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Abstract. We consider two spectral triples related to the Kronecker foliation. The corre-
sponding generalized Dirac operators are constructed from first and second order signature op-
erators. Furthermore, we consider the differential calculi corresponding to these spectral triples.
In one case, the calculus has a description in terms of generators and relations, in the other case
it is an “almost free” calculus.

1. Introduction. The notion of a spectral triple is fundamental in noncommutative
differential geometry, see [4]. It encodes the Riemannian and differential structure of a
noncommutative space as well as its dimension. Aiming at applications in physics, spec-
tral triples have been used to construct unified field theoretical models, e.g., the standard
model (see [4], [5]), and models including gravitation ([3], [13], [14]). A main achievement
in this connection was the identification of the Higgs field as a gauge field originating
from a noncommutative differential calculus on a discrete space. From the mathematical
point of view, only a few types of noncommutative spaces have been used in these ex-
amples: commutative algebras of smooth functions on a manifold [4], finite dimensional
algebras (for a classification of spectral triples in this case see [15] and [20]) and products
of both. Further examples of spectral triples have also been described explicitly for the
irrational rotation algebra and higher dimensional noncommutative tori [4], [11].

In order to formulate gauge field theories on noncommutative spaces one usually needs
explicit information about the differential calculus of the corresponding spectral triple.
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Such calculi have been analyzed in the above-mentioned cases ([4], [5], [12], [16]). In [17] it
has been shown that the extra structure of a finitely generated projective module allows
to introduce the graded algebra of differential-form-valued endomorphisms. This gives a
natural mathematical language to build unified field theoretical models in the spirit of
the Mainz-Marseille approach [7].

We remark that, using ideas from supersymmetric quantum theory, the notion of
a spectral triple itself has been modified and enriched, see [8] and [9]. This leads to
noncommutative generalizations of certain classical geometrical structures (Riemannian,
symplectic, Hermitian, Kähler, . . . ). One hopes to apply these to superconformal field
theories with noncommutative target spaces.

In the seminal paper [6] Connes and Moscovici have shown how to associate spectral
triples to crossed product algebras related to foliations. Let (M,F) be a regular foliation
of a smooth manifold M with Euclidean structures on both the corresponding distribution
and the normal bundle. Then, there is an associated spectral triple for the crossed product
algebra C∞(M)o Γ, where Γ is a group of diffeomorphisms preserving these structures.
The corresponding Dirac operator is hypoelliptic and closely related to the signature
operator of the foliated manifold (a slight modification of the standard signature operator
in differential geometry, see [10]).

In [18], we have given two examples of spectral triples related to the Kronecker foli-
ation, partly following the method of [6]. Moreover, we gave a description of the corre-
sponding differential calculi. The aim of the present paper is to give details of the proofs
of the main propositions about the differential calculi. For the convenience of the reader,
we start with a short review of the general notion of a spectral triple and of the con-
struction of such triples related to foliations by the general method of [6]. We continue
reviewing the construction of two spectral triples related to the Kronecker foliation given
in [18]. This foliation is defined by an action of R on T2 which obviously preserves natural
translation-invariant Euclidean structures on the distribution as well as on the normal
bundle. We take Γ = R and arrive at the algebra C∞(T2)oR, whose C∗-version is Morita
equivalent to the irrational rotation algebra (noncommutative torus), see [22], [11]. The
Dirac operator of the first spectral triple (which has dimension 2) is closely related to the
ordinary signature operator on T2. The construction of the second triple (of dimension
three) follows the strategy proposed in [6]. The corresponding signature operators, and
henceforth also the Dirac operators, can be diagonalized explicitly in both cases. Then
we pass to the differential calculi associated to the above spectral triples. For the triple
related to the first order signature operator the differential calculus can be completely
characterized in terms of generators and relations. The restriction to Γ = 1 leads to the
de Rham calculus on T2. The analysis of the differential calculus for the second triple
turns out to be much more involved. We show that in this case the restriction to Γ = 1
gives just the universal calculus on C∞(T2). For the case Γ = R, we conjecture that an
“almost free” calculus is obtained.

2. The spectral triple related to a foliation. For the convenience of the reader,
we recall here the definition of a spectral triple and the differential calculus related to
such a triple ([4], [11]):
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Definition 1. A spectral triple (A,H, D) consists of a ∗-algebra A, a Hilbert space
H and an unbounded selfadjoint operator D on H, such that

(i) A acts on H by a ∗-representation π : A→ B(H) (B(H)—the algebra of bounded
operators on H),

(ii) the commutators [D, π(a)], a ∈ A, are bounded and
(iii) the operator D has discrete spectrum with finite multiplicity.

A spectral triple has dimension n if the eigenvalues (counted with multiplicity) µk of |D|
fulfil limk→∞ µk/k

1/n = C 6= 0.

We will not refer to gradings or real structures usually included in the definition of a
spectral triple, nor to more general notions of dimension.

The representation π of A in B(H) can be extended to a representation π∗ : Ω(A)→
B(H) of the universal differential calculus Ω(A) by

πn
(∑

k

ak0da
k
1 · · · dakn

)
=
∑

k

π(ak0)[D, π(a1
k)] · · · [D, π(akn)].

If J0 := ⊕n kerπn, then J := J0 + dJ0 is a differential ideal, and one arrives at the
differential calculus ΩD(A),

ΩnD(A) := Ωn(A)/J.

Note that, if π is faithful, there are isomorphisms

Ω1
D(A) ' π1(Ω1(A)) (2.1)

and
Ω2
D(A) ' π2(Ω2(A))/π2(dJ1

0 ). (2.2)

Now we review briefly the procedure given in [6], which relates a spectral triple to a
regular foliation of a smooth manifold. Let M be a compact manifold with a foliation
given by an integrable distribution V ⊂ TM . The normal bundle of the foliation is N :=
TM/V , with canonical projection ρ : TM → N . Assume further that both V and N are
equipped with Euclidean fibre metrics and with an orientation (i.e., distinguished nowhere
vanishing sections ωV , ωN of the exterior bundles

∧v V ,
∧nN (v = dimV, n = dimN)).

The orientations ωV and ωN also define a nonvanishing section of
∧v V ∗ ⊗ ∧nN∗ '∧v+n T ∗M , i.e. a volume form on M . Let us consider the bundle

E =
∧
V ∗C ⊗

∧
N∗C

(complexification). The metrics on V and N give rise to Hermitian metrics on
∧
V ∗C and∧

N∗C and thus also on E. The orientations ωV and ωN can be mapped by means of the
metrics to sections γV of

∧v V ∗C and γN of
∧nN∗C which can be used, together with the

metrics, to define an analogue of the Hodge star on the exterior bundles
∧
V ∗C and

∧
N∗C.

We choose a variant of the ∗-operation such that ∗2VC = 1 and ∗2NC = 1, i.e. ∗VC and ∗NC
can be considered as Z2-grading operators (cf. [1]).

