ∈ W and choose i1, i2 ∈ I such that a ∈ Wi1 , b ∈ Wi2 .
Then we can find i3 ∈ I such that

a ∈Wi1 ⊂Wi3 , b ∈Wi2 ⊂Wi3 ,

whence we obtain
mX(a, b) ⊂Wi3 ⊂W.

Suppose that we are given a set Y ⊂ X. In a natural way we define the restriction
mX|Y : Y × Y ( Y of mX to Y by the formula

mX|Y (y1, y2) := mX(y1, y2) ∩ Y for y1, y2 ∈ Y.

One can easily observe that mX|Y is a middle-point map on Y .

Proposition 2.5. Let W ⊂ Y ⊂ X. If Y is an mX-convex subset of X and W is an
mX|Y -convex subset of Y then W is mX-convex.

Proof. Consider arbitrary w1, w2 ∈W . Since W is mX|Y -convex

mX|Y (w1, w2) = mX(w1, w2) ∩ Y ⊂W.

However, by the mX -convexity of Y and the fact that w1, w2 ∈W ⊂ Y we obtain that

mX(w1, w2) ⊂ Y.

Consequently we obtain that mX(w1, w2) = mX(w1, w2) ∩ Y = mX|Y (w1, w2) ⊂W .
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Assume that we are given nonempty sets X, Y and mX and mY satisfying (1). In the
Cartesian product X × Y we define the middle-point operation mX×Y by

mX×Y

(
(x1, y1), (x2, y2)

)
:= mX(x1, x2)×mY (y1, y2) for x1, x2 ∈ X, y1, y2 ∈ Y.

Proposition 2.6. We assume that we are given nonempty sets X, Y and operations
mX , mY satisfying (1). Let ∅ 6= V ⊂ X and ∅ 6= W ⊂ Y . Then V ×W is mX×Y -convex
if and only if V is mX-convex and W is mY -convex.

Proof. Assume that V is mX -convex and W is mY -convex. Consider arbitrary (v1, w1),
(v2, w2) ∈ V ×W . Then mX(v1, v2) ⊂ V and mY (w1, w2) ⊂W , and consequently

mX×Y

(
(v1, w1), (v2, w2)

)
= mX(v1, v2)×mY (w1, w2) ⊂ V ×W,

which proves that V ×W is mX×Y -convex.
Assume now that V ×W is mX×Y -convex. Consider arbitrary v1, v2 ∈ V , w ∈ W .

Then
mX×Y

(
(v1, w), (v2, w)

)
= mX(v1, v2)×mY (w,w) ⊂ V ×W,

and hence mX(v1, v2) ⊂ V , which proves that V is mX -convex. By the similar argumen-
tation we obtain that W is mY -convex.

Definition 2.7. Let W ⊂ X. Intersection of all mX -convex sets containing W is called
mX-convex hull of W and denoted by mXconv(W ).

Since X ism-convex it follows from Proposition 2.3 that the definition ofmXconv(W )
is well-posed. It is the smallest mX -convex set containing W .

To characterize conv(W ) we define the sequence of sets. We put

mXconv0(W ) = W,

mXconv1(W ) = mX(W ×W ),

mXconvn+1(W ) = mXconv1(mXconvn(W )) for n ∈ N0 = N ∪ {0}.

Theorem 2.8. Let W ⊂ X. Then

mXconv(W ) =
⋃

n∈N0

mXconvn(W ).

Proof. We first show that
⋃

n∈N0
mXconvn(W ) ismX -convex. Since it clearly containsW ,

this would prove by definition the inclusion mXconv(W ) ⊂
⋃

n∈N0
mXconvn(W ).

Consider arbitrary x, y ∈
⋃

n∈N0
mXconvn(W ). Since the sequence

(mXconvn(W ))n∈N0 is ascending, there exists n ∈ N0 such that x, y ∈ mXconvn(W ),
and consequently mX(x, y) ⊂ mX(mXconvn(W )) = mXconvn+1(W ).

