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Abstract. We employ the notion of the universal differential calculus to propose yet another
approach to the Hopf-type cohomology of Hopf algebras.

1. Introduction. In their papers (see [3, 4, 5]), A. Connes and H. Moscovici pro-
vided the explicit structure of a cocyclic module defining the so-called Hopf-type cyclic
cohomology of a Hopf algebra. Later on, M. Crainic showed that this cocyclic module
could be obtained as the space of coinvariants of a Hopf-algebra action on some other
cyclic module. Some further generalizations and developments were made in the papers
[23], [1], [15], and most recent results in this field can be found, for instance, in the papers
[13, 14] and [16].

The purpose of this paper is to describe the Hopf-type cohomology of a Hopf algebra
in terms of a subcomodule of the so-called algebra of non-commutative differential forms
associated with the Hopf algebra. It turns out that to any modular pair in involution
(δ, σ) one can associate a subcomplex of this differential algebra that is stable under the
Karoubi operator κ (see papers [7, 8] and [17]) or its twisted version κξ (see (75) and [19]).

In addition to giving a new point of view on this cohomology theory, this approach
seems to have some virtues of its own. For instance, one can try to define some similar sort
of cyclic homology when a more general object is used instead of a modular pair. Besides
this, it can be used to establish bridges between cyclic cohomology and Hopf-Galois
theory, as developed in papers of T. Brzeziński, M. -Durd-evič, P. M. Hajac, S. Majid
[18, 9, 10, 11, 2, 12] and others.

Let us first of all recall the construction of Hopf-type cohomology due to A. Connes
and H. Moscovici. Here and below H will denote a Hopf algebra over a field of charac-
teristic 0 (mostly C). Let m, ∆, 1, ε and S be the multiplication, comultiplication (or
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diagonal), unit, counit and antipode of H, respectively. Below we shall usually skip m

in our formulas, and use the standard (Sweedler’s, see [22]) notation for the diagonal
(coproduct):

∆(h) = h(1) ⊗ h(2) (summation understood).

Let σ be a group-like element in H, δ : H → C an algebraic character, and δ(σ) = 1.
One says that (δ, σ) is a modular pair in involution if

S2
δ (h) = σhσ−1, ∀h ∈ H, where Sδ(h) := δ(h(1))S(h(2)).(1)

This is equivalent to the equation (σ−1Sδ)2 = 1.
Given a modular pair in involution, one defines a (co)cyclic module H](δ,σ) as follows.

(Recall that the cyclic category is self-dual, so that it is not necessary to pay much
attention to distinguishing cyclic and cocyclic objects.) The objects are (H](δ,σ))n = H⊗n,
n ∈ N, and structure maps (coface, codegeneracy and cyclic permutation operators)

δi : H]n → H]n+1, i = 0, . . . , n+ 1,(2)

σi : H]n → H]n−1, i = 1, . . . , n,(3)

τn : H]n → H]n,(4)

are given by

(5) δi(h1, . . . , hn) =





(1, h1, . . . , hn), i = 0,
(h1, . . . ,∆(hi), . . . , hn), 1 ≤ i ≤ n,
(h1, . . . , hn, σ), i = n+ 1,

(6) σi(h1, . . . , hn) = ε(hi)(h1, . . . , hi−1, ĥi, hi+1, . . . , hn), 1 ≤ i ≤ n,
(7) τn(h1, h2, . . . , hn) = Sδ(h1) · (h2, . . . , hn, σ).

Here in the last formula we assume that H acts on its own tensor power as follows:

h · (h1, . . . , hn) = (h(1)h1, . . . , h(n)hn).

For any cocyclic module one can define its cyclic, negative cyclic and periodic cyclic
cohomology. To this end one has to consider the cyclic, negative and periodic complexes,
respectively. (See, for example, the book of Loday [20] and [8].) For instance, periodic
cohomology is defined by the following super-complex:

CPi =
⊕

n≡i(mod2)

H]n, i = 0, 1,(8)

equipped with differentials b : H]n → H]n+1 (Hochschild operator) and B : H]n → H]n−1,
defined as follows:

b =
n+1∑

i=0

(−1)iδi,(9)

B = −N ◦ σ̃0 ◦ (1− τn),(10)

where

N =
n−1∑

i=0

(−1)i(n−1)τ in−1,(11)

σ̃0 = σn ◦ τn.(12)
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Recall that we deal with a cocyclic module here, so that the usual formula for the differ-
ential B in the mixed complex associated with a cyclic module is inverted. Also that is the
reason why we use direct sum rather than the direct product of homogeneous components
in (8).

2. Special case: (δ, σ) = (ε, 1). Let H be a Hopf algebra. We shall denote by Ω(H)
the universal unital differential graded algebra, generated by H. Recall that

(13) Ω(H) =
⊕

n≥0

Ωn(H),

(14) Ω0(H) = H, Ω1(H) = ker(m : H⊗H → H),

(15) Ωn(H) = Ω1(H)⊗H Ω1(H)⊗H . . .⊗H Ω1(H)︸ ︷︷ ︸
n

.

The differential d : H → Ω1(H) is given by

d(x) = 1⊗ x− x⊗ 1.

One can prove that any element θ in Ωn(H) can in a unique way be written in the form

θ =
∑

i

ai0da
i
1da

i
2 . . . da

i
n, aij ∈ H.

Now it is clear that

dθ =
∑

i

dai0da
i
1da

i
2 . . . da

i
n.(16)

So far, the coalgebra structure has not yet come to the scene. One can define the
universal differential algebra associated to any unital algebra A in precisely the same
way. But now, since H is a Hopf algebra, one can also define left and right coactions of
H on Ω(H). Put

∆R(θ) =
∑

i

ai0,(1)da
i
1,(1)da

i
2,(1) . . . da

i
n,(1) ⊗ ai0,(2)a

i
1,(2)a

i
2,(2) . . . a

i
n,(2),(17)

and

∆L(θ) =
∑

i

ai0,(1)a
i
1,(1)a

i
2,(1) . . . a

i
n,(1) ⊗ ai0,(2)da

i
1,(2)da

i
2,(2) . . . da

i
n,(2).(18)

The fact that these formulae really determine well-defined maps follows from the universal
properties of Ω(H). Moreover, (17) and (18) define the right- and left-Hopf-comodule
algebra structures on Ω(H). That is, the map ∆R : Ω(H) → Ω(H) ⊗ H is an algebra
morphism, and so is ∆L. In particular, Ω(H) is a left and right Hopf module over the
Hopf algebra H = Ω0(H). Recall that a right module M over a Hopf algebra H is called a
(right) Hopf module if it is equipped with a coaction ∆M : M →M⊗H, m 7→ m〈0〉⊗m〈1〉,
such that (mh)〈0〉 ⊗ (mh)〈1〉 = m〈0〉 h(1) ⊗m〈1〉 h(2) for all m ∈M, h ∈ H.