Thus, the space of sections of E has a natural inner product, and we denote by
H = L2(M,E) the Hilbert space of square integrable sections of this bundle. From now
on, we always consider complexified vector bundles, but omit the subscript C.
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In order to construct a generalized Dirac operator, a longitudinal differential dL and
a transversal differential operator dH have to be defined. The differential dL is defined
canonically by means of the Bott connection ([2]) given as the partial covariant derivative
∇ : Γ(V )× Γ(N)→ Γ(N) defined by

∇XY = ρ([X, Ỹ ]),

for X ∈ Γ(V ), Y ∈ Γ(N) and Ỹ ∈ Γ(TM) such that ρ(Ỹ ) = Y . By a standard procedure
(using the Leibniz rule and duality) ∇ is extended to a differential dL : Γ(E) → Γ(E)
defined by linear mappings Γ(

∧k
V ∗ ⊗∧lN∗)→ Γ(

∧k+1
V ∗ ⊗∧lN∗),

dLα(X0, . . . , Xk) =
∑

i=0,...,k

(−1)i∇Xi(α(X0, . . . , X̂i, . . . , Xk))

+
∑

i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

Xi ∈ Γ(V ). Since the Bott connection is flat, we have d2
L = 0.

In order to define a transversal differential operator one has to choose a subbundle
H ⊂ TM complementary to V . This defines a bundle isomorphism jH :

∧
V ∗ ⊗∧N∗ →∧

T ∗M in the following way: Let us denote by pr∗V and pr∗H the projections corresponding
to the decomposition TM∗ = V ∗ ⊕H∗, by ρH : H → N the restriction of ρ to H and by
ρ∗H its transposed map. Then jH is defined as the following composition:
∧
V ∗ ⊗

∧
N∗

id⊗∧ρ∗H−→
∧
V ∗ ⊗

∧
H∗

∧pr∗V⊗∧pr∗H−→
∧
T ∗M ⊗

∧
T ∗M

⊗→∧−→
∧
T ∗M,

where ⊗ → ∧ denotes the replacement of the tensor product by the wedge product. Now,
the transversal operator dH is obtained from the exterior differential d by transporting
with jH and projecting to a certain homogeneous component:

∧
V ∗⊗∧N∗ has an obvious

bigrading, and denoting by π(r,s) the projector to the homogeneous component of bidegree
(r, s), one defines

dHα = π(r,s+1)(j−1
H ◦ d ◦ jH(α))

for α ∈ Γ(
∧r

V ∗ ⊗ ∧sN∗). The operator dH is a graded derivation of the Z2-graded
algebra Γ(

∧
V ∗ ⊗∧N∗).

In a foliation chart, dL and dH look as follows. Let (xi, yk), i = 1, . . . , v, k = 1, . . . , n
be local coordinates of M such that xi are coordinates on the leaf for fixed yk (foliation
chart). The corresponding coordinate vector fields (∂/∂xi, ∂/∂yk) form a local frame of
TM and (∂/∂xi) a frame of V . The corresponding dual frame of T ∗M consists of the
differentials (dxi, dyk). We define θi ∈ Γ(V ∗) by θi(∂/∂xj) = δij (i, j = 1, . . . , v). It is
immediate from the definition of N that the elements nk := ∂/∂yk + V (k = 1, . . . , n)
form a local frame of N . The elements of the corresponding dual frame of N ∗ are denoted
by nk. Finally, we choose a local frame hk of the transversal space H. This frame is fixed
by assuming ρH(hk) = nk. This leads to

hk = hik
∂

∂xi
+

∂

∂yk
,

with coefficient functions hik characterizing H. Then, the elements θi1 ∧ · · · ∧ θir ⊗ nj1 ∧
· · · ∧ njs form a local frame of E, and one can show that dL and dH are given by the
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following local formulae:

dL(αi1...irj1...jsθ
i1∧· · ·∧θir⊗nj1∧· · ·∧njs) =

∂αi1...irj1...js
∂xi

θi∧θi1∧· · · θir⊗nj1∧· · ·∧njs ,

dH(αi1...irj1...jsθ
i1 ∧ · · · ∧ θir ⊗ nj1 ∧ · · · ∧ njs) =

(−1)rhk(αi1...irj1...js)θ
i1 ∧ · · · ∧ θir ⊗ nk ∧ nj1 ∧ · · · ∧ njs +

αi1...irj1...js

r∑

t=1

∂hitk
∂xl

θi1 ∧ · · · ∧ θl ∧ · · · ∧ θir ⊗ nk ∧ nj1 ∧ · · · ∧ njs , (2.3)

(where θl at position t replaces θit). The longitudinal differential dL acts as a differential in
leaf direction, whereas dH is a sum of a principal part, which differentiates in transversal
direction, and a zero order part. As examples, let us give formulae for dH acting on
functions, (1,0)-, (0,1)- and (1,1)-forms:

dHf = hk(f)nk,

dH(αiθi) = −
(
hk(αj) + αi

∂hik
∂xj

)
θj ⊗ nk,

dH(αknk) = hl(αk)nl ∧ nk,

dH(αikθi ∧ nk) = −
(
hl(αjk) + αik

∂hil
∂xj

)
θj ⊗ nl ∧ nk,

(dH(nk) = 0). For the adjoint operators d∗L and d∗H (in H) it is difficult to write down
explicit formulae. One can show

d∗Lα = − ∗V dL ∗V + term of order zero,

where ∗V is the (partial) Hodge operator related to the Euclidean metric and the orienta-
tion of V . Since d∗H lowers the N∗-degree one has for α ∈ Γ(

∧r
V ∗) ≡ Γ(

∧r
V ∗⊗∧0

N∗)

d∗Hα = 0.

Explicit formulae for d∗H become rather complicated as, e.g., the case of (0,1)-forms shows:

d∗H(αiθi) = −gklN (hk(αl)− αmΓN
m
kl + αl

(
∂hik
∂xi

+
1
2
gijV hk(gV ij)

)
, (2.4)

where gklN = gN (nk, nl), gV ij = gV (∂/∂xi, ∂/∂xj), gijV = gV (θi, θj) are the local com-
ponents of the fibre metrics (and their duals), and ΓN

m
kl are the “Christoffel symbols”

corresponding to gNkl.
In [6], using dH and dL, two differential operators are introduced by

QL = dLd
∗
L − d∗LdL, QH = dH + d∗H ,

and the mixed signature operator Q for M , acting on a form with N -degree ∂N , is defined
by

Q = QL(−1)∂N +QH . (2.5)

As noted in [6], Q is selfadjoint. Finally, a generalized Dirac operator D is defined as the
unique selfadjoint operator such that

D|D| = Q. (2.6)
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If zero is not an element of the spectrum of Q, it is given as

D = Q|Q|−1/2 = Q(Q2)−1/4, (2.7)

as shows a straightforward argument using the spectral decomposition of Q.
One motivation for choosing a second order longitudinal part is the following: the

index of the signature operator should not depend on the choice of the transversal sub-
bundle H. Usually, the index of a pseudodifferential operator only depends on its principal
symbol. However, as follows from the local formulae (2.3) and (2.4), its principal part
explicitly depends on H, the dependence being in the coefficients of the partial deriva-
tives with respect to leaf coordinates. It turns out that one can get rid of this dependence
by introducing a modified notion of pseudodifferential operators (ψDO′) which assigns
a degree 2 to transversal coordinates and a degree 1 to longitudinal ones. To have a
contribution also from QL, one has to pass to a second order operator. In [6] a homotopy
argument was given to show that this does not affect the longitudinal signature class.

