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Abstract. A list of known quantum spheres of dimension one, two and three is presented.

0. Introduction. Recently, examples of quantum spheres cropped in abundance in
the literature. The goal of this note is to aid the book-keeping of these newly emerged
species by systematically comparing their basic properties.

As is customary in noncommutative geometry, these quantum spaces are described
and studied in terms of certain noncommutative algebras, generalizing the usual cor-
respondence between spaces and function algebras. Here I am concerned mainly with
‘deformations’ of the ∗-algebra of polynomials on the sphere Sn and their enveloping
C∗-algebras. The ∗-algebras are usually given in terms of generators and relations. Some
of these relations can be regarded as deformations of the commutation relations and some
as deformations of the sphere relation

∑n+1
j=1 x

2
j = 1. The classical spheres are often par-

ticular members of the family, or ‘limit’ cases. Here, by the dimension of such a quantum
sphere I understand just the number n.

In this note the examples in lowest dimensions (one, two and three) are listed (in
alphabetical order). They appeared in the literature known to me, and I do not guar-
antee that the list is complete. Most of them have a C∗-algebraic version and often the
deformation forms a continuous field of C∗-algebras. The smooth structure is described
only in a few cases but basic properties such as classical subspaces (sets of characters)
and C∗-algebraic K-groups are given most of the time.

It turns out that among basic building blocks of quantum spheres are noncommutative
tori and discs. The C∗-algebra of the noncommutative torus T 2

θ , 0 ≤ θ < 1, is generated
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by two unitaries U, V with the relation UV = e2πiθV U , see [49] for an extensive study.
It carries a natural action of the usual torus T 2 = S1×S1 and thus also of R2. The
C∗-algebra of a quantum disc Dµ,q, 0 ≤ µ ≤ 1, 0 < q ≤ 1, is generated by z with the
relation qzz∗ − z∗z = q − 1 + µ(1 − zz∗)(1 − z∗z) [31]. For 0 ≤ µ < 1 − q and for
q = 1, 0 < µ < 1, they are known [31, 52] (see also [25] and references therein) to be all
isomorphic to the Toeplitz algebra T and, in turn, also to the C∗-algebra generated by
the raising (shift) operator ej 7→ ej+1 on `2(N), [52].

All the algebras of quantum spheres considered in the sequel are unital and the algebra
unit is denoted as I. K stands for the compact operators on an infinite-dimensional
separable Hilbert space.

1. Quantum circle

1.1. Markov [34].

Generators: A,B. Relations:

A = A∗, B = B∗, A2 +B2 = I.

Classical subset: S1. K-groups: K0 = Z, K1 = 0 [40].
Remarks:

1. The universal C∗-algebra for these relations can be represented as the algebra of all
continuous 2×2 matrix-valued functions on the rectangle [0, π/2]× [0, π] satisfying
certain boundary conditions.

2. The isomorphic universal unital C∗-algebra of the quantum disc at q = −1, µ = 0
(generated by z with the relation zz∗ + z∗z = 2I) has been independently studied
in [41].

3. Note that this example does not really fit to our list because there is no deformation
parameter. However, it could be supplemented by a commutation relation, e.g.,
AB = qBA, with q = ±1. Then the case q = 1 corresponds to the classical S1

while in the case q = −1 the C∗-algebra is isomorphic to the universal C∗-algebra
of the free product of groups Z2 ∗ Z2 with K0 = Z3, K1 = 0 and the classical
subspace consisting of four points.

2. Quantum 2-spheres

2.1. Bratteli, Elliott, Evans, Kishimoto [3, 4, 5].

Generators: A,B. Parameter: −1 < λ = cos(2πθ) < 1, (0 < θ < 1/2). Relations:

A = A∗, B = B∗,

BABA =
(
4λ2 − 1

)
ABAB − 2λA2B2 + 8λ

(
1− λ2) (A2 +B2 − I),

A2B +BA2 = 2λABA+ 4(1− λ2)B,

AB2 +B2A = 2λBAB + 4(1− λ2)A.