In general, conditions that the formulas (17) and (18) define such structures impose
additional restrictions on the structure of a differential calculus Ω′(H). Differential calculi
verifying these restrictions are called bicovariant . This matter is accurately explained,
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e.g., in [24] (see also [9]), where the general definition of a bicovariant differential calculus
on a Hopf algebra is given.1

Observe (see (16)) that both maps (17) and (18) preserve the differential. Hence, in
particular, the subspaces of left and right coinvariants are differential graded subalgebras
in Ω(H). Let us describe explicitly the structure of these subalgebras. For instance, let us

take the space of right coinvariants Ω(H)coH def= ΩR(H). (The symbol ΩRn (H) will denote
the degree n homogeneous component of this subalgebra).

In the general theory of Hopf modules (e.g., see [22]), it is proven that any (right)
Hopf module M over H is isomorphic (as a Hopf module) to the “free” Hopf module
M coH ⊗ H. The isomorphism M coH ⊗ H → M sends m ⊗ h ∈ M coH ⊗ H to mh ∈ M ,
and its inverse sends m to m〈0〉S(m〈1〉)⊗m〈2〉. A consequence of this fact is (see [24] and
[9], App. A) the following isomorphism of right H -Hopf modules:

Ωn(H) ∼= ΩRn (H)⊗H, ∀n ∈ N.(19)

Moreover, one can show ([9], App. A) that the map

πR : H → ΩR1 (H), h 7→ dh(1) · S(h(2))(20)

maps isomorphically the kernel of the counit of H on the space ΩR
1 (H). This isomorphism

can be extended to all degrees (this can be shown, e.g., with the help of the formula (24)
below, see also [9], App. A):

ΩRn (H) ∼= ΩR1 (H)⊗n ∼= (ker ε)⊗n.(21)

One can compute the differential and the left H -action and coaction on ΩR(H) in the
terms of the map πR:

(22) dh = dh(1) · S(h(2))h(3) = πR(h(1))h(2),

(23) dπR(h) = −dh(1)dS(h(2)) = dh(1)S(h(2))dh(3)S(h(4)) = πR(h(1))π
R(h(2)),

(24) a · πR(h) = a(1)π
R(h)S(a(2))a(3) = πR(a(1)h− ε(h)a(1))a(2),

(25) ∆L(πR(h)) = h(1)S(h(3))⊗ πR(h(2))

(for all a, h ∈ H). Therefore, in the terms of the isomorphisms (19) and (21), one can
write the differential and left action of H on Ω(H) as follows:

(26) dh↔ πR(h(1))⊗ h(2),

(27) dπR(h)↔ πR(h(1))⊗ πR(h(2)),

(28) a · πR(h)↔ πR(a(1)h− ε(h)a(1))⊗ a(2).

Here we consider the case n = 1 in (19), formulas for other degrees follow from this case in
an obvious way. In particular, taking h in ker ε in the formula (28), we obtain the following
description of the left action ofH on the bimodule Ω1(H), which we identify with ker ε⊗H
with the help of the composite map ker ε⊗H πR⊗id−→ ΩR1 (H)⊗H → Ω1(H), k⊗h 7→ πR(k)h:

a · (k ⊗ h) = a(1)k ⊗ a(2)h.(29)

1One should however keep in mind that in the cited paper the term “differential calculus”
is used to denote only the first-order part of an algebra of differential forms.
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This formula extends in a natural way to the n-th degree component of Ω(H), Ωn(H) ∼=
(ker ε)⊗n ⊗H. The isomorphism is given by

h1 ⊗ . . .⊗ hn ⊗ h 7→ πR(h1) . . . πR(hn)h, h1, . . . , hn ∈ ker ε, h ∈ H.(30)

We get for all a ∈ H
a · (h1 ⊗ h2 ⊗ . . .⊗ hn ⊗ h) = a(1)h1 ⊗ a(2)h2 ⊗ . . .⊗ a(n)hn ⊗ a(n+1)h.(31)

Recall that one can define on Ω(H) the Hochschild differential b and the Karoubi
operator κ in the following way (see [8], §3):

b(ωda) = (−1)|ω|(ωa− aω),(32)

where a ∈ H, ω ∈ Ω(H), and

κ = 1− bd− db.(33)

Explicitly, one can show that

κ(ω da) = (−1)|ω|daω.

For our purposes it would be useful to consider a little bit different operators, b′, κ′:

b′(daω) = aω − ωa,(34)

κ′(daω) = b′d+ db′ − 1.(35)

Explicitly, we have

κ′(daω) = (−1)|ω|ωda.(36)

Let B′ =
∑n

i=0 κ
′i ◦ d on Ωn(H). Then B′ is analogous to the operator B from [8],

and the primed operators b′, κ′ and B′ have all the usual properties of b, κ and B, see
§3 of [8]. This can be proven by a slight modification of the reasoning used in the quoted
paper for the unprimed operators. Hence, we conclude that b′ and B′ induce a mixed
complex structure on Ω(H). Moreover, the formulas (34) and (36) show that

κ′ = κ−1,(37)

and

b′ = −b ◦ κ′.(38)

The following theorem is the main result of this section.

Theorem 1. Let H be a Hopf algebra and the modular pair (1, ε) be such that the
conditions of [4] are satisfied (i.e. S2 = 1). Then ΩR(H) is a differential graded subalgebra
of Ω(H) which is stable under the Hochschild differential b and Karoubi operator κ (or
equivalently under b′ and κ′), and hence is a mixed subcomplex of (Ω(H), b, B). The same
is true about ΩL(H). Moreover, the periodic homology of ΩR(H) with the mixed complex
structure induced from (Ω(H), b′, B′) is naturally isomorphic to the periodic Hopf-type
cohomology HP ∗ε,1(H) of the Hopf algebra H.

Remark 1. It is important to observe that though the mixed complex structure in
ΩR(H) is induced from Ω(H), it is not quite correct to consider the periodic cohomol-
ogy complex of ΩR(H) as a subcomplex of the Cuntz and Quillen periodic complex for
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Ω(H), as defined in [8]. In effect, except for the difference in the cyclic structure (see
formulas (37) and (38)), the latter is formed with the help of the direct product of homo-
geneous components (see the cited paper), while the former deals with their direct sum
(see (8)).

