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Abstract. We consider two types of Besov spaces on the closed snowflake, defined by traces

and with the help of the homeomorphic map from the interval [0, 3]. We compare these spaces

and characterize them in terms of Daubechies wavelets.

1. Introduction. In [2] we introduced two types of Besov spaces on the Koch curve. In

the same manner we can define Besov spaces on the closed snowflake SF, which is a d-set

with d = log 4
log 3 . The first possibility is to define Besov spaces Bs

pq(SF, µ) by traces

Bs
pq(SF, µ) = trµB

s+(2−d)/p
pq (R2), 1 < p <∞, 0 < q <∞, 0 < s <∞.

The second way is to use the homeomorphic map H̃ between interval [0, 3] = 3T and SF

and define B
s
pq(SF, µ) by

B
s
pq(SF, µ) =

{
f ◦ H̃−1 : f ∈ Bs

pq(3T)
}

= Bs
pq(3T) ◦ H̃−1,

where Bs
pq(3T) are 3-periodic Besov spaces.

In the present paper we consider how these types of spaces are interrelated. First we

concentrate on the case when 1 < p = q < ∞, 0 < s < 1 and then extend our result to

the case when p 6= q.

This paper is organized as follows. In Section 2 we collect the definitions and pre-

liminaries. For our purposes we slightly modify the definitions and theorems concerning

2π-periodic Besov spaces defined in [3]. We describe the trace method of defining Besov

spaces and their characterization in terms of atoms. In Section 3 we present the wavelet

characterization of the 3-periodic Besov spaces Bs
pq(3T) and then shift it to SF. Then we

compare Bs
pq(SF, µ) and B

s
pq(SF, µ). The main result is contained in Theorem 3.8.
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2. Preliminaries

2.1. Notation and basic definitions. Let N be the collection of all natural numbers

and N0 = N∪{0}. Z is the set of all integers. Let Rn be Euclidean n-space, where n ∈ N.

Put R = R1, whereas C is the complex plane. Let S(Rn) be the Schwartz space of all

complex-valued, rapidly decreasing, infinitely differentiable functions on Rn. By S′(Rn)

we denote its topological dual, the space of all tempered distributions on Rn. Lp(R
n)

with 0 < p ≤ ∞, is the standard quasi-Banach space with respect to Lebesgue measure,

quasi-normed by

‖f |Lp(R
n)‖ =

(∫

Rn

|f(x)|
p
dx

)1/p

, 0 < p <∞,

‖f |L∞(Rn)‖ = ess-sup
x∈Rn

|f(x)| .

If ϕ ∈ S(Rn) then

ϕ̂(ξ) = Fϕ(ξ) = (2π)−n/2

∫

Rn

ϕ(x)e−ixξ dx, ξ ∈ R
n,

denotes the Fourier transform of ϕ. The inverse Fourier transform is given by

ϕ∨(x) = F
−1ϕ(x) = (2π)−n/2

∫

Rn

ϕ(ξ)eixξ dξ, x ∈ R
n.

One extends F and F
−1 in the usual way from S to S′. Namely, for f ∈ S′(Rn),

Ff(ϕ) = f(Fϕ), ϕ ∈ S(Rn).

Let ϕ0 ∈ S(Rn) with

ϕ0(x) = 1, |x| ≤ 1 and ϕ0(x) = 0, |x| ≥
3

2
, (1)

and let

ϕk(x) = ϕ0(2
−kx) − ϕ0(2

−k+1x), x ∈ R
n, k ∈ N. (2)

Then, since

1 =

∞∑

j=0

ϕj(x) for all x ∈ R
n, (3)

the ϕj form a dyadic resolution of unity in Rn. According to the Paley-Wiener-Schwartz

theorem,
(
ϕkf̂

)∨
is an entire analytic function on Rn for any f ∈ S′(Rn). In particular,(

ϕkf̂
)∨

(x) makes sense pointwise.