Let Γ be any group of diffeomorphisms of M which preserves the distribution V and
the Euclidean metrics on both V and N . Then ψ ∈ Γ acts via the pull back as unitary
operator U∗ψ on H, whereas functions from C∞(M) act there as multiplication operators.
The crossed product algebra A := C∞(M) o Γ can be defined as the ∗-subalgebra of
B(H) generated by these two types of operators. Due to U ∗ψf = (f ◦ψ)U∗ψ every element
of A is a finite sum of elements fU∗ψ. Then we have, see [6]:

Theorem 1. (A,H, D) is a spectral triple of dimension v + 2n.

One of our main aims is to describe explicitly this spectral triple for the Kronecker
foliation of the two-torus.

3. Spectral triples for the Kronecker foliation

3.1. Crossed product algebra and Hilbert space. We consider the two-torus as the
quotient T2 = R2/2πZ2. Thus, we have natural local coordinates 0 < ϑ1, ϑ2 < 2π.
Consider the R-manifold (T2,R, ψ), with group action

ψ : T2 × R→ T2,

given by
ψ((ϑ1, ϑ2), t) = (ϑ1 + at, ϑ2 + bt),

with a, b ∈ R such that a > 0, a2 + b2 = 1 and θ = b/a being irrational. The foliation
of T2 by the orbits of ψ is called the Kronecker foliation. It is well known, see [19], that
each leaf of this foliation is diffeomorphic to R and lies dense in T2.

The coordinate transformation

x = aϑ1 + bϑ2,

y = bϑ1 − aϑ2

is orthogonal and leads to coordinates (x, y) of a foliation chart. In these coordinates, R
acts as follows:

ψ((x, y), t) = (x+ t, y).
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To be more precise, this is the lifted action of R on R2, applied to global coordinates
(x, y) obtained from global coordinates (ϑ1, ϑ2) by the orthogonal transformation.

The associated crossed product algebra

O = O(T2)o R

is the ∗-algebra generated by the unitary operators U1, U2 and Vt acting in the Hilbert
space L2(T2) given by

(U1ξ)(ϑ1, ϑ2) = eiϑ1 · ξ(ϑ1, ϑ2),

(U2ξ)(ϑ1, ϑ2) = eiϑ2 · ξ(ϑ1, ϑ2),

(Vtξ)(ϑ1, ϑ2) = ξ(ϑ1 + at, ϑ2 + bt), (3.1)

∀ξ ∈ L2(T 2). Let ekl = ei(kϑ1+lϑ2) (k, l ∈ Z) be the basis of trigonometric polynomials of
L2(T2). It follows from (3.1) that

U1ekl = ek+1,l,

U2ekl = ek,l+1,

Vtekl = ei(ak+bl)tekl. (3.2)

It is now immediate to show

Proposition 1. The unitary operators U1, U2, Vt satisfy

U1U2 = U2U1, (3.3)

VtU1 = eiatU1Vt, (3.4)

VtU2 = eibtU2Vt, (3.5)

VtVs = Vt+s, t, s ∈ R. (3.6)

Remark 1. For rational a
b = m

n , m,n relatively prime, the operators U1, U2, Vt are
also well-defined. In this case, there is an additional relation

V2π
√
m2+n2 = V0 = 1;

2π
√
m2 + n2 is the smallest value of t such that Vt = V0 = 1; any other such t is an

integer multiple of this value.

Proposition 2. The ∗-algebra O(T2) o R is isomorphic to C〈u1, u2, vt〉/J , where
C〈u1, u2, vt〉 is the free associative unital ∗-algebra generated by u1, u2 and vt, t ∈ R, and
J is the ∗-ideal generated by (3.3)–(3.6) and unitarity conditions for the generators.

Proof. See [18].

In analogy with the definition given before Theorem 1, putting M = T2 and Γ = R,
we define the crossed product

A := C∞(T2)oR (3.7)

as a ∗-subalgebra of B(L2(T2)). As noted in [18, Remark 2], A can be considered as a
topological completion of the ∗-algebra O in a natural Fréchet topology.

In our concrete case, the Hilbert space of the spectral triple of Theorem 1 can be
described as follows: Both V and N are one-dimensional, with local frames consisting each



132 R. MATTHES ET AL.

of one vector ∂/∂x and n = ∂/∂y+V respectively. Let τ and ν denote the corresponding
elements of the dual frames. Then E =

∧
V ∗ ⊗ ∧N∗ is the direct sum of four line

bundles of elements of degrees (0, 0), (1, 0), (0, 1), (1, 1), with local frames 1, τ , ν, τ ⊗ν,
respectively. The natural choice of translation invariant (under the natural action of R2

on T2) Euclidean fibre metrics makes these frame elements mutually orthogonal unit
vectors in L2(T2, E). Note that all fibre metrics that are invariant under the R-action
defining the foliation are also translation invariant under R2 (see [18, Lemma 1]). We
may identify

L2(T2, E) = L2(T 2)⊕ L2(T 2)⊕ L2(T 2)⊕ L2(T 2),

with ekl1→ (ekl, 0, 0, 0), . . . , eklτ ⊗ ν → (0, 0, 0, ekl).
Since the generators act, according to (3.1), componentwise in L2(T2, E) the crossed

product algebra of Theorem 1 coincides with (3.7).
We choose the transversal subspace H as simple as possible, i.e. we put hik = 0. Equiv-

alently, H is generated by the coordinate vector field ∂/∂y. Then the general formulae of
the foregoing section (and some easy computations for the adjoints) lead to the following
expressions:

f fτ fν fτ ⊗ ν

dL
∂f

∂x
0

∂f

∂x
τ ⊗ ν 0

dH
∂f

∂y
ν −∂f

∂y
τ ⊗ ν 0 0

d∗L 0 −∂f
∂x

0 −∂f
∂x
ν

d∗H 0 0 −∂f
∂y

∂f

∂y
τ

with f ∈ C∞(T2). To prove, e.g.,

d∗H(fτ ⊗ ν) =
∂f

∂y
τ,

we denote by (·|·) the scalar product in L2(T2, E) and observe that

(gτ |d∗H(fτ ⊗ ν)) ≡ (dH(gτ)|fτ ⊗ ν) =
(
−∂g
∂y
τ ⊗ ν

∣∣∣∣ fτ ⊗ ν
)

= −
∫
∂g(x, y)
∂y

f(x, y)dxdy =
∫
g(x, y)

∂f(x, y)
∂y

dxdy =
(
gτ

∣∣∣∣
∂f

∂y
τ

)
.

Note that all the above operators can also be written as matrix differential operators.

3.2. The first order signature operator as Dirac operator. We will first show that
(C∞(T2)oR, L2(T2, E), Q̃), with Q̃ being the linear signature operator

Q̃ = dL + d∗L + dH + d∗H ,

is a spectral triple of dimension 2. Using the foliation chart (x, y) and the local frame
{1, τ, ν, τ ⊗ ν}, this operator can be written as
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Q̃ =




0 − ∂
∂x − ∂

∂y 0
∂
∂x 0 0 ∂

∂y
∂
∂y 0 0 − ∂

∂x

0 − ∂
∂y

∂
∂x 0


 .

The eigenvalue problem for Q̃ is most easily solved by considering its square

Q̃2 =




− ∂2

∂x2 − ∂2

∂y2 0 0 0

0 − ∂2

∂x2 − ∂2

∂y2 0 0

0 0 − ∂2

∂x2 − ∂2

∂y2 0

0 0 0 − ∂2

∂x2 − ∂2

∂y2



.

