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Abstract. A compact set K ⊂ CN satis�es �ojasiewicz-Siciak condition if it is polynomially
convex and there exist constants B, β > 0 such that

VK(z) ≥ B(dist(z,K))β if dist(z,K) ≤ 1. (�S)

Here VK denotes the pluricomplex Green function of the set K. We cite theorems where this
condition is necessary in the assumptions and list known facts about sets satisfying inequality
(�S).

1. Introduction. Let L(CN ) denote the family of all plurisubharmonic functions in CN

of minimal growth in the in�nity, i.e. such plurisubharmonic functions u that

(u(z)− log |z|) ≤ O(1) as |z| → ∞.

Let K be a compact set in CN . We are interested in some properties of its pluricomplex

Green function VK with pole at in�nity, given by the formula

VK(z) := sup{u(z) : u ∈ L(CN ) and u|K ≤ 0}, z ∈ CN

(for the background see [Kl]). In the one-dimensional case if K is non-polar and Ω is the

unbounded component of Ĉ \K, the function VK coincides with gΩ(·,∞), where gΩ(·, ·)
is the generalized Green function of the domain Ω.

We say that a compact set K has Hölder Continuity Property if there exist constants

A,α > 0 such that

VK(z) ≤ A(dist(z,K))α if dist(z,K) ≤ 1. (HCP)
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If the inequality (HCP) is satis�ed, we write K ∈ HCP(α) or K ∈ HCP for short. This

property is equivalent to the Hölder continuity of VK in the whole space (see [Si]). There

are quite large families of sets known to satisfy the inequality (HCP) (for examples and

a rich list of references see [Pl]).

In [Ge] (see also [BG]) Gendre de�ned a �ojasiewicz-Siciak condition . A compact set

K satis�es this condition if it is polynomially convex and there exist constants B, β > 0
such that

VK(z) ≥ B(dist(z,K))β if dist(z,K) ≤ 1. (�S)

If the inequality (�S) is satis�ed, we write K ∈ �S(β) or K ∈ �S. This condition has not

been investigated as thoroughly as (HCP) and became an object of interest only recently.

Gendre needed both inequalities (HCP) and (�S) to prove a theorem on approximation

of functions in regular holomorphic Carleman classes on some compact sets. He posed an

open problem to �nd more examples of sets satisfying �ojasiewicz-Siciak condition, since

he did not know too many of them.

Throughout the paper | · | denotes the Euclidean norm in K
N (K ∈ {R,C}, N ∈

{1, 2, . . . }). By Pn(KN ) we mean the space of polynomials of N variables with coe�cients

from K and of degree not greater than n. If E is a set and f : E → C is a bounded function,

then ‖f‖E := sup{|f(z)| : z ∈ E}.

2. Approximation in Carleman classes. We say that a compact set K ⊂ C
N is

Whitney 1-regular if it is pathwise-connected and there exists a constant C > 0 such that

any two points x, y in K can be joined by a recti�able arc of length not greater than

C|x − y| (i.e. if %(x, y) denotes the geodesic distance between the points x and y, then

%(x, y) ≤ C|x− y|).
For a �xed t0 � 0 choose a function m ∈ C∞(t0,∞) such that

• the functions m, m′ and m′′ are strictly positive;

• lim
t→∞

m′(t) = +∞;

• ∃δ > 0 ∀t > t0 m′′(t) ≤ δ.

Put M(t) := em(t). If K ⊂ CN is compact and has a non-empty interior de�ne

HM (K) :=
{
f ∈ O(IntK) ∩ C∞(K) : ∃C, % > 0 ∀α ∈ NN(

|α| > t0 ⇒ ‖Dαf‖K ≤ C%|α|M(|α|)
)}
.

If m(t) := t log t, then HM (K) = O(K). To have O(K) ⊂ HM (K) we take m(t) :=
t log t+ tµ(t), where µ ∈ C∞(t0,∞) is such that

µ′ > 0, lim
t→∞

µ(t) = +∞ and ∃a : µ(t) ≤ at.

Put µ(t) := log t+ µ(t) and de�ne ω by the formula

ω(s) := log( inf
t>t0

stetµ(t)), s� 0.

We are ready to cite the result mentioned in the introduction (see [Ge, Théorème 7]

or [BG]).