Classical subset: ∅. K-groups: K0 = Z6, K1 = 0 [45, 32].
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Remarks:

1. Introduced, via A = U + U−1, B = V + V −1, as a fixed point algebra of the ‘flip’
automorphism σ : U 7→ U−1, V 7→ V −1 of the noncommutative torus T 2

θ .
2. Classically (for θ = 0) this is a ‘pillow’ (a smooth 2-sphere with four corners coming

form the fixed points of σ). After the deformation (for 0 < θ < 1/2) this geometry
manifests itself in K0 = Z6 (with four generators besides I and the Bott projector).

3. If λ = 1 (θ = 0) the (unital) universal C∗-algebra for the relations above is indeed
isomorphic to C(S2) because it turns out that in this case either of the last two
relations implies that AB = BA (see [3], p. 150). Then the middle relation is
spurious and S2 arises as a one point compactification of R2.

4. For irrational θ these C∗-algebras are simple, approximately finite-dimensional and
with a unique trace state.

5. A closely related (strongly Morita equivalent for θ 6= 1/2) is the crossproduct
C∗-algebra T 2

θ>/σZ2, where the generator of Z2 acts on the noncommutative torus
T 2
θ by the ‘flip’ automorphism σ : U 7→ U−1, V 7→ V −1, cf. [3, 4, 5, 32, 57]. It is

generated by three unitaries U, V,W with the relations V U = e2πiθUV , WUW =
U∗, WVW = V ∗, W 2 = I. For irrational θ, θ′ these C∗-algebras are isomorphic
iff θ = θ′ or θ = 1 − θ′. For rational θ = p/q, θ′ = p′/q′, with p, p′ and also q, q′

relatively prime, they are isomorphic iff q = q′.
6. This algebra admits other presentations [32] with three selfadjoint unitaries X,Y, Z

and the relation XY Z = e2πiθZY X, or with four selfadjoint unitaries X,Y, Z, T
and the relation XY = eπiθTZ.

2.2. Calow, Matthes [11].

Generators: A,B. Parameters: 0 < p, q < 1. Relations:

A = A∗,

B∗B − qBB∗ = (p−q)A+ (1− p)I,
AB − pBA = (1−p)B

(I −A)(BB∗ −A) = 0.

Classical subset: S1. K-groups: K0 = Z2, K1 = 0 [11].
Remarks:

1. Obtained (at the ∗-algebra level) by glueing the quantum disc D0,p with D0,q.
2. Classically (for p = 1 = q) this is a commutative ∗-algebra, which with the addi-

tional conditions ‖A‖ = 1 and ‖B‖ = 1, describes a closed cone with one vertex
and one circular edge (topologically S2). The last two conditions are automatic if
p 6= 1, q 6= 1.

3. It is not ∗-isomorphic [26], p. 6, Th. 1.4, with any of the Podleś quantum spheres
2.5. However, its universal C∗-algebra is isomorphic to the C∗-algebra of the generic
(s > 0) Podleś quantum sphere 2.5.5.

2.3. Gurevich, Leclercq, Saponov [24].

Generators: A,B. Parameters: h ≥ 0, q > 0. Relations:
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A = A∗, qB∗B + q−1BB∗ + q2(q + q−1)A2 = (q + q−1)I,

q2AB −BA = hB, BB∗ −B∗B = (1− q4)A2 + h(1 + q2)A.

Classical subset: S2 for h = 0, q = 1; S1 for h = 0, q 6= 1; a point for ±(q4 − 1)/q =
h 6= 0 and ∅ otherwise.

Remarks:

1. I have set the (radius) parameter −α = 1 in [24] by overall rescaling of the gen-
erators, which relate to those used in [24] as B = b and A = g/(1 + q2), and the
parameters as h = q−1h̄ (q is unchanged).

2. This example deforms the universal enveloping algebra of su(2) with a constrained
value of the quadratic Casimir element.

3. The C∗-algebra completion is in general not possible but can be accomplished in
particular cases.

4. The one-dimensional subfamily with h = 0 coincides with the one parameter sub-
family of equatorial quantum Podleś [48] spheres 2.5.6.

5. Another particular one-dimensional subfamily with q = 1 coincides, using the vari-
ables Z = B/

√
h2 + 4, H = A/

√
h2 + 4 and µ = h/

√
h2 + 4 (when treated as a

formal parameter) with the quantum 2-sphere of Omori, Maeda, Miyazaki, Yosh-
ioka [46]. Any member of this subfamily forms a basis of a quantum principal
U(1)-bundle in the sense of Hopf-Galois theory [7] with a total space being a for-
mal deformation of S3 by a non-central formal parameter µ, cf. Section 4.