Now we prove the converse inclusion. Since mXconv(W ) is m-convex and W ⊂
mXconv(W ) we obtain that

mXconv1(W ) ⊂ mXconv(W ),

and consequently that

mXconvn(W ) ⊂ mXconv(W ) for n ∈ N0.

The last inclusion implies that
⋃

n∈N0

convn(W ) ⊂ mXconv(W ).
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As a direct corollary from Theorem 2.8 we obtain the following result.

Corollary 2.9. If X is finite then there exists an n0 ∈ N0 such that

mXconvn0+1(W ) = mXconvn0(W ).

Then
mXconv(W ) = mXconvn0(W ).

We illustrate the above considerations.

Example 2.10. Let X = R2 with the norm ‖(x, y)‖ = max(|x|, |y|), let m be defined as
follows

m((x1, y1), (x2, y2)) =
{
(x, y) ∈ R2 :

‖(x, y)− (x1, y1)‖ = ‖(x, y)− (x2, y2)‖ = 1
2‖(x1 − x2, y1 − y2)‖

}
,

and let W = {(0, 0), (1, 0)}. Then conv1(W ) and conv2(W ) are presented in Figure 1(a)
and 1(b).

(a) (b)

Fig. 1. conv1(W ) and conv2(W )

Moreover, we have

mconv(W ) =
{
(x, y) ∈ R2 :

(x ∈ [0, 1
2 ] ∩ D, y ∈ [−x, x]) ∨ (x ∈ [ 12 , 1] ∩ D, y ∈ [x− 1, 1− x])

}
,

where D denotes the set of dyadic numbers.

Example 2.11. Let X = (R2,≺), where α is the lexicographic order, i.e.

(x1, y1) ≺ (x2, y2)⇐⇒ x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2),

let m be defined as follows

m
(
(x1, y1), (x2, y2)

)
=
{
(x, y) ∈ R2 : (x1, y1) ≺ (x, y) ≺ (x2, y2)

}
,

and let W = {(0, 0), (1, 0)}. Then conv(W ) = conv1(W ) and it is presented at Figure 2.

Now we define the notion of extreme point.
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Fig. 2.

Definition 2.12. Let W ⊂ X be an m-convex set. We say that a ∈ W is an extreme
point of W if

∀x, y ∈W a ∈ m(x, y)⇒ a = x or a = y.

The set of extreme points of m-convex set W will be denoted be extW .

Remark 2.13. Let W ⊂ X be an m-convex set. One could consider another definition
of extreme point by considering elements a ∈W for which

∀x, y ∈W a ∈ m(x, y)⇒ a = x = y. (3)

However, then for the m defined in Example 1.1 (first point) the extreme points would
not coincide with the classical case.

More precisely, as was mentioned by the referee, for X = R, m(x, y) = [x, y] and
W = [0, 1], we obtain that 0 is an extreme point of [0, 1], but the condition (3) is not
satisfied: for x = 0, y = 1 we have 0 ∈ m(0, 1) but 0 6= 1.

It occurs that contrary to our intuition even finite sets may have no extreme points.

Example 2.14. Consider the set Z3 = {0, 1, 2} with addition modulo 3 and the middle-
point function defined by

m(k, l) = {j : 2j = k + l}.

Then 0 ∈ m(1, 2), 1 ∈ m(0, 2), 2 ∈ m(0, 1) and hence Z3 has no extreme points.

3. Midconvex functions. We are going to define the notion of midconvex function.
For this purpose we need a specific class of means in R. By M we denote the set of all
functions M : R× R→ R satisfying

M(x, x) = x for x ∈ X

and the condition

∀x1, x2, y1, y2 ∈ R x1 ≤ x2, y1 ≤ y2 ⇒M(x1, y1) ≤M(x2, y2). (4)
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For a function f : W → R by epi f we denote its epigraph, i.e. we put

epi f := {(x, y) ∈W × R : y ≥ f(x)}.

Definition 3.1. Let W ⊂ X, let mX be a middle-point function in X, and let M ∈M.
We say that a function f : W → R is (mX ,M)-convex if epi f is mX × {M}-convex.