Definition 2.1. Let ϕ = {ϕj}
∞

j=0 be the dyadic resolution of unity according to (1)–(3),

s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and

‖f |Bs
pq(R

n)‖ϕ =

( ∞∑

j=0

2jsq‖
(
ϕkf̂

)∨
|Lp(R

n)‖q

)1/q

(with the usual modification if q = ∞). Then the Besov space Bs
pq(R

n) consists of all

f ∈ S′(Rn) such that ‖f |Bs
pq(R

n)‖ϕ <∞, [4].
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2.2. Trace spaces Bs

pq
(Γ, µ)

Definition 2.2. A measure µ in Rn is called Radon if all Borel sets are µ-measurable

and

• µ(K) <∞ for compact sets K ⊂ Rn,

• µ(V ) = sup {µ(K) : K ⊂ V is compact} for open sets V ⊂ Rn,

• µ(A) = inf {µ(V ) : A ⊂ V, V is open} for A ⊂ Rn.

Definition 2.3. A compact set Γ in R
n is called a d-set with 0 < d < n if there is a

Radon measure µ in R
n with support Γ such that for some positive constants c1 and c2,

c1r
d ≤ µ(B(γ, r)) ≤ c2r

d, γ ∈ Γ, 0 < r < 1, 0 < d < n. (4)

where B(x, r) is a ball in Rn centred at x ∈ Rn and of radius r > 0.

If Γ is a d-set, then the restriction to Γ of the d-dimensional Hausdorff measure Hd

satisfies (4) and any measure µ satisfying (4) is equivalent to Hd|Γ. A consequence of this

is that the Hausdorff dimension of Γ is d.

Lp(Γ, µ) with 0 < p ≤ ∞, is the standard quasi-Banach space (Banach when p ≥ 1)

with respect to measure µ, quasi-normed by

‖f |Lp(Γ, µ)‖ =

(∫

Γ

|f(γ)|p µ(dγ)

)1/p

, 0 < p ≤ ∞,

with usual modification when p = ∞.

Definition 2.4. Let µ be a Radon measure in Rn. Let

s > 0, 1 < p <∞, 0 < q <∞. (5)

Let for some c > 0,
∫

Γ

|ϕ(γ)| µ(dγ) ≤ c‖ϕ|Bs
pq(R

n)‖ for all ϕ ∈ S(Rn). (6)

Then the trace operator trµ,

trµ : Bs
pq(R

n) →֒ L1(Γ, µ),

is the completion of the pointwise trace (trµ ϕ)(γ) = ϕ(γ), ϕ ∈ S(Rn). Furthermore, the

image of trµ is denoted by trµB
s
pq(R

n) and is quasi-normed by

‖g| trµB
s
pq(R

n)‖ = inf
{
‖f |Bs

pq(R
n)‖ : trµ f = g

}
.

Remark 2.5. The above definition is justified since S(Rn) is dense in Bs
pq(R

n) with (5).

We refer to [4], Theorem 2.3.3, p. 48. Due to (6), the trace of f is independent of the

approximation of f in Bs
pq(R

n) by S(Rn)-functions.

Definition 2.6. Let Γ be a d-set in Rn. Let s > 0, 1 < p <∞, 0 < q <∞. Then

Bs
pq(Γ, µ) = trµB

s+(n−d)/p
pq (Rn).

The following assertion is covered by Theorem 3, p. 155 in [1], we also refer to

[5, Section 1.17.2].
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Theorem 2.7. Let Γ be a compact d-set in Rn with 0 < d < n and let µ be a corresponding

Radon measure. Let 0 < s < 1, 1 < p <∞, 1 ≤ q ≤ ∞, and let trµ be the trace operator.

Then there is a common linear and bounded extension operator extµ with

extµ : Bs
pq(Γ, µ) →֒ Bs+(n−d)/p

pq (Rn) (7)

and

trµ ◦ extµ = id (identity in Bs
pq(Γ, µ)). (8)

2.3. Atomic characterizations of Bs

pq
(Γ, µ). Besov spaces on d-sets Bs

pq(Γ, µ) with

0 < s < 1 and 1 < p = q < ∞ can be characterized in terms of intrinsic building blocks,

namely atoms.