In coordinates (ϑ1, ϑ2) one is immediately led to the eigenvalue equations
(
−
(
a
∂

∂ϑ1
+ b

∂

∂ϑ2

)2

−
(
b
∂

∂ϑ1
− a ∂

∂ϑ2

)2)
fj = λ2fj ,

for the four components of an eigenvector f = f1 + f2τ + f3ν + f4τ ⊗ ν of Q̃2. It is now
straightforward to see that

e1
kl =




ekl
0
0
0


 , e2

kl =




0
ekl
0
0


 , e3

kl =




0
0
ekl
0


 , e4

kl =




0
0
0
ekl




are eigenvectors of Q̃2 with the eigenvalue

λ2
kl = (ak + bl)2 + (al − bk)2 = k2 + l2.

The operator Q̃ itself acts in this basis of L2(T2, E) as follows:

Q̃(e1
kl) = (ak + bl)e2

kl + (al − bk)e3
kl,

Q̃(e2
kl) = (−ak − bl)e1

kl + (−al + bk)e4
kl,

Q̃(e3
kl) = (−al + bk)e1

kl + (ak + bl)e4
kl,

Q̃(e4
kl) = (al − bk)e2

kl − (ak + bl)e3
kl.

Thus, we have
λ±kl = ±

√
(ak + bl)2 + (al − bk)2 = ±

√
k2 + l2 (3.8)

and

e+1
kl = −i bk − al

λ+
kl

e1
kl + e3

kl + i
ak + bl

λ+
kl

e4
kl,

e+2
kl = −iak + bl

λ+
kl

e1
kl + e2

kl + i
al − bk
λ+
kl

e4
kl,

e−1
kl = e1

kl − i
ak + bl

λ+
kl

e2
kl + i

al − bk
λ+
kl

e3
kl,

e−2
kl = i

al − bk
λ+
kl

e2
kl + i

ak + bl

λ+
kl

e3
kl + e4

kl

form a complete set of eigenvectors of Q̃.
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Proposition 3. (C∞(T2)oR, L2(T2, E), Q̃) is a spectral triple of dimension 2.

Proof. See [18].

Note that the commutators of Q̃ with the generators U1 and U2 are explicitly given
by

[Q̃, U1]e1
kl = ae2

k+1,l − be3
k+1,l,

[Q̃, U1]e2
kl = −ae1

k+1,l + be4
k+1,l,

[Q̃, U1]e3
kl = be1

k+1,l + ae4
k+1,l,

[Q̃, U1]e4
kl = −be2

k+1,l − ae3
k+1,l

and

[Q̃, U2]e1
kl = be2

k,l+1 + ae3
k,l+1,

[Q̃, U2]e2
kl = −be1

k,l+1 − ae4
k,l+1,

[Q̃, U2]e3
kl = −ae1

k,l+1 + be4
k,l+1,

[Q̃, U2]e4
kl = ae2

k,l+1 − be3
k,l+1.

In order to describe the differential algebra ΩQ̃(O(T2)oR), we denote, as in formulae
(2.1) and (2.2), by π1 and π2 the extensions of π to universal one and two forms. Since
π is faithful by Proposition 2, Ω1

Q̃
(O(T2)oR) is isomorphic to π1(Ω1(O(T2)oR)), with

duj 7→ [Q̃, Uj ], dvt 7→ [Q̃, Vt], and Ω2
Q̃

(O(T2)oR) = Ω2(O(T2)oR)/(kerπ2 +d(kerπ1)) '
π2(Ω2(O(T2)oR))/π2(d(kerπ1)).

Let us first note that, under the identification L2(T2, E) ' C4 ⊗ L2(T2) given by

e1
kl 7→




1
0
0
0


⊗ekl, e

2
kl 7→




0
1
0
0


⊗ekl, e

3
kl 7→




0
0
1
0


⊗ekl, e

4
kl 7→




0
0
0
1


⊗ekl, (3.9)

U1, U2, Vt and the above commutators can be written as follows:

U1 = 1⊗ s1, U2 = 1⊗ s2, Vt = 1⊗ vabt, (3.10)

where s1ekl = ek+1,l, s2ekl = ek,l+1, vabtekl = ei(ak+bl)tekl, and

[Q̃, U1] =




0 a −b 0
−a 0 0 b

b 0 0 a

0 −b −a 0


⊗ s1, [Q̃, U2] =




0 b a 0
−b 0 0 −a
−a 0 0 b

0 a −b 0


⊗ s2. (3.11)

Using this representation, together with [s1, s2]=0, s1vabt=eiatvabts1, s2vabt=eibtvabts2,
it is easy to show

Lemma 1.
Uj [Q̃, Uk] = [Q̃, Uk]Uj , ∀j, k ∈ {1, 2}, (3.12)

Vt[Q̃, U1] = eiat[Q̃, U1]Vt, Vt[Q̃, U2] = eibt[Q̃, U2]Vt, (3.13)
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[Q̃, U1][Q̃, U2] = −[Q̃, U2][Q̃, U1]. (3.14)

[Q̃, Vt] = 0. (3.15)

Explicitly, we have

[Q̃, U1][Q̃, U2] =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


⊗ s1s2. (3.16)

Proposition 4. (i) Ω1
Q̃

(O(T2) o R) is a free left (and right) O(T2) o R-module
with basis {du1, du2}. Its bimodule structure is determined by

ujduk = dukuj , ∀j, k ∈ {1, 2}, (3.17)

vtdu1 = eiatdu1vt, vtdu2 = eibtdu2vt. (3.18)

Moreover,

dvt = 0. (3.19)

(ii) Ω2
Q̃

(O(T2) o R) is a free left (and right) O(T2) o R-module with basis {du1du2},
with

du1du2 = −du2du1. (3.20)

(iii) Ωk
Q̃

(O(T2)oR) = 0 for k ≥ 3.

Proof. Since the representation π of O(T2)oR in L2(T2, E) is faithful, the equations
(3.17), (3.18) and (3.20) follow from (3.12)–(3.14), whereas (3.19) comes from (3.15).
Now it is sufficient to show that every element of π1(Ω1(O(T2) o R)) is of the form
a1[Q̃, U1]+a2[Q̃, U2], a1, a2 ∈ π(Ω1(O(T2)oR)) and that from a1[Q̃, U1]+a2[Q̃, U2] = 0
follows a1 = a2 = 0. The first claim is immediate from the fact that π(O(T2) o R)
is generated by U1, U

∗
1 , U2, U

∗
2 , Vt and from (3.15), (3.12)–(3.14). (Note that commuta-

tors [Q̃, U∗j ] can be reduced to [Q̃, Uj ] using the Leibniz rule: From 0 = [Q̃, U∗j Uj ] =
U∗j [Q̃, Uj ] + [Q̃, U∗j ]Uj follows [Q̃, U∗j ] = −U∗j [Q̃, Uj ]U∗j . On the other hand, multiplying
[Q̃, Uj ]Uj = Uj [Q̃, Uj ] from both sides with U∗j gives U∗j [Q̃, Uj ] = [Q̃, Uj ]U∗j .) It remains
to show linear independence. Assume

∑

ij

(aijVtijU
i
1U

j
2 [Q̃, U1] + bijVt′ijU

i
1U

j
2 [Q̃, U2]) = 0,

aij , bij ∈ C, finite summation over i, j ∈ Z. Acting with this expression on the basis
vector e1

kl gives

aije
itij((k+i+1)a+(l+j)b)(ae2

k+i+1,l+j − be3
k+i+1,l+j)