Proposition 3.2. Let W ⊂ X, let mX be a mean in X, and let M ∈ M. A function
f : W → R is (mX ,M)-convex if and only if the following conditions hold :

(i) W is mX-convex ;
(ii) f(w) ≤M(f(x1), f(x2)) for x1, x2, w ∈W , w ∈M(x1, x2).

Proof. Let f : W → R be an arbitrary function. Assume that epi f is (mX ,M)-convex.
Consider arbitrary x1, x2 ∈W . Then (x1, f(x1)), (x2, f(x2)) ∈ epi f and consequently(

mX(x1, x2),M(f(x1), f(x2))
)
⊂ epi f. (5)

Inclusion (5) implies that mX(x1, x2) ⊂W . We have proved (i).
Furthermore it results from (5) that(

w,M(f(x1), f(x2))
)
∈ epi f for w ∈ mX(x1, x2).

But it means that

M(f(x1), f(x2)) ≥ f(w) for w ∈ mX(x1, x2).

Thus we have proved that condition (ii) is valid.
Assume now that conditions (i) and (ii) are satisfied. Consider arbitrary (x1, y1),

(x2, y2) ∈ epi f . Then x1, x2 ∈W and hence by (i)

mX(x1, x2) ⊂W.

We have to prove that

(w,M(y1, y2)) ∈ epi f for w ∈ mX(x1, x2),

i.e.
M(y1, y2) ≥ f(w) for w ∈ mX(x1, x2).

Consider an arbitrary w ∈ mX(x1, x2). We have

y1 ≥ f(x1), y2 ≥ f(x2),

and hence by (4)
M(y1, y2) ≥M(f(x1), f(x2)),

whence by (ii) we obtain
M(y1, y2) ≥ f(w),

which completes the proof.

Example 3.3. Let X be a real vector space and let t ∈ (0, 1) be arbitrarily fixed. Taking
mX : X ×X → X defined by

mX(x1, x2) = {tx1 + (1− t)x2}

and M : R× R→ R defined by

M(y1, y2) = ty1 + (1− t)y2,
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by Proposition 3.2, we obtain that (mX ,M)-convexity of a function f : W → R, W ⊂ X
is equivalent to its t-convexity (in the classical sense). In particular for t = 1

2 we obtain
definition of the Jensen convex function.

If we take mX defined by

mX(x1, x2) = [x1, x2] = {sx1 + (1− s)x2 : s ∈ [0, 1]},

and M defined by
M(y1, y2) = max(y1, y2)

we obtain that (mX ,M)-convexity of a function is equivalent to its quasiconvexity (in
the classical sense).

Convex function (in the classical sense) can be defined as (mt,mt)-convex for every
t ∈ [0, 1], where

mt(x1, x2) = {tx1 + (1− t)x2}.

The next result shows that (mX ,M)-convex functions have similar properties as con-
vex (midconvex) ones.

Proposition 3.4. Let W ⊂ X be an mX-convex set and let M : R × R → R be of the
form

M(x1, x2) = tx1 + (1− t)x2

for some t ∈ [0, 1]. Then the family of all (mX ,M)-convex functions f : W → R is closed
under addition, multiplication by positive number and operation of supremum.

Proof. The proofs rely on direct applications of condition (ii) from Proposition 3.2. We
present the proof for supremum.

Let fi : w → R, i ∈ I, be any family of (mX ,M)-convex functions. By Proposition
3.2 we have for i ∈ I, x1, x2 ∈W , w ∈ mX(x1, x2)

fi(w) ≤ tfi(x1) + (1− t)fi(x2).

Hence we obtain for x1, x2 ∈W , w ∈ mX(x1, x2)

sup
i∈I

fi(w) ≤ sup
i∈I

(
tfi(x1) + (1− t)fi(x2)

)
≤ t sup

i∈I
fi(x1) + (1− t) sup

i∈I
fi(x2).

It means that the function supi∈I fi is (mX ,M)-convex.
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