Proof. The fact that ΩR(H) (and ΩL(H) as well) is a differential graded subalgebra of
Ω(H) follows directly from the discussion above. Now we shall prove the second statement
of this theorem, i.e. that these subalgebras are closed under the Hochschild and Karoubi
operators. We shall confine our attention to ΩR(H). (The case of ΩL(H) can be treated
similarly.)

First of all, let us note that it is enough to prove the stability of ΩR(H) only under
the action of the primed operators b′ and κ′. (This follows from the formulas (37) and
(38).) Therefore, let us start with showing that ΩR(H) is stable under b′. To this end, we
shall directly compute the image of an element ω ∈ ΩR(H) under b′. First, let ω belong
to ΩR1 (H). We compute:

b′(ω) = b′(da(1)S(a(2))) = a(1)S(a(2))− S(a(2))a(1)

= ε(a) · 1− S(a(2))S
2(a(1)) = ε(a) · 1− S(S(a(1))a(2))

= ε(a) · 1− ε(a) · 1 = 0,

(39)

which is, of course, a right-coinvariant element. Here we have used the formula (34) and
the possibility to represent any element in ΩR

1 (H) as the image of some a ∈ H under the
map πR from (20).

Now, if the element ω belongs to ΩR
n (H) ∼= ΩR1 (H)⊗n ∼= ker ε⊗n (see (20)) we use the

formulas (24) and (30) to compute:

b′(ω) = b′(πR(a1)πR(a2) . . . πR(an)) = b′(d(a1,(1))S(a1,(2))ω
′)

= a1,(1)S(a1,(2))ω
′ − S(a1,(2))ω

′a1,(1)

= −(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (S(a1,(2))a1,(1))

= −(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (S(a1,(2))S
2(a1,(1)))

= −(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (S(S(a1,(1))a1,(2)))

= −πR(S(a1,(n−1))a2)πR(S(a1,(n−2))a3) . . . πR(S(a1,(1))an).

(40)

Here we suppose that ai ∈ ker ε, i = 1, . . . , n (see (30)), and in order to abbrevi-
ate our notation we put ω′ = πR(a2)πR(a3) . . . πR(an). Clearly, b′(ω) lies in ΩRn−1(H).
One should view this computation as carried out in the first of the isomorphic spaces
listed in (21), although we have implicitly used all the isomorphisms of this for-
mula.

Of course, since the inverse of the Karoubi operator κ′ is written in terms of d and
b′ (see (35)), one can conclude that ΩR(H) is stable under its action. This proves the
second statement of our theorem.

However, below we shall need an explicit formula for this operator written in terms
of the isomorphism (20). Therefore, we use (36) and, employing the notation introduced
in the paragraph following (35) and (40), compute:
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κ′(da1,(1)S(a1,(2))ω
′) = (−1)|ω

′|S(a1,(2))ω
′ da1,(1)

= (−1)|ω
′|(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (S(a1,(2))da1,(1))

= (−1)|ω
′|(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (S(a1,(2))dS

2(a1,(1)))

= (−1)|ω
′|+1(πR(S(a1,(n))a2) . . . πR(S(a1,(2))an))πR(S(a1,(1)))

= (−1)nπR(S(a1,(n))a2) . . . πR(S(a1,(2))an)πR(S(a1,(1))− ε(a1,(1))).

(41)

Here in the third line we used the assumption that S2 = id. In other words, this can be
written as

κ′ : ker ε⊗n → ker ε⊗n,

(h1, h2, . . . , hn) 7→ (−1)nproj′(S(a1) · (h2, . . . , hn, 1)).
(42)

Here proj′ denotes the standard projection proj′ : H⊗n → ker ε⊗n that sends each com-
ponent hi to hi − ε(hi).

The similarity between these formulae and the structure of the cyclic module intro-
duced by A. Connes and H. Moscovici is conspicuous. For instance, the cyclic operator
τn of this module is given by

τ(h1, h2, . . . , hn) = S(h1)(h2, . . . , hn, 1),(43)

that is, it coincides with κ′, up to the sign and projection on the kernel of the counit.
In view of this observation, let us finally show that the cohomology of the induced

mixed subcomplex (ΩR(H), b′, B′) coincides with the Hopf-type cohomology of Connes
and Moscovici.

To this end, we first consider the cocyclic object H](ε,1) defined in [4] and [6], see

Section 1 above. Recall that the mixed complex associated with H](ε,1) is defined by the

operators b̃ =
∑n+1
i=0 (−1)iδi, where

δi(h1, h2, . . . , hn) =





(1, h1, h2, . . . , hn), i = 0,
(h1, . . . ,∆(hi), . . . , hn), 1 ≤ i ≤ n,
(h1, h2, . . . , hn, 1), i = n+ 1,

(44)

and B̃ = −N ◦ σ̃0 ◦ (1− τn), where

σ̃0(h1, h2, . . . , hn) = S(h1) · (h2, . . . , hn),(45)

and N is given by the formula (11). This is a special case of the formulas (5)–(7). Here we
use tilde to distinguish these maps from the Cuntz-Quillen operators on Ω(H) introduced
above.

Now, consider the subcomplex (H̃](ε,1), b̃
′, B̃′) of this mixed complex: (H̃](ε,1))n =

ker ε⊗n =
⋂n
i=1 kerσi, i ≥ 1 and (H̃](ε,1))0 = C. It follows from the (co)cyclic module

relations, satisfied by the maps δi, σj and τn (see Loday’s book [20]) that both b̃ and B̃

map this subspace to itself. (We will denote by b̃′ and B̃′ the restrictions to H̃](ε,1) of b̃

and B̃, respectively.)

Lemma 2. The natural inclusion of H̃](ε,1) into H](ε,1) induces an isomorphism on
cyclic cohomology.
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Proof. This is a direct consequence of the fact that this inclusion yields an isomorphism
of the Hochschild homologies of these two complexes (i.e. their homologies with respect
to the differentials b̃ and b̃′), which is a standard fact of homological algebra. (In fact,
H̃](ε,1) is just the normalization of H]

(ε,1) with respect to the codegeneracy operators σi.)