2.4. Natsume, Olsen [42], [44].

Generators: A,B. Parameter: t ∈ R. Relations:

A = A∗, B∗B +A2 = I, BB∗ + (tBB∗ +A)2 = I, BA−AB = tBB∗B.

Classical subset: two points for t 6= 0. K-groups: K0 = Z2, K1 = 0 [44].
Remarks:

1. Motivated by Poisson geometry.
2. For t ∈ [0, 1/2[ the enveloping C∗-algebras are of type I and are isomorphic [44]

to certain extension of C2 by the crossproduct C∗-algebra C0 ( ]−1, 1[ )>/αtZ, or
equivalently by K ⊗ C(S1). Here the generator of Z acts by an automorphism αt
given by the pull-back of the homeomorphism x 7→ tx2 +x− t, ∀x ∈ ]−1, 1[ , which
is topologically conjugate to the translation by 1 on R [44].

3. They form a continuous field of C∗-algebras over [0, 1/2[, which is trivial over
]0, 1/2[. In particular they are all isomorphic for t ∈ ]0, 1/2[ . They also constitute
a strong deformation of C(S2) [44].

2.5. Podleś [48].

Generators: A,B. Parameters: 0 ≤ q < 1, 0 ≤ s ≤ 1.
Relations:

A∗ = A, BA = q2AB,

BB∗ = −q4A2 + (1− s2)q2A+ s2I, B∗B = −A2 + (1− s2)A+ s2I.
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Classical subset: a point if s=0; S1 if s∈ ]0, 1]. K-groups: K0 = Z2, K1 = 0 [36].
Remarks:

1. Discovered as homogeneous SUq(2)-spaces.
2. In order to write the relations of the whole family in a uniform way, a parameter

0 ≤ s ≤ 1 is used here. It relates to the parameter 0 ≤ c ≤ ∞ in [48] by s =
2
√
c/(1 +

√
1 + 4c) (and c = (s−1 − s)−2). Also, the Podleś generators A,B are

rescaled, iff 0 ≤ s < 1 (i.e., 0 ≤ c <∞), by 1− s2.
3. Any member of this family describes a ‘round’ quantum sphere, in the sense that

there exist Cartesian coordinates, i.e. three selfadjoint elements generating the
∗-algebra such that their squares sum up to I and all other relations are only
commutation relations. In particular they commute for q = 1.

4. The case s = 0 (i.e., c = 0) when the last two relations read BB∗ = q2A − q4A2

and B∗B = A−A2, is known as the standard Podleś sphere. It can be viewed as a
quotient sphere SUq(2)/U(1) in the spirit of the Hopf fibration (cf. Example 3.4).
For all 0 ≤ q < 1, the corresponding C∗-algebras are isomorphic to the minimal
unitization of the compacts K. This C∗-algebra can be obtained by deformation
quantization of Rieffel [50], by noting that S2 with one point removed admits an
action of R2.

5. For 0 < s ≤ 1 (i.e., 0 < c ≤ ∞) the related C∗-algebras are all isomorphic [52] to
an extension of C(S1) by K ⊕K, or an extension of the Toeplitz algebra T by K.
This C∗-algebra can be obtained as the deformation quantization of Rieffel [50] by
noting that S2 with a circle removed admits an action of R2. It can also be viewed
as the C∗-algebra of two quantum discs glued along their boundaries S1 ([52], cf.
[10, 11]), as the Cuntz-Krieger algebra of a certain graph [30], or as the quantum
double suspension of two points [30].

6. The case s = 1 (i.e., c =∞) when the last two relations read BB∗ = −q4A2+I and
B∗B = −A2 + I, is known as the equatorial Podleś sphere. It is easily seen to be
∗-isomorphic to the two-dimensional Euclidean sphere introduced in [22]. As such,
it admits a higher (even) dimensional generalization. Also, it contains the ∗-algebra
of quantum disk, which can be geometrically interpreted as collapsing this quantum
2-sphere by the reflection with respect to the equatorial plane [25]. Moreover, it
is isomorphic to the quotient of the underlying ∗-algebra of Example 3.4. (for the
parameter q2) by the relation b = b∗. The geometric meaning of this is that the
equatorial Podleś sphere embeds as an equator in SUq2(2) thought of as a quantum
3-sphere [27]. Hence for fixed q, the path 0 ≤ s ≤ 1 of Podleś spheres can be viewed
as an interpolation between the quotient sphere SUq(2)/U(1) and the embedded
(equator) 2-sphere in SUq2(2).