Let

Γδ =
⋃

γ∈Γ

B(γ, δ), δ > 0,

where

B(γ, δ) = {x ∈ R
n : |x− γ| ≤ δ} , (9)

be a δ-neighbourhood of Γ. Let ε > 0 be fixed. Let for j ∈ N0,

{γj,k}
Mj

k=1 ⊂ Γ (10)

be a lattice of points with the following properties:

• For some c1 > 0

|γj,k1
− γj,k2

| ≥ c12
−εj , j ∈ N0, k1 6= k2. (11)

• For some j0 ∈ N, some c2 > 0 and δj = c22
−εj ,

Γδj
⊂

Mj⋃

k=1

B(γj,k, 2
−ε(j+2j0)), j ∈ N0, (12)

where B(γj,k, 2
−ε(j+2j0)) are given by (9).

Definition 2.8. Let Γ be a d-set in Rn. Let

ε > 0, 1 < p <∞, 0 < s < 1.

Let

BΓ
j,k = {γ ∈ Γ : |γ − γj,k| ≤ 2−εj}, j ∈ N0, k = 1, . . . ,Mj , (13)

be the intersection of a ball in Rn with Γ, where the lattices {γj,k}
Mj

k=1 have the same

meaning as in (10)–(12). Then a Lipschitz-continuous function ajk on Γ is called an

(s, p)∗-atom, more precisely an (s, p)∗-ε-atom, if for j ∈ N0 and k = 1, . . . ,Mj ,

supp ajk ⊂ BΓ
j,k,

|ajk(γ)| ≤ cHd(BΓ
j,k)s/d−1/p, γ ∈ Γ,

and

|ajk(γ) − ajk(δ)| ≤ cHd(BΓ
j,k)(s−1)/d−1/p |γ − δ|

with γ, δ ∈ Γ.
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Now we can formulate an intrinsic atomic decomposition of the trace spaces Bs
pp(Γ, µ).

Theorem 2.9. Let 1 < p <∞, and 0 < s < 1. Let ε > 0. Then Bs
pp(Γ, µ) is the collection

of all f ∈ L1(Γ, µ) which can be represented as

f(γ) =
∞∑

j=0

Mj∑

k=1

λk
jajk(γ), γ ∈ Γ, (14)

where

‖λ‖ =

( ∞∑

j=0

Mj∑

k=1

∣∣λk
j

∣∣p
)1/p

<∞,

ajk are (s, p)-ε-atoms and (14) converges absolutely in L1(Γ, µ). Furthermore,

‖f |Bs
pp(Γ, µ)‖ ∼ inf ‖λ‖

where infimum is taken over all admissible representations (14), [5, Chapter 8.1.3].

2.4. Periodic Besov spaces. The theory of periodic Besov spaces may be found in [3].

We slightly modify the definitions and theorems given there to consider 3-periodic func-

tions.

Let

T = {x ∈ R : 0 ≤ x ≤ 1},

where the points 0 and 1 are identified. Let

3T = {x ∈ R : 0 ≤ x ≤ 3}

with the points 0 and 3 being identified. We can interpret 3T as a circle of radius 3
2π with

the centre at the origin. We define the distance ρ(x, y) between two points x, y ∈ 3T as

the length of the shortest arc on the circle connecting them, i.e.

ρ(x, y) = min{|x− y| , 3 − |x− y|}. (15)

By D(3T) we denote the collection of all complex-valued infinitely differentiable func-

tions on 3T. The topology in D(3T) is generated by the family of semi-norms

‖ϕ‖α = sup
x∈3T

|Dαϕ(x)| , α ∈ N0.

D′(3T) is the class of all continuous linear functionals on D(3T). The continuity of a

linear functional f on D(3T) means that there exist N ∈ N and cN > 0 such that

|f(ϕ)| ≤ cN
∑

α≤N

‖ϕ‖α,

for all ϕ ∈ D(3T).

Let 0 < p ≤ ∞. Lp(3T) is the standard quasi-Banach space with respect to Lebesgue

measure, quasi-normed by

‖f |Lp(3T)‖ =

(∫ 3

0

|f(x)|p dx

)1/p

,
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with the usual modification if p = ∞. If 1 ≤ p ≤ ∞ then f ∈ Lp(3T) can be interpreted

in a unique way as an element of D′(3T) by

f(ϕ) =

∫ 3

0

f(x)ϕ(x) dx, ϕ ∈ D(3T). (16)

Consequently, for 1 ≤ p ≤ ∞ we have

D(3T) ⊂ Lp(3T) ⊂ D′(3T), (17)

where “⊂” here and further on means the topological embedding.