Now, as we have observed above, the homomorphism

H⊗n 3 h1 ⊗ h2 ⊗ . . .⊗ hn
(πR)⊗7→ −πR(h1)πR(h2) . . . πR(hn) ∈ ΩRn (H),(46)

induces an isomorphism of H̃](ε,1) with ΩRn (H) as vector spaces (cf. (19)). Roughly speak-
ing, under this isomorphism, the (inverse) Karoubi operator κ′ and the cyclic permuta-
tion operator τn restricted to (H̃](ε,1))n coincide modulo the sign. Although in general

τn((H̃](ε,1))n) 6⊆ (H̃](ε,1))n, since σn(τn(θ)) 6= 0, θ ∈ (H̃](ε,1))n, for our purposes it is

enough to consider only those elements θ whose image under τn belongs to (H̃](ε,1))n. For
instance, from the identities satisfied by the codegeneracies and cyclic operator, it follows
that τn−1 ◦ σ̃0 ◦ (1 − τn)(θ) ∈ (H̃](ε,1))n−1 for all θ ∈ (H̃](ε,1))n. Still for all θ ∈ (H̃](ε,1))n,

one can also note that (πR)⊗ maps τn(θ) to κ′((πR)⊗(θ)), as follows from the formula
(41) and the fact that πR(1) = 0. It is also easy to see that under this isomorphism the
map σ̃0 ◦ (1− τn) (σ̃0 is defined in (45)) coincides with the Hochschild operator b′. (Com-
pare the formula (45) with (40) and observe that σ̃0 ◦ τn = 0 on kerσ1.) One concludes
(compare the signs) that under this map the operator B̃′ on H̃](ε,1) corresponds to the

operator (
∑n−1
i=0 (κ′)i)b′ on the subspace ΩRn (H). It is also easy to see that under the same

map the Hochschild differential b̃′ on H](ε,1) corresponds to the “de Rham differential” d.
The only remaining problem is that the Hochschild and “de Rham” operators change

their rôles under this isomorphism: b̃′ corresponds to d, and σ̃0 ◦ (1− τn) to b′. The result
of this confusion is that the operator B̃′ on H̃](ε,1) corresponds to

∑n−1
j=0 (κ′)jb′ and not

to B′ =
∑n
j=0(κ′)jd that we considered above. (Note that the summation is taken over

different sets of indices.) Therefore, unfortunately, the established isomorphism of spaces
cannot be directly extended to the isomorphism of the associated periodic complexes. (In
fact it is not even a map of mixed complexes.)

To cure this problem, recall ([8], §3) that the periodic homology super-complex as-
sociated with the mixed complex (Ω(H), b, B) is quasi-isomorphic to the periodic super-
complex of its subcomplex (PΩ(H), b, B), on which

(κ−1)2 = 0,(47)

κ = 1− 1
n(n+ 1)

bB.(48)

Hence

B = (n+ 1)d(49)

on PΩn(H). Here P is the spectral projection associated to the generalized eigenvalue 1
of the operator κ. The chain homotopy is defined with the help of the Green operator
G, which is equal to 0 on the image of P , and to the inverse of 1− κ on the complemen-
tary subcomplex, i.e. the image of P⊥ = 1 − P . Then G commutes with the operators
commuting with κ, for example with d and b. Also, we have [b+B,Gd] = P⊥.
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These properties are a consequence of the spectral properties of the Karoubi oper-
ator κ. Clearly, similar statements are also true for the operators κ′, b′, B′, see the
formulae (37) and (38). By abuse of notation, we shall denote the corresponding spectral
projection and the Green operator also by P and G, respectively. It follows from (37)
that the spectral decompositions associated with κ and κ′ just coincide, and hence the
projections for these two Karoubi operators are identical.

Since the quasi-isomorphism P and chain homotopy Gd (this pair is called a special
deformation retraction in [8], §3) is expressed in terms of κ′, b′ and d (see [8], p.392),
which have been shown above to map ΩR(H) to itself, we conclude that ΩR(H) is quasi-
isomorphic to

PΩR(H) def= PΩ(H) ∩ ΩR(H).

The quasi-isomorphism and homotopy are given by the restrictions of P and Gd. In fact,
it is not even necessary to use the cited formulas to show that P and G map ΩR(H) to
itself. To this end, it is enough to observe that this subcomplex is stable under the action
of κ′, whence one has a similar spectral decomposition and a set of projectors for ΩR(H)
as for Ω(H). Both maps P and G are defined only with the help of the spectral properties
of κ′.

Therefore, we see that the periodic cohomology of (ΩR(H), b′, B′) is equal to the
cohomology of (PΩR(H), b′, deg◦d). Here deg is the operator which multiplies the degree
n homogeneous elements by n.

On the other hand, consider the mapGb′. It is easy to see that the pair (P,Gb′) have all
the properties of a special deformation retraction for (ΩR(H), d,

∑
(κ′)jb′). One just can

repeat the reasoning from [8], p. 391 to prove this. (Recall that the operator
∑

(κ′)jb′

is the image of B̃′ under the above isomorphism, which is why we consider it here.)
Therefore, we conclude this time that the periodic cohomology of (ΩR(H), d,

∑
(κ′)jb′)

equals the periodic cohomology of PΩR(H) with the induced differentials. From (48) it
follows that

∑
(κ′)jb′ = b′ ◦ deg on PΩR(H).

Finally, the isomorphism of supercomplexes CP1(H) = (PΩRodd(H)⊕PΩReven(H), b′+
deg ◦ d) and CP2(H) = (PΩRodd(H)⊕ PΩReven(H), d+ b′ ◦ deg), where

PΩRodd, even(H) :=
⊕

i≡1, 0(mod 2)

PΩRi (H),(50)

is established with the help of the following invertible chain operator:

L : CP1(H)→ CP2(H),(51)

L(ω) =
1
n!

ω, ω ∈ PΩRn (H).(52)

In order to check that (d+ b′ ◦ deg)L = L(d+ b′ ◦ deg), one computes:

(d+ b′ ◦ deg)L(ω) = (d+ b′ ◦ deg)
(

1
n!

ω

)
=

1
n!

(dω + n b′ω) =
1
n!

dω +
1

(n− 1)!
b′ω

= L((n+ 1)dω) + L(b′ω) = L((b′ + deg ◦ d)(ω))

for any ω ∈ PΩRn (H).

By a slight modification of this reasoning we obtain the following:
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Corollary 3. The periodic cohomology of the mixed complex ΩR(H) (with differen-
tials induced from b and B) is isomorphic to the periodic Hopf-type cohomology of H.

Proof. Just observe that the supercomplex (ΩR(H), b+B) is as before quasi-isomorphic
to (PΩR(H), deg ◦ d+ b). (Recall that the spectral decomposition of κ and κ′ coincide.)
Now, from (38) and (48) we conclude that at this subcomplex b′ = b.