= bi+1,j−1e
it′i+1,j−1((k+i+1)a+(l+j)b)(be2

k+i+1,l+j + ae3
k+i+1,l+j)

(now for fixed i, j), which means

aaije
itij((k+i+1)a+(l+j)b) − bbi+1,j−1e

it′i+1,j−1((k+i+1)a+(l+j)b) = 0,

baije
itij((k+i+1)a+(l+j)b) + abi+1,j−1e

it′i+1,j−1((k+i+1)a+(l+j)b) = 0.
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Since

det

(
aeitij((k+i+1)a+(l+j)b) −beit′i+1,j−1((k+i+1)a+(l+j)b)

beitij((k+i+1)a+(l+j)b) aeit
′
i+1,j−1((k+i+1)a+(l+j)b)

)

= (a2 + b2)ei(tij+t
′
i+1,j−1)((k+i+1)a+(l+j)b) = ei(tij+t

′
i+1,j−1)((k+i+1)a+(l+j)b) 6= 0,

this system has only the trivial solution aij = bi+1,j−1 = 0. Thus (i) is proven.
To prove (ii) note that differentiating (3.17) for j = k leads immediately to du1du1 =

du2du2 = 0. Moreover, (3.14) yields du1du2 = −du2du1, so that Ω2
Q̃

(O(T2) o R) is
generated by du1du2. It remains to show that it is freely generated. To this end we have
to determine kerπ1. From (3.12) and (3.13) it follows that kerπ1 contains the bimodule
generated by the elements ujduk − dukuj , vtdu1 − eiatdu1vt, vtdu2 − eibtdu2vt. On the
other hand, this bimodule also contains kerπ1: Let

α =
∑

artjkl,tmnqvtju
k
1u

l
2durvtmu

n
1u

q
2 ∈ kerπ1.

Using the commutation rules (3.12) and (3.13) and the basis property of the [Q̃, ui]
already proved in (i), one concludes from π1(α) = 0 that

∑
artjkl,tmnqvtj+tmu

k+n
1 ul+q2 e−i((k+1)a+lb)tm = 0, r = 1, 2.

Now, making use of the basis property of the monomials vtuk1u
l
2 (Proposition 2), one has

∑

tj+tm=T,k+n=K,l+q=L

a1
jkl,mnqe

−i((k+1)a+lb)tm = 0 (r = 1), (3.21)

and a similar equation for r = 2, for every fixed T,K,L. Now fix (for r = 1) k0, l0, tj0
and write equation (3.21) as

a1
tj0k0l0,T−tj0 ,K−k0,L−l0 =

−ei((k0+1)a+l0b)(T−tj0 ) ∑
tj 6=tj0 ,k 6=k0,l 6=l0

a1
tjkl,T−tj ,K−k,L−le

−i((k+1)a+lb)(T−tj).

Inserting this and a similar expression for r = 2 into α one obtains

α =
∑

(tj ,k,l)6=(tj0 ,k0,l0)

a1
tjkl,T−tj ,K−k,L−lvtju

k
1u

l
2du1vT−tju

K−k
1 uL−l2

−ei((k0+1)a+l0b)(T−tj0 )
∑

(tj ,k,l)6=(tj0 ,k0,l0)

a1
tjkl,T−tj ,K−k,L−lvtj0u

k0
1 u

l0
2 du1vT−tj0u

K−k0
1 uL−l02

·ei((k+1)a+lb)(T−tj) + (a similar term for r = 2).

Now, fix tj > tj0 , k > k0, l > l0, and reduce the power of u2 in front of du1 in the
first term by subtracting and adding du1u2, thus producing a term in the bimodule (with
u2du1−du1u2 in the middle) and a new term with a new e-factor of the old kind. Iterating
this procedure removes all superfluous powers of u2. One can do the same for u1 and vt
and finally ends up with an expression which turns out to be zero (up to a lot of terms all
lying in the bimodule). We leave the detailed computation to the reader. Thus we have
shown that kerπ1 is also contained in the bimodule generated by the elements (3.17) and
(3.18).
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Therefore, a general element of kerπ1 is of the form

j =
∑

akαkbk

with ak, bk ∈ O(T2)oR, αk one of the above generating elements of kerπ1. Then

π2(dj) =
∑

π(ak)π2(dαk)π(bk),

because the other terms appearing according to the Leibniz rule contain a factor π1(αk)
= 0. We have to determine π2◦d(ujduk−dukuj) = π2(dujduk+dukduj) = [Q̃, Uj ][Q̃, Uk]+
[Q̃, Uk][Q̃, Uj ]. A trivial calculation using (3.11) and (3.10) shows that [Q̃, Uj ][Q̃, Uj ] =
−U2

j , whereas [Q̃, U1][Q̃, U2] + [Q̃, U2][Q̃, U1] = 0 by (3.14). It follows that

π2(d kerπ1) = π(O(T2)oR),

and it remains to show that from π(a)[Q̃, U1][Q̃, U2] ∈ π(O(T2) o R) follows a = 0.
Indeed, this follows from the fact that algebra elements have the diagonal form (3.10)
whereas [Q̃, U1][Q̃, U2] is antidiagonal (3.16), which is preserved under multiplication with
a diagonal element π(a).

(iii) is a trivial consequence of the fact that in a form of degree ≥ 3 at least two
differentials of the same generator uj will meet to produce 0.

Note that one can define calculi Ω1
Q̃

(A) and Ω2
Q̃

(A) for the topological version A =

C∞(T2)oR ([18, Remark 4]).

3.3. The mixed signature operator. Let us now consider the mixed signature operator
Q given by formula (2.5). In matrix representation, we have

Q =




∂2

∂x2 0 ∂
∂y 0

0 − ∂2

∂x2 0 − ∂
∂y

− ∂
∂y 0 − ∂2

∂x2 0

0 ∂
∂y 0 ∂2

∂x2



.

In order to diagonalize this operator, we have to solve the eigenvalue problem

Q




f1

f2

f3

f4


 = λ




f1

f2

f3

f4


 (3.22)

with fi ∈ L2(T2, E). Q is already block-diagonal and acts in the same way in the space of
(0, 0)- and (0, 1)-forms and in the space of (1, 1)- and (1, 0)-forms. It suffices to diagonalize
one block. Defining

g = f1 + f3, h = f1 − f3,

one arrives at
∂2h

∂x2 +
∂h

∂y
= λg,

∂2g

∂x2 −
∂g

∂y
= λh.

Returning to the original coordinates (ϑ1, ϑ2), the foregoing equations read

a2 ∂
2h

∂ϑ2
1

+ 2ab
∂2h

∂ϑ1∂ϑ2
+ b2

∂2h

∂ϑ2
2
− b ∂h

∂ϑ1
+ a

∂h

∂ϑ2
= λg, (3.23)
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a2 ∂
2g

∂ϑ2
1

+ 2ab
∂2g

∂ϑ1∂ϑ2
+ b2

∂2g

∂ϑ2
2

+ b
∂g

∂ϑ1
− a ∂g

∂ϑ2
= λh. (3.24)

The ansatz
g =

∑

k,l∈Z
ηkle

i(kϑ1+lϑ2), h =
∑

k,l∈Z
χkle

i(kϑ1+lϑ2)

leads to
((a2k2 + 2abkl + b2l2)2 + (bk − al)2)χkl = λ2χkl,

which gives the eigenvalues

λkl± = ±
√

(ak + bl)4 + (bk − al)2.