�OJASIEWICZ-SICIAK CONDITION 199

Theorem 2.1. Let K be a Whitney 1-regular compact set in CN with a non-empty inte-

rior. Assume that K ∈ HCP and K ∈ �S. Then

(i) For every f ∈ HM (K)

∃C,D > 0 ∃(Pk)k∈N ⊂ Pn(CN ) : ‖f − Pk‖K ≤ Ce−Dω(k). (1)

(ii) If f ∈ C(K) satis�es (1), then f ∈ HM (K).

In the proof of this theorem a special consequence of inequalities (HCP) and (�S) was

used. We will cite it here since it gives some information about the geometrical properties

of sets satisfying these conditions.

Fix s ≥ 1. We say that a compact set K ⊂ CN is s-H convex if there exists a constant

A > 0 such that for every ε > 0 there exists a pseudoconvex open set Uε ⊂ CN with

{z ∈ CN : dist(z,K) < Aεs} ⊂ Uε ⊂ {z ∈ CN : dist(z,K) < ε}.

All convex sets are 1-H convex. Note that an s-H convex compact set admits a suitable

basis of pseudoconvex neighbourhoods. We have (see [BG] or [Ge, Lemme 16])

Proposition 2.2. Let K be a compact set in CN . If K ∈ HCP(α), K ∈ �S(β) and

s := β/α, then K is s-H convex.

3. Two types of Markov properties. A compact set K ⊂ KN is said to have the

global Markov property if there exist constants M,m > 0 such that

∀P ∈ Pn(KN ) ‖gradP‖K ≤Mnm‖P‖K .

If this condition is satis�ed, we write K ∈ GMP(m) or K ∈ GMP for short.

Put B(x0, r) := {x ∈ KN : |x− x0| ≤ r} for x0 ∈ KN and r > 0.
We say that a compact set K ⊂ RN admits the local Markov inequality if there exist

constants M > 0 and m, s ≥ 1 such that

∀x0 ∈ K ∀r ∈ (0, 1] ∀n ∈ N ∀P ∈ Pn(RN ) ∀α ∈ {0, 1, 2, . . . }N

|DαP (x0)| ≤
(Mns

rm

)|α|
‖P‖K∩B(x0,r).

If this condition is satis�ed, we write K ∈ LMI(m) or K ∈ LMI for short.
In the de�nition above Dα denotes the real partial derivative. Below we deal with the

holomorphic polynomials of one complex variable. We say that a compact set K ⊂ C has

the local Markov property if there exist constants M > 0 and m, s ≥ 1 such that

∀z0 ∈ K ∀r ∈ (0, 1] ∀n ∈ N ∀P ∈ Pn(C) ‖P ′‖K∩B(z0,r) ≤
Mns

rm
‖P‖K∩B(z0,r).

If this condition is satis�ed, we write K ∈ LMP(m) or K ∈ LMP for short.

Bos and Milman proved in [BM] that K ∈ GMP ⇐⇒ K ∈ LMI for any compact set

K ⊂ RN . A natural question whether K ∈ GMP ⇐⇒ K ∈ LMP for any compact set

K ⊂ C is the object of investigations of Biaªas-Cie» and Eggink. The answer is negative

unless we assume that K ∈ �S, as was shown by an example given in [BCE]. This fact

underlines the importance of the �ojasiewicz-Siciak condition.

Inequality (�S) is also a necessary condition for Jackson property in the complex

plane, which in its turn is an important tool in the investigations of Biaªas-Cie» and
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Eggink. If K is a compact set in C, by H∞(K) we denote the space of all functions of

the class C∞(C) which are holomorphic in an open neighbourhood of the set K. For any

δ > 0 put Kδ := {z ∈ C : dist(z,K) ≤ δ}. We say that a compact set K ⊂ C admits the

Jackson property if there exist constants c, C > 0 and s, v ≥ 1 such that

∀l ≥ 1 ∀δ ∈ (0, 1] ∀n ∈ N ∀f ∈ H∞(K) nl dist(f,Pn(C)) ≤
(Clv
δs

)l
δ−c‖f‖Kδ .

If this condition is satis�ed, we write K ∈ JP(s, v) or K ∈ JP for short.

The following two results can be found in [BCE] (see also [Eg, Theorem 8.24 and

Proposition 8.26]).

Theorem 3.1 (Jackson's theorem in the complex plane) . Let K ⊂ C be compact and

s ≥ 1. If K ∈ �S(s) and K ∈ HCP, then K ∈ JP(s, 1).