Next, note that, since the space of left coinvariants in Ω(H) is also closed under the
Hochschild boundary b and the Karoubi operator κ, one can consider the corresponding
mixed subcomplex and its periodic cohomology.

Proposition 4. Suppose that the conditions of Theorem 1 are satisfied. Then the
antipode S of the Hopf algebra H induces an isomorphism from the periodic complex of
the mixed complex (ΩL(H), b, B) to the periodic complex of (ΩR(H), b′, B′).

Proof. Observe that, by virtue of the universal properties of Ω(H), the antipode S can
be extended to an anti-automorphism of Ω(H). Since we suppose that S2 = 1 in H, the
same equation holds for this extension. Hence we get an involution anti-automorphism of
the universal differential calculus of H. Now, a straightforward computation shows that
this map intertwines the right and left H-comodule structures and differentials b, κ and
b′, κ′ in the mixed complex.

Corollary 5. Under the conditions of Theorem 1, the periodic cohomology of
(ΩL(H), b, B) is canonically isomorphic to the periodic Hopf-type cohomology of H.

Remark 2. Note that the universality property of Ω(H) implies that all the maps
defined at the level of H can be extended to this differential calculus. Thus, one can
introduce the structure of a differential graded Hopf algebra on Ω(H). It would be an
interesting problem to find out how much of this structure can be introduced on ΩR(H)
and on the corresponding cyclic cohomology.

3. General case: arbitrary δ and σ. In this section we shall investigate the case
of a general modular pair in involution (δ, σ). To this end, we shall variate a little bit the
construction we have just considered.

First recall that for any character ξ of a Hopf algebra H, one can introduce the
following automorphism of H (called the “right convolution with the character ξ”):

ξ̃ : H → H, ξ̃(a) = a ? ξ
def= a(1)ξ(a(2)).(53)

The inverse of ξ̃ is given by the right convolution with ξ−1 def= ξ ◦ S.
The map ξ̃ is, in an evident way, a morphism of algebras, but it does not respect the

coalgebra structure on H. That is, ∆(ξ̃(a)) 6= ξ̃(a(1)) ⊗ ξ̃(a(2)). In fact, in place of this
equation one should use the following two:

∆(ξ̃(a)) = a(1) ⊗ ξ̃(a(2)),(54)

∆(ξ̃(a)) = ξ̃(a(1))⊗Adξ(a(2)),(55)

where

Adξ(a) = ξ−1 ? a ? ξ = ξ(S(a(1)))a(2)ξ(a(3)).(56)
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It is easy to see that Ad defines an action of the group of characters of H on H by Hopf
algebra homomorphisms. One calls it the adjoint action.

Since Ω(H) is the universal differential calculus, we conclude that the homomorphism
ξ̃ can be extended to higher degree forms. By abuse of notation, we shall denote this map
by the same symbol ξ̃. Observe that the equations (54) and (55) are fulfilled for this new
map too, but in a slightly different form. One computes:

∆R(ξ̃(ω)) = (id⊗ ξ̃)∆R(ω) = (ξ̃ ⊗Adξ)∆R(ω), ω ∈ Ω(H).(57)

On the other hand, Adξ does not appear for the left coaction:

∆L(ξ̃(ω)) = (id⊗ ξ̃)∆L(ω).(58)

In fact, the formulae (57) and (58) are particular cases of the following observation. As
remarked above, Ω(H) is a differential graded Hopf algebra. Its diagonal map will be
denoted by ∆̃. If once again, by abuse of notation, Adξ denotes the automorphism of
Ω(H) induced by the appropriate automorphism of H, then the formulas (54) and (55)
hold with ∆̃ substituted for ∆.

Note that, since ξ̃ is a map of differential graded algebras, one can use it to define a
new differential structure on Ω(H). Just put

dξ(ω) def= d(ξ̃(ω)) = ξ̃(dω).(59)

One easily checks the following statement, compare [8]:

Proposition 6. Let H be a Hopf algebra, ξ its character and dξ : Ω∗(H)→ Ω∗+1(H)
the map introduced above. Then:

(i) The map dξ is a ξ-differential, i.e. it satisfies the following equations:

d2
ξ = 0,(60)

dξ(ω1ω2) = dξ(ω1)ξ̃(ω2) + (−1)|ω1|ξ̃(ω1)dξ(ω2).(61)

(ii) The algebra Ω(H) equipped with the differential dξ is the universal example of
ξ-differential calculi on H in the sense that, for any algebra Ω satisfying

• Ω0 = H,
• Ω is equipped with a degree 1 map dΩ, d

2
Ω = 0, called a differential,

• ξ̃ extends to a degree 0 automorphism of Ω commuting with dΩ,
• its differential dΩ satisfies (61),

there exists a unique homomorphism of differential graded algebras ]Ω : Ω(H) → Ω such
that ]Ω|H = idH.

(iii) Any element θ in Ωn(H) can be represented in a unique way in the form

θ =
∑

i

ξ̃(ai0)dξ(ai1)dξ(ai2) . . . dξ(ain) =
∑

i

ãi0dξ(a
i
1)dξ(ai2) . . . dξ(ain),(62)

for some aαi ∈ H (here we put ã = ξ̃(a)). Similarly, any element θ can be written in the
form

θ =
∑

j

dξ(b
j
0)dξ(b

j
1) . . . dξ(b

j
n−1)ξ̃(bjn) =

∑

j

dξ(b
j
0)dξ(b

j
1) . . . dξ(b

j
n−1)b̃jn.(63)
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All this is checked by a straightforward inspection of definitions. Below we will denote
the universal differential calculus Ω(H) with the differential dξ by Ωξ(H). We shall also
use the presentation of part (iii) to write the elements of Ωξ(H).

Now it is natural to write the left and right coactions of H on Ω(H) in terms of the
formula (62). By the formulae (57) and (58), one gets

∆R(dξ(ω)) = (dξ ⊗Adξ)∆R(ω),(64)

∆L(dξ(ω)) = (id⊗ dξ)∆L(ω).(65)

Hence, the formulae (17) and (18) become

(66) ∆R(θ) =
∑

i

ξ̃(ai0,(1))dξa
i
1,(1)dξa

i
2,(1) . . . dξa

i
n,(1) ⊗Adξ(ai0,(2)a

i
1,(2)a

i
2,(2) . . . a

i
n,(2)),

(67) ∆L(θ) =
∑

i

ai0,(1)a
i
1,(1)a

i
2,(1) . . . a

i
n,(1) ⊗ ξ̃(ai0,(2))dξa

i
1,(2)dξa

i
2,(2) . . . dξa

i
n,(2),

and similarly for the presentation (63):

(68) ∆R(θ) =
∑

j

dξb
j
0,(1)dξb

j
1,(2) . . . dξb

j
n−1,(1)ξ̃(b

j
n,(1))⊗Adξ(b

j
0,(2)b

j
1,(2) . . . b

j
n−1,(2)b

j
n,(2)),

(69) ∆L(θ) =
∑

j

bj0,(1)b
j
1,(1) . . . b

j
n−1,(1)b

j
n,(1) ⊗ dξb

j
0,(2)dξb

j
1,(2) . . . dξb

j
n−1,(2)ξ̃(b

j
n,(2)).

