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Introduction. Let H ⊂ C be an open right half-plane, i.e. {α ∈ C : Re(α) > 0}, or an
open upper half-plane, i.e. {α ∈ C : Im(α) > 0}. Let f(z1, . . . , zn) ∈ C[z1, . . . , zn] be a
polynomial in n variables, z1, . . . , zn. We say that f(z1, . . . , zn) isH-stable if for any values
αj ∈ H, 1 ≤ j ≤ n, f(α1, . . . , αn) 6= 0. If H is an open right half-plane, then f is called
Hurwitz-stable. If H is an open upper half-plane, then f is called a stable polynomial.
The theory of stable polynomials has a long history, but the recent development of this
theory is very impressive, and is summarized in a remarkable survey article [Wa’11].

The purpose of this report is to introduce a recent study on various stabilities of the
Alexander polynomials of knots or links in S3. The study was motivated by our desire to
answer a question (later called conjecture) posed by Jim Hoste about ten years ago. He
asks whether the zeros of the Alexander polynomial ∆K(t) of an alternating knot K have
real parts greater than −1. It is closely related to the question whether ∆K(−(t+ 1))
is Hurwitz-stable for an alternating knot K. (See Conjecture 4.2.) The question leads
us to other problems on stabilities of the Alexander polynomial of a (not necessarily
alternating) knot. For example, since the sequence of the coefficients of a stable univariate
real polynomial under a certain condition is unimodal, we see immediately that stable
Alexander polynomials of alternating knots satisfy the Trapezoidal Conjecture, one of
the outstanding conjectures that still remains open.

In [LM’11], it is shown that for many 2-bridge knots or links, Hoste’s question has
the affirmative answer. Further, a few more subtle theorems on Hurwitz-stability and
stability of the Alexander polynomials of 2-bridge knots are proven.

In this paper, knots are not necessarily alternating, and we discuss stabilities of the
Alexander polynomials of knots, and further, we discuss the third stability, called circular
stability, of the Alexander polynomials of knots.

This paper consists of two parts. The first part, consisting of Sections 1–3, is a quick
review of various types of stable polynomials. Almost all material in this part is taken
from various known sources and hence proofs are completely omitted. Section 4 is the
second part, where we study the various types of stabilities of the Alexander polynomials
of knots or links in S3. However, most of the proofs of new theorems in this part are also
omitted, since the details will appear elsewhere (cf. [HM’13]).

1. Half-plane property. Let H ⊂ C be an open half-plane such that ∂H contains the
origin. Let f(z1, . . . , zn) ∈ C[z1, . . . , zn] be a polynomial in n variables.

Definition 1.1 ([Br’07, p. 303]). f ∈ C[z1, . . . , zn] is said to be H-stable if for any values
αj ∈ H, 1 ≤ j ≤ n, f(α1, . . . , αn) 6= 0. If f(z1, . . . , zn) ∈ C[z1, . . . , zn] is H-stable for
some open half-plane, we say f has a half-plane property.

There are two special cases.

Definition 1.2 ([Br’07, p. 303]).

(1) Let H be the right half-plane, i.e. H = {α ∈ C : Re(α) > 0}. Then an H-stable
polynomial f ∈ C[z1, . . . , zn] is called Hurwitz-stable. In other words, f is Hurwitz-
stable if for any αj ∈ C, 1 ≤ j ≤ n, such that Re(αj) > 0, f(α1, . . . , αn) 6= 0.
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(2) Let H be the upper half-plane, i.e. H = {α ∈ C : Im(α) > 0}. Then an H-stable
polynomial f ∈ C[z1, . . . , zn] is called a stable polynomial.

Remark 1.3. If a real polynomial f ∈ R[z1, . . . , zn] is stable, f is called real stable. For
convenience, we regard the zero polynomial as stable.

From the definitions, we see immediately:

Proposition 1.4. Let f(z) ∈ R[z] be a real univariate polynomial. Then

(1) f(z) is real stable if and only if f(z) has only real zeros.
(2) f(z) is Hurwitz-stable if and only if for any zero α of f(z), Re(α) ≤ 0.

The theorem below is elementary, but useful.