Proposition 3.2. Let K ∈ C be compact, s, v ≥ 1 and β > s. Then

• K ∈ JP(s, v) =⇒ K ∈ �S(β),
• K ∈ JP(s, 1) =⇒ K ∈ �S(s).

4. Sets in CN with (�S). Note �rst that the inequality (�S) is satis�ed for all pluripolar

compact sets because their pluricomplex Green functions are equal to plus in�nity outside

the sets.

It is not so easy to give the straightforward formula of the pluricomplex Green func-

tion. We will list now some sets for which the formulas are known.

Let ‖| · ‖| be a complex norm in CN . Put K := K(a, r) := {z ∈ CN : ‖|z−a‖| ≤ r} for
a ∈ CN and r > 0. Then K is compact, polynomially convex and (see [Kl, Example 5.1])

VK(x) = log+ ‖|z − a‖|
r

, z ∈ CN .

Therefore K ∈ �S.

Let f = (f1, . . . , fN ) : CN → C
N be a polynomial mapping. By f̂j denote the homo-

geneous part of fj of the highest degree (i.e. of degree deg(fj)). We say that f is regular

if (f̂1, . . . , f̂N )−1(0) = {0}. The set

E(f) := {z ∈ CN : |fj(z)| ≤ 1, j ∈ {1, . . . , N}}

is a polynomial polyhedron. We have (see [Kl, Corollary 5.3.2])

Proposition 4.1. If f : CN → C
N is a regular polynomial mapping, then

VE(f) = max
j∈{1,...,N}

1
deg(fj)

log+ |fj |.

Therefore E(f) ∈ �S too.

If K is a compact subset of RN = R
N +0i ⊂ CN = R

N + iRN , then K is polynomially

convex in CN (see [Kl, Lemma 5.4.1]). De�ne

h : C \ [−1, 1] 3 ζ 7→ ζ + (ζ2 − 1)1/2 ∈ {ξ ∈ C : |ξ| > 1},

where the branch of the square root is chosen so that h(t) > 1 for t > 1. Prolong the

function putting h|[−1,1] ≡ 1. We have (see [Kl, Corollary 5.4.5])

V[−1,1]N (z1, . . . , zN ) = max
j∈{1,...,N}

log |h(zj)|, z = (z1, . . . , zN ) ∈ CN .
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Hence [−1, 1]N ∈ �S. Furthermore, if B := {x ∈ RN : |x| ≤ 1}, then

VB(z) =
1
2

log h(|z|2 + |z2
1 + . . .+ z2

N − 1|), z = (z1, . . . , zN ) ∈ CN ,

(see [Kl, Theorem 5.4.6]). Thus B ∈ �S too.

Let us �nally note the following observations which can lead to constructions of some

other examples.

Proposition 4.2. Let a, b ∈ N, the sets E ⊂ Ca and F ⊂ Cb be compact. If E ∈ �S(β1)
and F ∈ �S(β2), then E × F ∈ �S(max(β1, β2)).

Proof. Take (z, w) ∈ Ca × Cb with dist((z, w), E × F ) ≤ 1. We have

VE(z) ≥ B1(dist(z,E))β1 and VF (w) ≥ B2(dist(w,F ))β2

where B1, B2 do not depend on the choice of (z, w).

Put β := max(β1, β2) and B :=
√

2
β

min(B1, B2).
There exist z0 ∈ E and w0 ∈ F with dist(z,E) = |z − z0| and dist(w,F ) = |w − w0|.

Assume e.g. that |z−z0| ≥ |w−w0|. From [Kl, Theorem 5.1.8] it follows that VE×F (z, w) =
max(VE(z), VF (w)). Hence

VE×F (z, w) ≥ VE(z) ≥ B1|z − z0|β = B1(max(|z − z0|, |w − w0|))β

≥ B|(z, w)− (z0, w0)|β ≥ B(dist((z, w), E × F ))β .

Proposition 4.3. Let E1, . . . , Ek be compact, convex and symmetric subsets of RN with

non-empty interiors and de�ne E := E1 ∩ . . . ∩ Ek. If E1, . . . , Ek ∈ �S, then E ∈ �S.

Proof. In view of [Ba, Proposition 3.3] we have

VE = max
j∈{1,...,k}

VEj .

Hence if Ej ∈ �S(βj) for every j ∈ {1, . . . , k} and β := max{βj : j ∈ {1, . . . , k}}, then
E ∈ �S(β).

We can apply Proposition 4.3 to construct another example. Consider

K := {(x, y) ∈ R2 : |x|+ |y| ≤ 1}.