Here we have used the fact that Adξ is a Hopf algebra homomorphism.
To put the above considerations short, one can say that (Ωξ(H), dξ) is the uni-

versal ξ-differential algebra consisting of linear combinations of elements of the form
ã0dξa1dξa2 . . . dξan (or dξb0dξb1 . . . dξbn−1b̃n ), and on which the Hopf algebra H coacts
on both sides by the formulae (66) and (67) (respectively by (68) and (69)). We shall use
this notation below, though it is not absolutely necessary, since it is just another way to
speak about the universal calculus Ω(H).

As before, one can consider the spaces of right and left coinvariants in Ωξ(H). For
instance, the space of right ones, ΩR

ξ (H), consists of the tensor powers of the space
spanned by the elements

πR(a) = d(a(1))S(a(2))(70)

= dξ(a(1))ξ̃
−1(a(2))S(a(3))

= dξ(a(1))Sξ−1(a(2)), a ∈ ker ε.

As before, ΩRξ (H) is a differential graded subalgebra of Ωξ(H). This follows directly from
(66) (see also (64)). In addition to the usual coinvariants, one can consider the space of
elements θ such that

∆R(θ) = θ ⊗ σ(71)

for some group-like element σ. We shall call such elements (right) σ-coinvariants. Let
ΩRσ (H) (respectively ΩR

ξ,σ(H)) denote the space of right σ-coinvariants in Ω(H) (resp.
in Ωξ(H)). Clearly, since ∆R commutes with the differential d, ΩR

σ (H) is a differential
graded subalgebra of Ω(H). A similar statement holds for dξ, ΩRξ,σ(H) and Ωξ(H).

Proposition 7. The differential dξ maps the space of σ-coinvariants into itself.
Moreover, the space ΩR

ξ,σ(H) is a differential graded ΩR
ξ (H)-sub-bimodule of Ωξ(H).
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Proof. Note that the right multiplication by σ establishes an isomorphism between the
space of (right) coinvariants and the space of (right) σ-coinvariants. The inverse is given
by the multiplication by σ−1 = S(σ). Hence, any element in ΩR

ξ,σ(H) is representable in
the form

θ = θ′ · σ,(72)

for a suitable θ′ ∈ ΩRξ (H). Hence, it is enough to show that dξ(σ) ∈ ΩRξ,σ(H). We compute:

dξ(σ) = d(ξ̃(σ)) = d(σξ(σ)),(73)

which is, clearly, (right) σ-coinvariant, since d commutes with the coaction. Here we have
used the fact that σ is group-like, i.e. ∆(σ) = σ ⊗ σ.

Finally, the fact that ΩR
ξ,σ(H) = ΩRσ (H) is a left ΩRξ (H)-module is a consequence of the

presentation (72). Since the left multiplication by σ±1 also establishes an isomorphism
between ΩRξ,σ(H) and ΩRξ (H), the conclusion follows.

Let us now define the ξ-twisted cyclic structure on Ωξ(H) = Ω(H) by giving analogs
of the Hochschild operator b (or b′) and Karoubi operator κ (or κ′). In other words, let
us use the presentations (62) and (63) to define the following operators on Ω(H). Put
(compare (32)–(36))

bξ(ω dξa) = (−1)|ω|(ωξ̃(a)− aω),(74)

κξ = 1− bξd− dbξ ,(75)

or explicitly

κξ(ωdξa) = (−1)|ω|daω.(76)

Similarly, define

b′ξ(dξaω) = ξ̃(a)ω − ωa,(77)

κ′ξ(dξaω) = (−1)|ω|ωda.(78)

It is clear that the operators bξ and b′ξ are well defined, since ξ̃(1) = 1. Also, observe that

κ′ξ = κ−1
ξ−1 ,(79)

b′ξ = −bξ−1κ′ξ.(80)

Once again, one easily checks that these operators have all the properties of the standard
ones, listed in [8], §3, with few modifications that are due to the ξ̃-twist of the structure.
In fact, the following proposition holds (compare [8], §3).

Proposition 8. Let H be a Hopf algebra, ξ its character, bξ, b′ξ, κξ and κ′ξ be the
operators on Ω(H), introduced in (74)-(78), d and dξ the standard and twisted differen-
tials, respectively, on Ω(H) (see (59)), and ξ̃ the automorphism of Ω(H) defined by the
right convolution with the character ξ on H. Then:

(i) b2ξ = (b′ξ)
2 = 0.

(ii) The operators bξ, κξ, d, dξ, ξ̃ (similarly b′ξ, κ
′
ξ) commute in the following way:

[bξ, κξ] = [d, κξ] = [dξ, κξ] = 0,

[ξ̃, κξ] = [ξ̃, bξ] = 0.
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The following identities hold on the homogeneous elements of degree n in Ωξ(H):

(iii) κn+1
ξ dξ = ξ̃−1 dξ = d

(iv) κnξ = ξ̃−1 + bξκ
n
ξ d.

(v) κnξ bξ = ξ̃−1 bξ.

(vi) κn+1
ξ = ξ̃−1(1− dbξ).

(vii) (κnξ − ξ̃−1)(κn+1
ξ − ξ̃−1) = 0.

(viii) Let

Bξ =
n∑

j=0

κjξd.(81)

Then Bξd = dBξ = B2
ξ = 0.

(ix) On the set of fixed points of the operator ξ̃ one has

κ
n(n+1)
ξ − 1 = bξBξ = −Bξbξ.(82)

Similar equations hold for the primed operators. (The version of the operator Bξ con-
structed with the help of the primed Hochschild and Karoubi operators will be denoted B ′ξ.)