3. Quantum 3-spheres

3.1. Calow, Matthes [12].

Generators: a, b. Parameters: 0 < p, q < 1. Relations:

a∗a− qaa∗ = (1−q)I, b∗b− pbb∗ = (1−p)I, ab = ba, a∗b = ba∗, (I − aa∗)(I − bb∗) = 0.



42 L. DĄBROWSKI

Classical subset: S1 × S1. K-groups: K0 = Z, K1 = Z [26].
Remarks:

1. As a ∗-algebra it is obtained by glueing the quantum solid tori D0,p × S1 and
D0,q × S1.

2. As a C∗-algebra it is isomorphic to (T ⊗T )/(K⊗K). The latter is the Cuntz-Krieger
algebra of a certain graph of rank two [26].

3. Classically (for p = 1 = q) this C∗-algebra with additional conditions ‖a‖ = 1 and
‖b‖ = 1 (which are automatic if p 6= 1, q 6= 1), is isomorphic to C(S3).

4. It forms a locally trivial, globally nontrivial [12], in fact noncleft [26], quantum prin-
cipal U(1)-bundle (Hopf-Galois extension) over the quantum S2 of Example 2.2.

3.2. Connes, Dubois-Violette [16].

Generators: x0, x1, x2, x3. Parameters: π > ϕ1 ≥ ϕ2 ≥ ϕ3 ≥ 0. Relations:

x0 = (x0)∗, x1 = (x1)∗, x2 = (x2)∗, x3 = (x3)∗,

cos(ϕ1)(x0x1 − x1x0) = i sin(ϕ2 − ϕ3)(x2x3 + x3x2),

cos(ϕ2)(x0x2 − x2x0) = i sin(ϕ3 − ϕ1)(x3x1 + x1x3),

cos(ϕ3)(x0x3 − x3x0) = i sin(ϕ1 − ϕ2)(x1x2 + x2x1),

cos(ϕ2 − ϕ3)(x2x3 − x3x2) = −i sin(ϕ1)(x0x1 + x1x0),

cos(ϕ3 − ϕ1)(x3x1 − x1x3) = −i sin(ϕ2)(x0x2 + x2x0),

cos(ϕ1 − ϕ2)(x1x2 − x2x1) = −i sin(ϕ3)(x0x3 + x3x0),

(x0)2 + (x1)2 + (x2)2 + (x3)2 = I.

Classical subset: generically discrete. K-groups: will be studied in part II of [16].
Remarks:

1. This family of ∗-algebras has been obtained by requiring that the 2× 2 matrix

u =
(

x0 + ieiϕ3x3 ieiϕ1x1 + eiϕ2x2

ieiϕ1x1 − eiϕ2x2 x0 − ieiϕ3x3

)

is unitary and its entries ujk satisfy ch1/2(u) :=
∑2
j,k=1(ujk⊗u∗kj −u∗jk⊗ukj) = 0.

2. The particular one parameter subfamily, ϕ1 = ϕ2 = − 1
2θ and ϕ3 = 0, appeared in

[17]. It coincides, using the variables Z = x0+ix3,W = x1+ix2, with the particular
one parameter subfamily of Matsumoto quantum spheres 3.3, when Θ = θ is a
constant function and also with the Natsume, Olsen 3-spheres [43]. The related
C∗-algebras can be obtained as θ-deformation by noting that S3 admits an action
of the ordinary torus, cf. Section 4, and thus as a particular case of the deformation
quantization of Rieffel [50] (cf. [56, 54]). Any member of this subfamily fulfills all
the properties of a noncommutative manifold in the sense of [14] and has a higher
(odd) dimensional generalization [43].