Let f ∈ D′(3T). Then the numbers

f̂(k) =
1

3
f(e−2πikx/3), k ∈ Z,

are said to be the Fourier coefficients of f . If f ∈ Lp(3T), 1 ≤ p ≤ ∞, then (16), (17)

imply that

f̂(k) =
1

3

∫ 3

0

f(x)e−2πikx/3 dx, k ∈ Z.

Any f ∈ D′(3T) can be represented as

f =
∑

k∈Z

ake
2πikx/3, x ∈ 3T (convergence in D′(3T)), (18)

where the Fourier coefficients {ak} ⊂ C are of at most polynomial growth,

|ak| ≤ c (1 + |k|)
κ
, for some c > 0, κ > 0 and all k ∈ Z.

Definition 2.10. Let ϕ = {ϕj}
∞

j=0 be a dyadic resolution of unity in R according to

(1)–(3), s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and

‖f |Bs
pq(3T)‖ =

( ∞∑

j=0

2jsq
∥∥∥
∑

k∈Z

ϕj

(2πk

3

)
ake

2πikx/3|Lp(3T)
∥∥∥

q
)1/q

(with the usual modification if q = ∞). Then the Besov space Bs
pq(3T) consists of all

f ∈ D′(3T) such that ‖f |Bs
pq(3T)‖ <∞, [3, Chapter 3].

3. Besov spaces on the snowflake. Three Koch curves clipped together form the

snowflake curve SF, see Figure 1. Due to the isomorphism H between [0, 1] and the Koch

curve Γ, described in [2], we may establish isomorphism H̃ between [0, 3] and SF. The

snowflake is a d-set with d = log 4
log 3 . Let µ be chosen in such a way that it is the image of

the Lebesgue measure under H̃ .

Our approach to defining Besov spaces on the snowflake is the same as in [2]. We start

with the same restrictions on the parameters

0 < s < 1, 1 < p = q <∞

and then extend our result to the case when p 6= q.

3.1. New periodic wavelets on T and R. Let Cu(R), u ∈ N, denote the collec-

tion of all complex-valued continuous functions on R having continuous bounded deriva-

tives up to order u inclusively. Let ψF ∈ Cu(R) and ψM ∈ Cu(R) be a father and a
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Fig. 1. The snowflake

mother Daubechies wavelet on R, respectively. Since 0 < s < 1 it is enough to consider

ψF ∈ C1(R) and ψM ∈ C1(R). Define ψk
j by

ψk
j (x) =

{
ψF (x− k), j = 0, k ∈ Z,

2(j−1)/2ψM (2j−1x− k), j ∈ N, k ∈ Z.
(19)

Then {ψk
j }j∈N0,k∈Z is an orthonormal basis in L2(R). We transform the wavelet basis of

L2(R) into a wavelet basis of L2(3T) by periodizing each member of the basis.

Let L ∈ N. One can replace ψF and ψM by

ψL
F (·) = ψF (2L·), ψL

M (·) = ψM (2L·),

ψk
j by

ψ
L,k
j (·) = 2L/2ψk

j (2L·). (20)

We choose and fix L such that

suppψL
F ⊂

{
x : |x| <

1

2

}
, suppψL

M ⊂
{
x : |x| <

1

2

}
. (21)

Then

suppψL,0
j ⊂ {x : |x| < 2−j}, j ∈ N.

Let

N = sup
x∈R

|ψ′
F (x)| , M = sup

x∈R

|ψ′
M (x)| .

ψF and ψM are Lipschitz-continuous functions. For the functions ψL,k
j defined by (19)
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and (20) we have
∣∣∣ψL,k

0 (x) − ψ
L,k
0 (y)

∣∣∣ ≤ 23L/2N |x− y| , x, y ∈ R,
∣∣∣ψL,k

j (x) − ψ
L,k
j (y)

∣∣∣ ≤ 23(j+L−1)/2M |x− y| , j ∈ N, x, y ∈ R.