Proof. Part (i) is checked by a direct inspection of formulas. Part (ii) follows from
part (i), (75) and the fact that ξ̃ is a differential graded algebra automorphism, so that
it commutes with bξ and dξ, and, consequently, also with κξ. All the rest is obtained by
mimicking the reasoning of the cited paper and taking into consideration the fact that ξ̃
commutes with all the operators introduced above. For instance, let us prove part (iv).
We compute, using the presentation (62), the formula (76), dξ = d ξ̃ and the definitions
of bξ and dξ:

κnξ (ã0dξa1 . . . dξan) = da1 . . . dan ã0 = ξ̃−1(dξa1 . . . dξan ξ̃(ã0))

= ξ̃−1(ã0dξa1 . . . dξan + (−1)nbξ(dξa1 . . . dξandξã0))

= ξ̃−1(ã0dξa1 . . . dξan + (−1)nbξκnξ (dξã0dξ ξ̃(a1) . . . dξ ξ̃(an)))

= ξ̃−1(ã0dξa1 . . . dξan + bξκ
n
ξ dξ(ã0dξa1 . . . dξan))

= (ξ̃−1 + bξκ
n
ξ d)(ã0dξa1 . . . dξan).

In the case of the primed operators the proof is completely similar.

Now we come to the main result of this paper. The following theorem is a straight-
forward generalization of Theorem 1 of Section 2.

Theorem 9. Let (δ, σ) be a modular pair in involution, and let ξ = δ−1 be the con-
volution inverse of δ. Then the space ΩR

ξ,σ(H) of σ-coinvariants in Ωξ(H) is stable under
the twisted Hochschild (b′ξ and bδ) and Karoubi (κ′ξ and κδ = (κ′ξ)

−1, see (79)) operators.
Moreover, ΩRξ,σ(H) is fixed under the operator ξ̃, and the associated periodic cohomology
of the primed mixed complex (i.e. the complex with operators b′ξ and B′ξ) is naturally iso-
morphic to the Hopf-type periodic cohomology HPδ,σ(H) of A. Connes and H. Moscovici.

Proof. It is obtained in a way absolutely similar to the proof of Theorem 1. First of
all, we establish the first part of this statement. Once again, we prefer to work with the
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primed versions of cyclic operators—the statement about their unprimed counterparts is
a direct consequence of the equations (79) and (80).

Recall that ξ = δ−1 and check that b′ξ(ω) ∈ Ωσ(H) for all ω ∈ Ωσ(H) (compare (40)):

b′ξ(ω) = b′ξ(π
R(a1) . . . πR(an)σ)

= b′ξ(dξ(a1,(1))Sδ(a1,(2))ω
′σ) = ξ̃(a1,(1))Sδ(a1,(2))ω

′σ − Sδ(a1,(2))ω
′σa1,(1)

= −(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (Sδ(a1,(2))σa1,(1))

= −(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (Sδ(a1,(2))S
2
δ (a1,(1)))σ

= −(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (Sδ(Sδ(a1,(1))a1,(2)))σ

= −πR(S(a1,(n−1))a2)πR(S(a1,(n−2))a3) . . . πR(Sδ(a1,(1))an)σ.

(83)

We have used the fact that S2
δ (a) = σaσ−1, and the following properties of Sδ:

Sδ(ab) = Sδ(b)Sδ(a),(84)

∆(Sδ(a)) = S(a(1))⊗ Sδ(a(2)),(85)

Sδ(a(1))a(2) = δ(a).(86)

All this is proven by direct computations (see, e.g., [6]).
Similarly to the observation following the equation (40), one concludes that κ′ξ maps

Ωσ(H) to itself by a mere inspection of definitions. But we prefer to give an explicit proof
here too. We compute (cf. (41)):

κ′ξ(dξa1,(1)Sδ(a1,(2))ω
′σ) = (−1)|ω

′|Sδ(a1,(2))ω
′σ da1,(1)

= (−1)|ω
′|(πR(S(a1,(n+1))a2) . . . πR(S(a1,(3))an)) (Sδ(a1,(2))σda1,(1)).

(87)

Now, consider the last term of this expression separately (we omit the subscript 1 for
brevity):

Sδ(a(2))σda(1) = Sδ(a(3))σπ
R(a(1))a(2)

= πR(S(a(4))σa(1) − S(a(4))σε(a(1)))Sδ(a(3))σa(2)

= πR(S(a(4))σa(1))Sδ(a(3))S
2
δ (a(2))σ − πR(S(a(3))σ)Sδ(a(2))S

2
δ (a(1))σ

= πR(S(a(4))σa(1))Sδ(Sδ(a(2))a(3))σ − πR(S(a(3))σ)Sδ(Sδ(a(1))a(2))σ

= πR(δ(a(2))S(a(3))σa(1))σ − πR(δ(a(1))S(a(2))σ)σ

= πR(Sδ(a(2))S
2
δ (a(1))σ)σ − πR(Sδ(a)σ)σ

= −πR((Sδ(a)− δ(a))σ)σ.

(88)

Here we used the equation (24).
Now, the equations (87) and (88) show that, identifying (ΩR

σ )n(H) with (ker ε)⊗n (see
Proposition 7), one can write the twisted Karoubi operator κ′ξ as follows:

κ′ξ(h1, h2, . . . , hn) = proj′′Sδ(h1)(h2, . . . , hn, σ),

where proj′′ is the following projection:

proj′′(h1, h2, . . . , hn) = (h1 − ε(h1) · 1, h2 − ε(h2) · 1, . . . , hn − ε(hn)σ).(89)

Finally, ξ̃ acts trivially on ΩR
σ (H), since δ(σ) = 1, ξ = δ−1, and part (ix) of Proposition

8 is fulfilled. The rest of the proof reproduces the reasoning at the end of the proof of
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Theorem 1 of Section 2 with minor technical changes. For instance, the homomorphism
(46) should be changed to

H⊗n 3 h1 ⊗ h2 ⊗ . . .⊗ hn 7→ −πR(h1) . . . πR(hn)σ ∈ ΩRn (H).(90)

Similarly to Corollary 3, we obtain:

Corollary 10. The periodic cyclic cohomology of the complex (ΩR
σ (H), bδ, Bδ) is

isomorphic to the Connes-Moscovici periodic cyclic cohomology HPδ,σ(H).

Now, similarly to the discussion at the end of Section 2, one can try to obtain an
analog of Theorem 9 for the space of left σ-coinvariants. This is a good exercise and is
left to the reader.

4. Conclusions. In this section, we shall make a few remarks concerning the possi-
ble ways to generalize the Hopf-type cohomology. First of all, consider the special case
discussed in Section 2 (i.e. we suppose that S2 = id and consider the modular pair ε, 1).
Since both ΩR(H) and ΩL(H) are closed under the mixed complex differentials of Ω(H),
we conclude that the subspace of bi-invariants is also a sub-mixed complex in Ω(H). More-
over, this subcomplex is stable under the involution S. The corresponding periodic and
dihedral periodic homology will be denoted by HPbi,ε,1(H) and HDε,1(H), respectively.