One easily concludes that eigenvectors to the eigenvalues λkl± are of the form

hkl = ekl, gkl± = γkl±ekl

with

γkl± =
−(ak + bl)2 + i(al − bk)

λkl±
.

The eigenvectors of the original problem (3.22) are

f1kl± =
1
2

(gkl± + hkl) =
1
2

(1 + γkl±) ekl,

f3kl± =
1
2

(gkl± − hkl) =
1
2

(γkl± − 1) ekl,

or, written as elements of L2(T2, E),

e
(1)
kl± =

1
2
ekl ((γkl± + 1)1 + (γkl± − 1)ν) .

Since the metrics are chosen so that the frame elements 1, τ, ν, τ ⊗ ν are orthonormal,
these vectors are already orthonormal (note that |γkl±| = 1.) The same argument yields
another set

e
(2)
kl± =

1
2
ekl ((γkl± + 1)τ ⊗ ν + (γkl± − 1)τ)

of eigenvectors to the same eigenvalues λkl±. Note that the eigenvalue 0 appears only
for k = l = 0. In that case, equations (3.23) and (3.24) decouple, and we get four
independent eigenvectors 1, τ, ν, τ ⊗ ν. In order to see that these vectors together with
the e(1,2)

kl± form an orthonormal basis of L2(T2, E), it is sufficient to see that all the vectors
ekl1, eklτ, eklν, eklτ ⊗ ν are linear combinations of the foregoing vectors. This follows
from the fact that the matrix (

γkl+ + 1 γkl+ − 1
γkl− + 1 γkl− − 1

)

is always invertible (its determinant being −4γkl+).
Thus we have found the spectral decomposition of the selfadjoint operator Q. Its

unboundedness is reflected in the unboundedness of the λkl±. It is now easy to write
down also the spectral decomposition of the corresponding Dirac operator D: Applying
(2.7) for nonzero eigenvalues gives

De
(1,2)
kl± = ±

√
λkle

(1,2)
kl± ,



SIGNATURE OPERATORS AND SPECTRAL TRIPLES 139

where λkl is the positive root λkl+. Putting e
(1)
00+ = 1, e(1)

00− = ν, e
(2)
00+ = τ ⊗ ν and

e
(2)
00− = τ , the formula defines D also on the kernel of Q (cf. 2.6), and gives the spectral

decomposition of D.
The unitary operators U1, U2 and Vt act by (3.2) on the basis vectors e(1,2)

kl± as follows:

U1e
(1,2)
kl± =

1
2

{(
1 +

γkl±
γk+1,l+

)
e

(1,2)
k+1,l+ +

(
1 +

γkl±
γk+1,l−

)
e

(1,2)
k+1,l−

}
,

U2e
(1,2)
kl± =

1
2

{(
1 +

γkl±
γk,l+1,+

)
e

(1,2)
k,l+1,+ +

(
1 +

γkl±
γk,l+1,−

)
e

(1,2)
k,l+1,−

}
,

Vte
(1,2)
kl± = ei(ka+lb)te

(1,2)
kl± .

Defining

η
(1,2)
kl± :=

1
2

(
e

(1,2)
kl+ ± e

(1,2)
kl−

)
,

one finds

U1η
(1,2)
kl+ = η

(1,2)
k+1,l+, (3.25)

U1η
(1,2)
kl− =

γkl
γk+1,l

η
(1,2)
k+1,l−, (3.26)

U2η
(1,2)
kl+ = η

(1,2)
k,l+1,+, (3.27)

U2η
(1,2)
kl− =

γkl
γk,l+1

η
(1,2)
k,l+1,−, (3.28)

Vtη
(1,2)
kl± = ei(ka+lb)tη

(1,2)
kl± , (3.29)

Dη
(1,2)
kl± =

√
λklη

(1,2)
kl∓ . (3.30)

From Theorem 1 or by direct computation using (3.25)–(3.30) one gets

Proposition 5. (C∞(T2)oR, L2(T2, E), D) is a spectral triple of dimension 3.

Next, one would like to describe the differential calculus ΩD related to this spectral
triple. Unfortunately, we have no definite result about ΩD. We will however show that
the first order calculus for the restriction of the spectral triple to the subalgebra C∞(T2)
is the universal one, supporting our conjecture that also the first order calculus of the
full triple is universal, up to some relations involving Vt. To begin with, we have as an
immediate consequence of (3.25)–(3.30)

Lemma 2. Let p, q, r, s ∈ Z. Then we have

Ur1U
p
2 [D,Us1U

q
2 ] η(1,2)

kl± =

√
λk+s,l+qγk+s,l+q −

√
λklγkl

γk+r+s,l+p+q
η

(1,2)
k+r+s,l+p+q∓. (3.31)

Moreover,

[D,Vt] = 0, Vt[D,U1] = eiat[D,U1]Vt, Vt[D,U2] = eibt[D,U2]Vt. (3.32)

Proof. By direct computation using (3.25)–(3.30).

From Theorem 1 we know that the particular choice Γ = 1 gives rise to a spectral
triple over C∞(T2). Let us now first investigate the corresponding differential calculus
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ΩD(O(T2)). By faithfulness of the representation, we can again identify Ω1
D(O(T2)) with

a subspace of B(L2(H)). We have

Proposition 6. The first order differential calculus Ω1
D(O(T2)) is freely generated

by the elements [D,U s1U
q
2 ] (s, q ∈ Z).

Proof. We show that no nontrivial relations between U s1U
q
2 and commutators [D,U t1U

r
2 ]

exist. Let us first consider relations involving D and U1 only. From Lemma 2 it follows
for p = q = 0 that

Ur1 [D,Us1 ] η(1,2)
kl± =

√
λk+s,lγk+s,l −

√
λklγkl

γk+r+s,l
η

(1,2)
k+r+s,l∓.

Using the Leibniz rule and the fact that different overall powers of U1 are independent
(by the foregoing formula) we find that nontrivial relations would be of the form

s−1∑

m=0

amU
m
1

[
D,Us−m1

]
= 0, (3.33)

for s ∈ N. Applying (3.33) to η(1,2)
n0± (n = k, . . . , k + s − 1) we get, after a redefinition of

the summation index, the following system of equations:
s−1∑

j=0

aj

(√
λk+j+1,0γk+j+1,0 −

√
λk0γk0

)
= 0,

... (3.34)
s−1∑

j=0

aj

(√
λk+j+s,0γk+j+s,0 −

√
λk+s−1,0γk+s−1,0

)
= 0.

For the discussion of this system of equations it is useful to define a function h on Z
putting

h(i) =
√
λi0γi0 −

√
λi−1,0γi−1,0.

In terms of the function h, the matrix of the system of equations (3.34) is



h(k + 1) h(k + 2) + h(k + 1) · · · h(k + s) + . . .+ h(k + 1)
h(k + 2) h(k + 3) + h(k + 2) · · · h(k + s+ 1) + . . .+ h(k + 2)

...
h(k + s) h(k + s+ 1) + h(k + s) · · · h(k + 2s− 1) + . . .+ h(k + s)


 .