We construct 3-periodic counterparts of ψL,k
j by the procedure

ψ
L,k
j,3per(x) =

∞∑

l=−∞

ψ
L,k
j (x+ 3l). (22)

Define ψL,k,3per
j on 3T by

ψ
L,k,3per
j (x) = ψ

L,k
j,3per(x), x ∈ 3T.

Let
P

3
0 =

{
k ∈ Z : 0 ≤ k ≤ 3 · 2L − 1

}

P
3
j =

{
k ∈ Z : 0 ≤ k ≤ 3 · 2j+L−1 − 1

}
, j ∈ N.

Then for j ∈ N0 there exists a set of points {xj,k}k∈P
3

j
⊂ 3T such that

suppψL,k,3per
0 ⊂ {x ∈ 3T : ρ(x, x0,k) < 1

2} = B3T

0,k,

suppψL,k,3per
j ⊂ {x ∈ 3T : ρ(x, xj,k) < 2−j} = B3T

j,k.

Recall that ρ(·, ·) is the metric on 3T given by (15). For the points x, y ∈ B3T

j,k, j ∈ N0,

k ∈ P
3
j , ∣∣∣H̃(x) − H̃(y)

∣∣∣ ∼ ρ(x, y)1/d.

Similarly to Proposition 1.34 in [6] one gets that
{
ψ

L,k,3per
j : j ∈ N0, k ∈ P

3
j

}

is an orthonormal basis in L2(3T). We simplify the notation and omit L in ψL,k,3per
j .

To characterize periodic Besov spaces in terms of wavelets we first introduce the

corresponding sequence spaces.

Definition 3.1. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Then bs,3per
pq is the collection of

all sequences

µ =
{
µk

j ∈ C : j ∈ N0, k ∈ P
3
j

}

such that

‖µ|bs,3per
pq ‖ =

( ∞∑

j=0

2j(s−1/p)q
( ∑

k∈P3

j

∣∣µk
j

∣∣p
)q/p

)1/q

<∞.

Theorem 3.2. Let {ψk,3per
j } be the orthonormal basis in L2(3T). Let 0 < p ≤ ∞, 0 <

q ≤ ∞ and 0 < s < 1. Let f ∈ D′(3T). Then f ∈ Bs
pq(3T) if and only if it can be

represented as

f =

∞∑

j=0

∑

k∈P3

j

µk
j 2−(j+L)/2ψ

k,3per
j , µ ∈ bs,3per

pq ,
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unconditional convergence being in D′(3T) and in any space Bσ
pq(3T) with σ < s. Fur-

thermore, this representation is unique,

µk
j = 2(j+L)/2

∫ 3

0

f(x)ψk,3per
j (x) dx,

and

I : f →
{
µk

j , j ∈ N0, k ∈ P
3
j

}

is an isomorphic map of Bs
pq(3T) onto the sequence space bs,3per

pq . If, in addition, p <∞,

q <∞, then {ψk,per
j } is an unconditional basis in Bs

pq(3T).

Remark 3.3. This assertion is the counterpart of Theorem 1.37 in [6] for Bs
pq(3T).

Since

Bs
pq(3T) →֒ Lp(3T)

with s, p and q satisfying (5) (see [3, Chapter 3.5.1]), we reformulate Theorem 3.2 with

additional restrictions on the parameters.

Theorem 3.4. Let {ψk,3per
j } be the above orthonormal basis in L2(3T). Let 1 < p < ∞,

0 < q < ∞ and 0 < s < 1. Let f ∈ Lp(3T). Then f ∈ Bs
pq(3T) if and only if it can be

represented as

f =

∞∑

j=0

∑

k∈P3

j

µk
j 2−(j+L)/2ψ

k,per
j , µ ∈ bs,3per

pq ,

unconditional convergence being in Lp(3T). Furthermore this representation is unique,

µk
j = 2(j+L)/2

∫ 3

0

f(x)ψk,3per
j (x) dx,

and

I : f →
{
µk

j , j ∈ N0, k ∈ P
3
j

}

is an isomorphic map of Bs
pq(3T) onto the sequence space bs,3per

pq .