In the case of an arbitrary modular pair in involution δ, σ, the same construction
allows one to define an analogue of bi-invariant cohomology. If σ = 1, one can reproduce
the dihedral construction too. What is the analog of dihedral cohomology in the case of
arbitrary σ is not so evident.

Note that if the Hopf algebra H is cocommutative, the spaces of left and right
(co)invariants coincide, so we see that in this case bi-invariant cohomology is isomor-
phic to the Hopf-type one. In general the answer is not clear. Besides this, it isn’t clear
whether it is possible to define this type of bi-invariant and dihedral cohomology in an
Ω(H)-independent way.

Another important observation is that in order to define the twisted cyclic structure
on Ω(H) (which is equivalent, up to a change of basis, to Ωξ(H)), we didn’t really use
the fact that the isomorphism ξ̃ was the convolution with a character of H, nor even did
we use the fact that H is a Hopf algebra. One can go along the very same way for any
automorphism f of any algebra A to define f -twisted cyclic operators on its universal
differential calculus Ω(A). One can denote the corresponding cyclic (respectively negative
cyclic, periodic cyclic, etc.) homology by HCf (A) (resp. HC−f (A), HPf (A), etc.). For
example, one can take an automorphism

f : H → H, f(a) = α ? a ? β

(α and β are characters of H). Then, if (σSα,β)2 = 1, passing to σ-coinvariants one
obtains the construction of [23]. (Sα,β is the evident generalization of the map Sδ.)

In fact, the homology HCf (A) can be defined in a quite Ω(A)-independent way, see for
example [19]. Thus one can define the f -twisted cyclic module as follows: CCn(A, f) =
A⊗n+1 and

δfi (h0, h1, . . . , hn) =
{

(h0, . . . , hihi+1, . . . , hn), i = 0, . . . , n− 1,
(f(hn)h0, . . . , hn−1), i = n,

(91)



HOPF-TYPE COHOMOLOGY VIA THE KAROUBI OPERATOR 215

σfi (h0, h1, . . . , hn) = (h0, . . . , hi−1, 1, hi, . . . , hn), 1 ≤ i ≤ n,(92)

τfn (h0, h1, . . . , hn) = (−1)n(f(hn), h0, . . . , hn).(93)

Then all the usual equations of the cyclic operations are fulfilled for these ones, except
that one should substitute an appropriate tensor power of f for the identity operator in
certain formulas. Furthermore, considering the corresponding spaces of fixed points, one
defines the twisted homology theories in the usual way, by means of the cyclic double
complex.

One more way to generalize the constructions above is to use the remark at the end
of Section 2. Taking into consideration the fact that Ω(H) is a (differential graded) Hopf
algebra, one can consider it as an input to the Connes-Moscovici construction. Then the
universality property of Ω(H) guarantees that Sδ extends to a homomorphism of this
algebra in such a way that all the properties of this map are valid for the extension too.
What one obtains in this way is a construction very similar to the non-commutative Weil
complex of Crainic [6]. On the other hand, a very similar construction was introduced by
-Durd-evič in the guise of universal characteristic classes for Hopf-Galois extensions. This
matter will be a subject of thorough discussion in a forthcoming paper.

Finally, there are two more possible approaches to generalizing constructions presented
in this paper. The first one consists in considering, instead of the subcomodule ΩR

σ (H)
of Ω(H) determined by a modular pair, an arbitrary H-subcomodule of the same algebra
which is stable under the Hochschild and “de Rham” operators b and d (equivalently,
one can consider their primed analogs). Here one can plug in both the standard and the
ξ-twisted versions of these operators. For instance, if δ = ε, such stable subcomodules are
in one-one correspondence with all subcoalgebras H′ of H, for which

S(a(2))H′a(1) ⊆ H′

for all a ∈ H (cf. the isomorphisms (19), (21) and the formulas (40), (41)). If H is
commutative, this is always true, and if H is cocommutative, this is equivalent to saying
that H′ is stable under the adjoint action of H on itself.2

The second construction seems to be even more general. It is based on the following
idea. It is a well-known fact (see [17]) that one can obtain a good variant of cyclic-type
homology, called the non-commutative de Rham homology from the universal differential
calculus Ω(A) of an algebra A simply by passing to the quotient complex

Ω̄(A) def= Ω(A)
/

[Ω(A), Ω(A)],

where [Ω(A), Ω(A)] is the subspace of graded commutators of elements of Ω(A). One
easily checks that the differential d of Ω(A) descends to a differential in Ω̄(A). A less
trivial fact is that the induced homology of Ω̄(A) coincides with a certain subspace of the
cyclic homology of A (see the paper of Karoubi [17]).

Now, if we pass to the barred complex in the case of a Hopf algebra H, we can no
more say that H acts on it. In fact, this is not the case, unless H is commutative. But
it is easy to see that the space of commutators [H, H] is a coideal in H, whence one can

2This condition resembles very much Schneider’s normality condition of a Hopf subalge-
bra [21].
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substitute the coalgebra H̄ = H/[H, H] for H. Then H̄ coacts on Ω̄(H) on the right (as
well as on the left) and it is possible to consider the space of coinvariants of this coaction,
namely the space of those elements ω̄ ∈ Ω̄(H) that are sent to ω̄ ⊗ 1̄, where 1̄ is the
group-like element in H̄ determined by 1 ∈ H.

This construction seems to play an important role in the theory of characteristic
classes for Hopf-Galois extensions (see e.g. [10, 11]). On the other hand, an important
application of the Hopf-type cohomology is the theory of characteristic classes of a Hopf-
module algebra. Since to any Hopf-module algebra one can associate its smashed product
with H, which is an example of a Hopf-Galois extension of an algebra, it seems inter-
esting to investigate the relationship between the Connes and Moscovici construction of
characteristic classes of a Hopf-module algebra and various constructions of characteristic
classes for Hopf-Galois extensions (see the just quoted papers for definitions).
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[11] M. -Durd-evič, Quantum principal bundles and their characteristic classes, Banach Center

Publications 40 (1997), 303–313.
[12] P. M. Hajac, Strong connections on quantum principal bundles, Commun. Math. Phys.

182 (1996), 579–617.
[13] P. M. Hajac, M. Khalkhali, B. Rangipour and Y. Sommerhäuser, Hopf-cyclic homology
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