Since K = φ([−1, 1]2), where

φ : C2 3 (z, w) 7→
(z + w√

2
,
z − w√

2

)
∈ C2,

it is easy to check that K ∈ �S (because [−1, 1]2 ∈ �S as mentioned above). Therefore

by Proposition 4.3 the symmetric octagon K ∩ [−1, 1]2 belongs to �S too.

5. One-dimensional case. We start with another concrete positive example.

V[−1,1]∪[−i,i] =
1
4

log h(|z4|+ |z4 − 1|), z ∈ C,

by [Kl, Example 5.4.8], therefore [−1, 1] ∪ [−i, i] ∈ �S.

The examples from the previous section and the one mentioned here are almost all

quite regular, the sets satisfy Hölder Continuous Property. However an example given by
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Siciak shows that there exist regular sets without �ojasiewicz-Siciak property. Namely

K := {ζ ∈ C : |ζ − 2| ≤ 2} ∪ {ζ ∈ C : |ζ + 2| ≤ 2}

does not satisfy (�S) (see [BCK, Example 1.1]). However K ∈ HCP.

This example is not so surprising if one knows the following characterization. Let us

recall that a simply connected domain D in Ĉ (such that its complement has at least two

points) is a Hölder domain, if the conformal map f : {ζ ∈ C : |ζ| < 1} −→ D is Hölder

continuous up to the closed disk {ζ ∈ C : |ζ| ≤ 1} (see [Po, §4.6]). We are ready now to

state the characterization given in [BCE].

Theorem 5.1. Let K ⊂ C be compact and simply connected and let it have at least two

points. Then

K ∈ �S ⇐⇒ Ĉ \K is a Hölder domain.

For a contrast we recall now a construction of a big family of totally disconnected

compact sets satisfying �ojasiewicz-Siciak condition. Consider a family of contracting

similarities of C, i.e. the system (f1, . . . , fm) of functions fj : C → C such that there

exist constants a1, . . . , am ∈ (0, 1) with

|fj(z)− fj(w)| = aj |z − w|, z, w ∈ C, j ∈ {1, . . . ,m}.

If

f(K) :=
m⋃
j=1

fj(K), C ⊃ K compact,

then there exists a unique non-empty compact set E ⊂ C satisfying f(E) = E. This set

is called the attractor of the iterated function system (f1, . . . , fm) (for the background

see [Hu]). In [BR] the condition COSC was de�ned: we say that the iterated function

system (f1, . . . , fm) satis�es the closed open set condition , COSC for short, if there exists

an open set U such that

• fj(U) ⊂ U , j ∈ {1, . . . ,m};
• fj(U) ∩ fl(U) = ∅, j 6= l, j, l ∈ {1, . . . ,m}.

In this situation the attractor is a totally disconnected set ([BCK]) and it is uniformly

perfect ([BBRR]). It satis�es the �ojasiewicz-Siciak condition ([BCK]).

The most known example of the sets obtained in the way described above is the

classical ternary Cantor set. However this set is contained in R, therefore the fact that

it satis�es the �ojasiewicz-Siciak condition follows also from another result obtained

independently (see [BCE] or [Eg, Proposition 8.27]).

Theorem 5.2. If K ⊂ R is compact, then K ∈ �S(1).

Let now Ω be a non-empty proper open subset of C and let ∂Ω denote its boundary.

For any z0 ∈ Ω we de�ne D(z0) := {z ∈ C : |z − z0| < dist(z0, ∂Ω)}. Let a > 0. We say

that Ω is a-admissible if for every z0 ∈ Ω there exists a w0 ∈ Ω with dist(w0, ∂Ω) = a

and D(z0) ⊂ D(w0). We have (see [Ku] or [Ga])

Theorem 5.3. Let Ω be a non-empty bounded open set in C, a > 0 and u be a positive

superharmonic function on Ω. If Ω is a-admissible, then ∃B > 0 : u ≥ B dist(·, ∂Ω).
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We are ready to prove the last result.

Proposition 5.4. Let K be a regular polynomially convex compact set in C and a > 0.
If C \K is a-admissible, then K ∈ �S(1).

Proof. Take an r > 0 such that K ⊂ B(0, r) = {z ∈ C : |z| ≤ r}. Put
Ω := (C \K) ∩ {z ∈ C : |z| < r + 3}.

Then Ω is a-admissible and VK |Ω is positive and harmonic, hence we can apply Theorem

5.3.
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