3.2. Besov spaces Bs

pq
(SF, µ). Let

B
s
pq(SF, µ) =

{
f ◦ H̃−1 : f ∈ Bs

pq(3T)
}

= Bs
pq(3T) ◦ H̃−1

with

‖f ◦ H̃−1|Bs
pq(SF, µ)‖ = ‖f |Bs

pq(3T)‖.

Define ψ̃jk by

ψ̃jk(γ) = ψ
k,3per
j ◦ H̃−1(γ).

From the corresponding properties of functions ψk,3per
j and transform H̃ the properties

of ψ̃jk follow, namely:

• The system
{
ψ̃jk, j ∈ N0, k ∈ P

3
j

}
is an orthonormal basis in L2(SF, µ).

• For j ∈ N0 there is a set of points {γj,k}k∈P3

j
⊂ SF such that

supp ψ̃0k ⊂ {γ ∈ SF : |γ − γ0,k| ≤ c2−1/d} = BSF
0,k, k ∈ P

3
0,

supp ψ̃jk ⊂ {γ ∈ SF : |γ − γj,k| ≤ c2−j/d} = BSF
j,k, k ∈ P

3
j .
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• For γ, δ ∈ supp ψ̃jk

∣∣∣ψ̃jk(γ) − ψ̃jk(δ)
∣∣∣ ≤ c23j/2 |γ − δ|

d

= c23j/2 |γ − δ|d−1 |γ − δ| ≤ c2−j(−1/d−1/2) |γ − δ| .

The last inequality is due to the fact that for γ, δ ∈ BSF
j,k

|γ − δ| ≤ |γ − γj,k| + |γj,k − δ| ≤ c2−j/d.

Define ãjk by

ãjk =

{
2−L/2ψ̃jk, j = 0, k ∈ P3

j ,

2−j(s−1/p)2−(j+L−1)/2ψ̃jk, j ∈ N, k ∈ P
3
j .

Then

supp ãjk ⊂ BSF
j,k,

|ãjk(γ)| ≤ c2−j(s−1/p) ≤ cHd(BSF
j,k)s−1/p, for any γ ∈ SF,

and for any γ, δ ∈ supp ãjk

|ãjk(γ) − ãjk(δ)| ≤ c2−j(s−1/d−1/p) |γ − δ| ≤ cHd(BSF
j,k)s−1/d−1/p |γ − δ| .

According to Definition 2.8 ãjk are (sd, p)-atoms.

Theorem 3.5. Let 1 < p < ∞, 0 < q < ∞ and 0 < s < 1. Let f̃ ∈ Lp(SF, µ). Then

f̃ ∈ B
s
pq(SF, µ) if and only if it can be represented as

f̃ =

∞∑

j=0

∑

k∈P3

j

µk
j 2−(j+L)/2ψ̃jk, (23)

unconditional convergence being in Lp(SF, µ). Furthermore this representation is unique,

µk
j = 2(j+L)/2(f̃ , ψ̃jk)SF = 2(j+L)/2

∫

SF

f̃(γ)ψ̃jk(γ)µ(dγ),

and

I : f̃ →
{
µk

j , j ∈ N0, k ∈ P
3
j

}
(24)

is an isomorphic map of B
s
pq(SF, µ) onto the sequence space bs,3per

pq .

3.3. Comparison of Bs

pq
(SF, µ) and Bs

pq
(SF, µ). We have

B
s/d
pp (SF, µ) = Bs

pp(SF, µ). (25)

The inclusion from left to the right follows from Theorem 2.9 and Theorem 3.5. To get

the opposite one, we need the characterization of periodic Besov spaces in terms of first

differences, we refer to [3, Section 3.5]. The idea is the same as in [2].

To compare B
s
pq(SF, µ) and Bs

pq(SF, µ) with 0 < s < 1 and p 6= q we use the real

interpolation.

Let 0 < θ < 1, 1 < p < ∞, 0 < q < ∞, 0 < s0 < 1, 0 < s1 < 1, s0 6= s1 and

s = (1 − θ)s0 + θs1. Then from Theorem 1 in [3, Ch. 3.6.1] it follows that
(
Bs0

pp(3T), Bs1

pp(3T)
)
θ,q

= Bs
pq(3T).
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Since spaces Bs
pq(3T) are isomorphic to sequence spaces bs,3per

pq , we have
(
bs0,3per
pp , bs1,3per

pp

)
θ,q

= bs,3per
pq .