3.3. Matsumoto [37, 38].

Generators: a pair Z,W of normal operators on a Hilbert space.
Parameters: real valued continuous functions Θ on the closed interval [0, 1].
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Relations:
ZW = e2πiΘ̂(Z∗Z)WZ , Z∗Z +W ∗W = I ,

where Θ̂(Z∗Z) stands for the self-adjoint operator obtained by the functional calculus
from the operator Z∗Z and a continuous function Θ.

Classical subset:
(
(Θ−1(Z)∩ ]0, 1[ )× T 2

)
∪
(
(Θ−1(Z) ∩ {0, 1})× S1

)
.

K-groups: K0 = Z, K1 = Z.
Remarks:

1. Obtained by glueing two quantum solid tori described by the crossproduct C∗-
algebra C(D)>/ΘZ, where the generator of Z acts on the 2-disk D as a rotation by
angle Θ(r), and r ∈ [0, 1] is the coordinate on D.

2. In the sense of [21, Definition 2.4], forms a quantum principal U(1)-bundle (Hopf
fibration) over the usual 2-sphere. This can be easily verified much in the same
way as in [26, Remark ].

3. When the function Θ is a constant number θ, the C∗-algebra generated by the
relations above is isomorphic to the universal C∗-algebra generated by two normal
operators T, S satisfying TS = e2πiθST , (I − T ∗T )(I − S∗S) = 0 and ‖T‖ = 1 =
‖S‖, introduced in [37]. Its classical subset is S1 t S1 and it has odd-dimensional
generalization due to Natsume and Olsen [43]. It coincides with the particular one
parameter subfamily ϕ1 = ϕ2 = − 1

2θ and ϕ3 = 0 of Connes, Dubois-Violette [16].

3.4. Woronowicz [58].

Generators: a, b. Parameters: q ∈ C. Relations:

ba = qab, a∗b = qba∗, aa∗ + bb∗ = I, a∗a+ |q|2bb∗ = I, bb∗ = b∗b.

Classical subset: S1 for |q| 6= 1, S1 t S1 for |q| = 1 and q 6= 1, S3 for q = 1.
K-groups: K0 = Z, K1 = Z for q > 0 [35].
Remarks:

1. Discovered as a family of compact matrix quantum groups SUq(2) for −1 ≤ q ≤ 1,
q 6= 0.

2. Here I allow the range of the parameter to q to be complex. This ‘interpolates’ be-
tween the original Woronowicz family q ∈ R, and the one-parameter subfamily |q| =
1 which coincides (if q = eiθ) with Natsume and Olsen [43] family and also with the
particular one parameter subfamily ϕ1 = ϕ2 = − 1

2θ and ϕ3 = 0 of Example 3.2 of
Connes, Dubois-Violette [16]. The transformation a 7→ a∗, b 7→ −qb, and q 7→ 1/q
defines a ∗-isomorphism for q 6= 0, hence it suffices to restrict to the range |q| ≤ 1.

3. For 0 ≤ q < 1 the members of this family are easily seen to be ∗-isomorphic to the
three dimensional Euclidean spheres introduced in [22] and also to the three di-
mensional unitary spheres introduced as quantum homogeneous spaces of SUq(n)
in [55]. It turns out that also their higher dimensional generalizations, the quantum
Euclidean spheres and the quantum unitary spheres, are ∗-isomorphic at any given
odd dimension.1

1To our knowledge, this simple fact, which was observed during a conversation with
F. Bonechi, E. Hawkins and G. Landi, has not been presented before.
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4. For all q ∈ C these ∗-algebras have a C∗-algebraic version. For q = 1 this is just
C(S3). The case q = −1 has been studied in [59]. For 0 ≤ q < 1 these C∗-algebras
are all isomorphic to a certain extension of C(S1) by C(S1)⊗K, which can also be
described as the Cuntz-Krieger algebra of a certain graph [30], or as the quantum
double suspension of the circle [30].

5. For 0 < q ≤ 1, SUq(2) forms a quantum principal U(1)-bundle (Hopf fibration)
over the Podleś quantum 2-sphere of Example 2.5 in the sense of Hopf-Galois
extensions (if s = 0) or coalgebra-Galois extensions (if s ∈ ]0, 1]), see [6], cf. [9].