The determinant of this matrix can be tranformed into the following expression, using
multilinearity and antisymmetry of the columns:

∣∣∣∣∣∣∣∣∣

h(k + 1) h(k + 2) · · · h(k + s)
h(k + 2) h(k + 3) · · · h(k + s+ 1)

...
h(k + s) h(k + s+ 1) · · · h(k + 2s− 1)

∣∣∣∣∣∣∣∣∣
. (3.35)

It is sufficient to show that the determinant (3.35) is always nonzero. Indeed:
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Lemma 3. We have ∣∣∣∣∣∣∣

h(i0) · · · h(i0 + k)
...

. . .
...

h(ik) · · · h(ik + k)

∣∣∣∣∣∣∣
6= 0,

for all k ∈ N and i0, . . . , ik ∈ Z.

Proof. See Appendix A.

Thus, there are no relations between U1 and D besides the ones coming from the
Leibniz rule. In the general case we are looking for amn ∈ C such that

s−1∑

m=0

q−1∑

n=0

amnU
m
1 Un2 [D,Us−m1 Uq−n2 ] = 0.

Again, we are led to the consideration of a homogeneous linear system of equations
for the amn. The corresponding matrix of coefficients is an (sq)×(sq)-matrix with general
matrix element

Ck,(m,n) = (
√
λk+s−m,q−nγk+s−m,q−n −

√
λk0γk0),

(k = 1, . . . , sq.) In analogy to the case discussed above we have

Lemma 4. Let s, q ∈ N be fixed. Then we have

det
(
Ck,(m,n)

)
6= 0.

Proof. The proof is a straightforward generalization of the proof of Lemma 3 to the
case of functions, defined on Z2, see [21].

The proof of the proposition follows now immediately from the fact that between the
elements [D,Us1U

q
2 ] there are no relations besides the ones coming from the Leibniz rule.

We were not able to derive more relations of the type (3.32) between commutators of
D with some generator and other generators (up to such relations resulting from applying
[D, ·] to (3.3)–(3.6) and the unitarity condition, using the derivation property). This seems
to be due to the fact that λkl and γkl contain second and fourth powers of k and l under
the square root. Therefore we have

Conjecture 1. The bimodule Ω1
D(C∞(T2)oR) is generated by du1 and du2 and is

described by two relations,

vtdu1 = eiatdu1vt, vtdu2 = eibtdu2vt.

It seems that these difficulties in the end come from the quadratic part in the signature
operator Q.

Let us note that we could choose another diffeomorphism group, restricting the action
of R to the subgroup Z. Then, the generators Vt (or vt) would be reduced to one generator
V1 = V (v1 = v), and all the above formulae remain, replacing always Vt (vt) by some
power of V (v). However, we would not get rid of the difficulties related to the differential
calculus.
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A. Proof of Lemma 3. The proof of this lemma rests on the following characteri-
zation of functions f defined by determinants of Hankelian type, see [23], such that

∣∣∣∣∣∣∣

f(i0) · · · f(i0 + k)
...

. . .
...

f(ik) · · · f(ik + k)

∣∣∣∣∣∣∣
= 0, (A.1)

∀k ∈ N and i0, . . . , ik ∈ Z. We have

Theorem 2. A function f defined on Z fulfils (A.1) if and only if it is of one of the
following two types:

f1(i) = βi
k−1∑

j=0

αj i
j , (A.2)

f2(i) =
k∑

j=1

αjβ
i
j , (A.3)

with α, β, βj ∈ C.

Proof. Let us first show by induction that f1 and f2 fulfil (A.1). For f1(i) =
βi
∑k−1

j=0 αj i
j and k = 1 we have

∣∣∣∣
α0β

i α0β
i+1

α0β
j α0β

j+1

∣∣∣∣ = 0,

∀i, j ∈ Z. Let now (A.1) be valid for k = n. Then we have for k = n+ 1
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βi0
n∑
j=0

αji
j
0 βi0+1

n∑
j=0

αj(i0 + 1)j · · · βi0+n+1
n∑
j=0

αj(i0 + n+ 1)j

βi1
n∑
j=0

αji
j
1 βi1+1

n∑
j=0

αj(i1 + 1)j · · · βi1+n+1
n∑
j=0

αj(i1 + n+ 1)j

...
...

. . .
...

βin+1
n∑
j=0

αji
j
n+1 β

in+1+1
n∑
j=0

αj(in+1 + 1)j · · · βin+1+n+1
n∑
j=0

αj(in+1 + n+ 1)j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

βi0+···+in+1+ (n+1)(n+2)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=0

αji
j
0

n∑
j=0

αj(i0 + 1)j · · ·
n∑
j=0

αj(i0 + n+ 1)j

n∑
j=0

αji
j
1

n∑
j=0

αj(i1 + 1)j · · ·
n∑
j=0

αj(i1 + n+ 1)j

...
...

. . .
...

n∑
j=0

αji
j
n+1

n∑
j=0

αj(in+1 + 1)j · · ·
n∑
j=0

αj(in+1 + n+ 1)j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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But
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=0

αji
j
0

n∑
j=0

αj(i0 + 1)j · · ·
n∑
j=0

αj(i0 + n+ 1)j

n∑
j=0

αji
j
1

n∑
j=0

αj(i1 + 1)j · · ·
n∑
j=0

αj(i1 + n+ 1)j

...
...

. . .
...

n∑
j=0

αji
j
n+1

n∑
j=0

αj(in+1 + 1)j · · ·
n∑
j=0

αj(in+1 + n+ 1)j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=0

αji
j
0

n∑
j=1

αj

[
(i0 + 1)j − ij0

]
· · ·

n∑
j=1

αj
[
(i0 + n+ 1)j − (i0 + n)j

]

n∑
j=0

αji
j
1

n∑
j=1

αj

[
(i1 + 1)j − ij1

]
· · ·

n∑
j=1

αj
[
(i1 + n+ 1)j − (i1 + n)j

]

...
...

. . .
...

n∑
j=0

αji
j
n+1

n∑
j=1

αj

[
(in+1 + 1)j − ijn+1

]
· · ·

n∑
j=1

αj
[
(in+1 + n+ 1)j − (in+1 + n)j

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=0

αji
j
0

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
il0 · · ·

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
(i0 + n)l

n∑
j=0

αji
j
1

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
il1 · · ·

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
(i1 + n)l

...
...

. . .
...

n∑
j=0

αji
j
n+1

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
iln+1 · · ·

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
(in+1 + n)l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n∑

j=0

αji
j
0

∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
il1 · · ·

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
(i1 + n)l

...
. . .

...
n∑
j=1

αj
j−1∑
l=0

(
j
l

)
iln+1 · · ·

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
(in+1 + n)l

∣∣∣∣∣∣∣∣∣∣∣∣

+ · · ·+

(−1)n+1
n∑

j=0

αji
j
n+1

∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
il0 · · ·

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
(i0 + n)l

...
. . .

...
n∑
j=1

αj
j−1∑
l=0

(
j
l

)
iln · · ·

n∑
j=1

αj
j−1∑
l=0

(
j
l

)
(in + n)l

∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

by assumption. Analogously, for f2(i) =
∑k
j=1 αjβ

i
j we have for k = 1

∣∣∣∣∣∣
α1β

i
1 α1β

i+1
1

α1β
j
1 α1β

j+1
1

∣∣∣∣∣∣
= 0,

∀i, j ∈ Z. Let us now assume the validity of (A.1) for k = n. Then we have for k = n+ 1
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n+1∑
j=1

αjβ
i0
j

n+1∑
j=1

αjβ
i0+1
j · · ·

n+1∑
j=1

αjβ
i0+n+1
j

n+1∑
j=1

αjβ
i1
j

n+1∑
j=1

αjβ
i1+1
j · · ·

n+1∑
j=1

αjβ
i1+n+1
j

...
...