Using the isomorphic map in (24) one gets
(
B

s0

pp(SF, µ),Bs1

pp(SF, µ)
)
θ,q

= B
s
pq(SF, µ). (26)

For any d-set the following theorem holds.

Theorem 3.6. Let Γ be a d-set in Rn with 0 < d < n. Let 0 < θ < 1, 1 < p < ∞,

1 ≤ q <∞, 0 < s0 < 1, 0 < s1 < 1, s0 6= s1 and s = (1 − θ)s0 + θs1. Then
(
Bs0

pq0
(Γ, µ), Bs1

pq1
(Γ, µ)

)
θ,q

= Bs
pq(Γ, µ). (27)

Proof. We put

P = extµ ◦ trµ : Bs+(n−d)/p
pq (Rn) →֒ Bs+(n−d)/p

pq (Rn).

Then P is a linear and bounded map. From (8) it follows that

P 2 = extµ ◦ trµ ◦ extµ ◦ trµ = P.

Hence P is a projection of B
s+(n−d)/p
pq (Rn) onto PB

s+(n−d)/p
pq (Rn). By P ◦ extµ =

extµ, one gets that extµ maps Bs
pq(Γ, µ) into PB

s+(n−d)/p
pq (Rn). On the other hand, if

f ∈ PB
s+(n−d)/p
pq (Rn), then f = extµ (trµ(f)), trµ f ∈ Bs

pq(Γ). Hence extµ maps Bs
pq(Γ, µ)

onto PB
s+(n−d)/p
pq (Rn). Since trµ and extµ are linear bounded operators, one has

‖f |Bs
pq(Γ, µ)‖ ∼ ‖ extµ f |B

s+(n−d)/p
pq (Rn)‖ (28)

and it follows that

extµ : Bs
pq(Γ, µ) → PBs+(n−d)/p

pq (Rn)

is an isomorphic map.

Let (
Bs0

pq0
(Γ, µ), Bs1

pq1
(Γ, µ)

)
θ,q

= Bθ(Γ).

It is known that(
Bs0+(n−d)/p

pq0
(Rn), Bs1+(n−d)/p

pq1
(Rn)

)

θ,q
= Bs+(n−d)/p

pq (Rn). (29)

We denote the right-hand side of (29) by Bθ(R
n).

By the interpolation property for the spaces on Rn and Γ

‖f |Bθ(Γ)‖ = ‖ trµ ◦ extµ f |Bθ(Γ)‖ ≤ c‖ extµ f |Bθ(R
n)‖ ≤ c′‖f |Bθ(Γ)‖. (30)

Hence

‖f |Bθ(Γ)‖ ∼ ‖ extµ f |B
s+(n−d)/p
pq (Rn)‖. (31)

Together with (28) this leads to

‖f |Bθ(Γ)‖ ∼ ‖f |Bs
pq(Γ, µ)‖.

This completes the proof.

Remark 3.7. The proof essentially uses the way of reasoning in [5, Ch. 1.11.8].
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Using (25), (26) and (27) one gets that for 0 < s < 1, 1 < p <∞, 1 ≤ q <∞

Bs
pq(SF, µ) = B

s/d
pq (SF, µ).

Thus we may conclude that the following theorem holds.

Theorem 3.8. Let 1 < p < ∞, 1 ≤ q < ∞ and 0 < s < 1. Let f̃ ∈ Lp(SF, µ). Then

f̃ ∈ Bs
pq(SF, µ) if and only if it can be represented as

f̃ =

∞∑

j=0

∑

k∈Pj

µk
j 2−(j+L)/2ψ̃k

j ,

unconditional convergence being in Lp(SF, µ). Furthermore this representation is unique,

µk
j = 2(j+L)/2(f̃ , ψ̃k

j )SF,

and

I : f̃ →
{
µk

j , j ∈ N0, k ∈ Pj

}
(32)

is an isomorphic map of Bs
pq(SF, µ) onto the sequence space b

s/d,per
pq .
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