6. For some further noncommutative-geometric aspects see [15] and references therein.

4. Final comments. Some finite dimensional algebras (in a sense corresponding
to zero dimensional quantum spaces but, nevertheless, possessing certain properties of
2-spheres) have also been studied. For instance, the classification [48] of SUq(2)-homoge-
neous spaces, besides the family 2.5 of Podleś quantum spheres, also includes a discrete
series of full matrix algebras MatN . It has been observed in [23] that this family of
‘quantum spheres’ can be equipped with an additional structure, notably a sequence of
injections MatN → MatN+1, which are morphisms in the category of Uq(su(2))-modules.
For q = 1, this agrees with the fuzzy-sphere philosophy of [33]. Therein, the N × N

matrix algebras are considered as U(su(2))-modules together with U(su(2))-module in-
jections that form a direct system whose limit is the algebra of polynomials on S2 [29].
One can also show that the matrix algebras converge to the sphere for the quantum
Gromov–Hausdorff distance [51]. Furthermore, these matrix algebras can be viewed as
representations of the universal enveloping algebra of sl(2) with the value N2−1

4 of the
quadratic Casimir element. The discrete family of Podleś spheres can be thought of as
the family of q-fuzzy spheres [23]. (The aforementioned injections are Uq(su(2))-linear.)

There are other examples of quantum spheres which do not fit exactly our list as they
are not deformations in our sense (families of ∗-algebras). In [46, 47] a formal deforma-
tion of S3 (as a contact manifold) is provided with a invertible non-central deformation
‘parameter’ µ, generators a, b and relations

µ = µ∗, a∗a+ b∗b = I, µ−1a− aµ−1 = −a, µ−1b− bµ−1 = −b,
ba = ab, ab∗ = (1− µ)b∗a, aa∗ − (1− µ)a∗a = µ, bb∗ − (1− µ)b∗b = µ.

This deformation yields a certain ‘smooth’ algebra admitting a U(1)-action that is princi-
pal in the sense of Hopf-Galois theory [7]. (The base space of this quantum pricipal bundle
is given by the quantum 2-sphere of Example 2.3.5.) Another example of a noncommu-
tative Hopf fibration given by a principal U(1)-action on a super 3-sphere was studied
in [18]. There are also examples of quantum complex spheres related to the Jordanian
quantum group SLh(2) [13, 60].

As far as four-dimensional quantum spheres are concerned, recently several examples,
together with instanton bundles over them, have been constructed. They indicate a wealth
even greater than that of the known one, two and three dimensional examples.

It should be mentioned that various principles were employed to proliferate the ex-
amples of quantum spheres. They were coming, e.g., from the Poisson, contact or homo-
geneous structure. We have also encountered several types of glueing and quotienting.
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One of the tools is the usual suspension operation which can be used to find links be-
tween different examples and to produce new examples of one dimension greater. Note,
for instance, that the suspension of Example 3.2.2 is just the Connes and Landi non-
commutative 4-sphere [17], while the suspension of Example 3.4 occurs in [19], (see also
[20]). A C∗-algebraic noncommutative double suspension has been mentioned in exam-
ples 2.2, 2.5 and 3.4. A kind of quantum double suspension at the ∗-algebra level, which
raises the dimension by two and yields different families of quantum 4-spheres, has been
employed in [53] and [8]. The example of a quantum 4-sphere presented in [1], with its
classical subspace being just a point, is yet another type of a double suspension [2] of
the standard Podleś quantum sphere. It is motivated by the Poisson structure. Another
method to obtain more examples is a θ-deformation of a manifold M carrying an action
of the usual torus T 2. The related C∗-algebra is constructed as the fixed-point algebra
for the diagonal action of T 2 on the tensor product of C(M) with the algebra of the
noncommutative torus T 2

θ . This is a particular instance of a more general deformation
quantization of manifolds admitting an action of R2 due to Rieffel [50]. It relates also to
the operation of twisting known it the theory of quantum groups.

However, it seems that it is yet quite premature to attempt any systematic treatment
of quantum 4-spheres, and this is certainly beyond the scope of this note.
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[28] P. M. Hajac, R. Matthes and W. Szymański, Fredholm index and noncommutative Hopf

fibrations, see http://info.fuw.edu.pl/˜pmh/access.html for the preliminary version.
[29] E. Hawkins, Quantization of equivariant vector bundles, Commun. Math. Phys. 202 (1999),

517–546.
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