. . .
...

n+1∑
j=1

αjβ
in+1
j

n+1∑
j=1

αjβ
in+1+1
j · · ·

n+1∑
j=1

αjβ
in+1+n+1
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n+1∑
j=1

αjβ
i0
j

n∑
j=1

αjβ
i0
j (βj − βn+1) · · ·

n∑
j=1

αjβ
i0+n
j (βj − βn+1)

n+1∑
j=1

αjβ
i1
j

n∑
j=1

αjβ
i1
j (βj − βn+1) · · ·

n∑
j=1

αjβ
i1+n
j (βj − βn+1)

...
...

. . .
...

n+1∑
j=1

αjβ
in+1
j

n∑
j=1

αjβ
in+1
j (βj − βn+1) · · ·

n∑
j=1

αjβ
in+1+n
j (βj − βn+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n+1∑

j=1

αjβ
i0
j

∣∣∣∣∣∣∣∣∣∣∣

n∑
j=1

αjβ
i1
j

(
βj − βn+1

)
· · ·

n∑
j=1

αjβ
i1+n
j (βj − βn+1)

...
. . .

...
n∑
j=1

αjβ
in+1
j (βj − βn+1) · · ·

n∑
j=1

αjβ
in+1+n
j (βj − βn+1)

∣∣∣∣∣∣∣∣∣∣∣

+ · · ·+

(−1)n+1
n+1∑

j=1

αjβ
in+1
j

∣∣∣∣∣∣∣∣∣∣∣

n∑
j=1

αjβ
i0
j (βj − βn+1) · · ·

n∑
j=1

αjβ
i0+n
j (βj − βn+1)

...
. . .

...
n∑
j=1

αjβ
in
j (βj − βn+1) · · ·

n∑
j=1

αjβ
in+n
j (βj − βn+1)

∣∣∣∣∣∣∣∣∣∣∣

= 0,

by assumption.
Let us now assume that a function f defined on Z fulfils (A.1) for some k ∈ N. We

choose i1 = i0+1, . . . , ik = i0+k and let f(i0), . . . , f(i0+2k−1) denote the corresponding
values of f . Then f(i0 + 2k) has to fulfil

∣∣∣∣∣∣∣∣∣

f(i0) f(i0 + 1) · · · f(i0 + k)
f(i0 + 1) f(i0 + 2) · · · f(i0 + k + 1)

...
...

. . .
...

f(i0 + k) f(i0 + 1) · · · f(i0 + 2k)

∣∣∣∣∣∣∣∣∣
= 0, (A.4)

provided that ∣∣∣∣∣∣∣∣∣

f(i0) f(i0 + 1) · · · f(i0 + k − 1)
f(i0 + 1) f(i0 + 2) · · · f(i0 + k)

...
...

. . .
...

f(i0 + k − 1) f(i0 + k) · · · f(i0 + 2k − 2)

∣∣∣∣∣∣∣∣∣
6= 0. (A.5)

(We may assume without loss of generality that (A.5) holds. In [21] it is shown that in
the other case one is led to the case k − 1.) From (A.4) and (A.5) we find that the 2k
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values f(i0), . . . , f(i0 + 2k − 1) determine f completely. Now we show that this function
is either of type (A.3) or (A.2).

Let first the constants f(i0), . . . , f(i0 + 2k − 1) be such that the following condition
holds:

l+1∑

j=0

βl+1−jf(i+ j)(−1)j
(
l + 1
j

)
= 0, (A.6)

for some β ∈ C, l ∈ {0, . . . , k − 1} and all i = i0, . . . , i0 + 2k − l − 1. We show that the
corresponding function on Z is of the form (A.2). Suppose that β ∈ C is a solution of
(A.6). Then we find constants αi as follows. Defining g(i) := f(i)

βi (β 6= 0), we can always
find αi (i = 0, . . . , l) as solutions of the following linear system of equations:

g(i0) = α0 + α1i0 + · · ·+ αli
l
0,

g(i0 + 1) = α0 + α1(i0 + 1) + · · ·+ αl(i0 + 1)l,
...

g(i0 + l) = α0 + α1(i0 + l) + · · ·+ αl(i0 + l)l

by

αi =
1
∆

∣∣∣∣∣∣∣∣∣

1 i0 · · · ii−1
0 g(i0) ii+1

0 · · · il0
1 i0 + 1 · · · (i0 + 1)i−1 g(i0 + 1) (i0 + 1)i+1 · · · (i0 + 1)l

...
...

...
1 i0 + l · · · (i0 + l)i−1 g(i0 + l) (i0 + l)i+1 · · · (i0 + l)l

∣∣∣∣∣∣∣∣∣

with

∆ =

∣∣∣∣∣∣∣∣∣

1 i0 · · · il0
1 i0 + 1 · · · (i0 + 1)l

...
...

...
1 i0 + l · · · (i0 + l)l

∣∣∣∣∣∣∣∣∣
= (−1)

l(l+1)
2

l∏

j=1

j! 6= 0.

Now that we have chosen the constants β and α0, . . . , αl such that

f(i0 + j) = f1(i0 + j)

is fulfilled, for all j = 0, . . . , l, it remains to be shown that we also have

f(i0 + l + 1) = f1(i0 + l + 1).

But
r∑

j=0

(−1)j
(
r

j

)
js = 0,

∀s = 0, . . . , r− 1 (which follows from evaluating the s-th derivative of f(x) = (x− 1)r =∑r
j=0

(
r
j

)
(−1)jxr−j at x = 1). Now we find

l+1∑

j=0

βl+1−j(−1)j
(
l + 1
j

)
f1(i+ j) =

l+1∑

j=0

βl+1−jβi+j(−1)j
(
l + 1
j

) l∑

m=0

αm(i+ j)m
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= βl+i+1
l+1∑

j=0

l∑

m=0

m∑

n=0

αm(−1)j
(
l + 1
j

)(m
n

)
injm−n

= βl+i+1
l∑

m=0

αm

m∑

n=0

(m
n

)
in

l+1∑

j=0

(−1)j
(
l + 1
j

)
jm−n = 0.

Therefore, we have
l+1∑

j=0

(−1)jβl+1−j
(
l + 1
j

)
(f(i0 + j)− f1(i0 + j))

= (−1)l+1 (f(i0 + l + 1)− f1(i0 + l + 1)) = 0,

i.e.
f(i0 + l + 1) = f1(i0 + l + 1).

Let us now consider the general case (A.3). Suppose, that f(i0), . . . , f(i0 + 2k − 1) are
chosen such that (A.6) does not hold. Then we have to solve the following system of
algebraic equations (where we have chosen i0 = 0):

f(0) = C1 + · · ·+ Ck,

f(1) = C1β1 + · · ·+ Ckβk,

...

f(2k − 1) = C1β
2k−1
1 + · · ·+ Ckβ

2k−1
k .

which can always be done using Gröbner basis techniques, see [21].

The proof of Lemma 3 follows now immediately from the observation that the function

h(i) =
√
λi0γi0 −

√
λi−1,0γi−1,0

is obviously not of the form (A.2) or (A.3).
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