Theorem 1.5 ([Wa’11, Lemma 2.4]). The following operations preserve H-stability in
C[z1, . . . , zn].

(a) Permutation: For any permutation σ ∈ Sn, f → f(zσ(1), . . . , zσ(n)).
(b) Scaling: For any c ∈ C, and (a1, . . . , an) ∈ Rn+ (i.e. aj > 0, 1 ≤ j ≤ n),

f → cf(a1z1, . . . , anzn).
(c) Diagonalization: For {i, j}, 1 ≤ i, j ≤ n, f → f(z1, . . . , zn)|zi=zj

.
(d) Differentiation (or contraction): f → ∂

∂z1
f(z1, . . . , zn).

2. Hurwitz-stable polynomials. There are two basic tools to show Hurwitz-stability
of a real univariate polynomial.

2.1. Hurwitz–Routh criterion. Let f(z) = a0z
n + a1z

n−1 + . . .+ an ∈ R[z] be a real
polynomial, where a0 > 0, aj ∈ R, 0 ≤ j ≤ n. Define an n× n matrix Hn as follows:

Hn =



a1 a0 0 0 · · · 0
a3 a2 a1 a0 · · · 0

. . .
...

...
. . .

a2n−1 a2n−2 · · · an+1 an


, (2.1)

where aj = 0 if j > n.
For 1 ≤ k ≤ n, let Hk be the first k× k principal submatrix of Hn. Namely, Hk is the

k × k submatrix consisting of the first k rows and columns of Hn.

For example, H1 = [a1] and H2 =
[
a1 a0
a3 a2

]
.

We say that f(z) is strongly Hurwitz-stable (or simply s-Hurwitz-stable) if any zero of
f(z) has a negative real part.

Theorem 2.1 (Hurwitz–Routh criterion [La’69, Theorem 8.8.1]). A real polynomial
f(z) =

∑n
j=0 ajz

n−j, a0 > 0, aj ∈ R, 1 ≤ j ≤ n, is strongly Hurwitz-stable if and
only if detHk > 0 for 1 ≤ k ≤ n.
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Using Theorem 2.1, we can characterize strongly Hurwitz-stable polynomials with
small degrees.

Example 2.2.

(1) f(z) = a0z + a1, a0 > 0, is s-Hurwitz-stable if and only if a1 > 0.
(2) f(z) = a0z

2 + a1z + a2, a0 > 0, is s-Hurwitz-stable if and only if a1, a2 > 0.
(3) f(z) = a0z

3 +a1z
2 +a2z+a3, a0 > 0, is s-Hurwitz-stable if and only if a1, a2, a3 > 0

and a1a2 > a0a3.
(4) f(z) = a0z

4 + a1z
3 + a2z

2 + a3z + a4, a0 > 0, is s-Hurwitz-stable if and only if
(i) a1, a2, a3, a4 > 0, (ii) a1a2 > a0a3, and (iii) a3(a1a2 − a0a3) > a2

1a4.

2.2. Lyapunov matrix. There is another important tool to study Hurwitz-stability
of a real univariate polynomial given by Lyapunov. Let f(z) be a real polynomial of
degree n. Let M be a companion matrix of f(z).

Theorem 2.3 (Lyapunov [La’69, Theorem 8.7.2]). f(z) is strongly Hurwitz-stable if and
only if there exist two real positive definite (symmetric) matrices V and W such that

VM +MTV = −W. (2.2)

For convenience, we call V a Lyapunov matrix associated to M . It is often quite
difficult to find a Lyapunov matrix even if f(z) is known to be Hurwitz-stable.

Example 2.4.

(1) f(z) = z + a1. Then M = [−a1]. If a1 < 0, Lyapunov matrix does not exist, since
M is positive definite. If a1 > 0, then V = E is a Lyapunov matrix associated to
M and f(z) is s-Hurwitz-stable.

(2) Let f(z) = z2 + a1z + a2. If a1, a2 > 0, then we know f(z) is s-Hurwitz-stable,

see Example 2.2 (2). For example, if a1 = 3 and a2 = 4, i.e., M =
[
0 −4
1 −3

]
, then

V =
[

7/12 −1/2
−1/2 5/6

]
is a Lyapunov matrix and W = E.

In graph theory, this concept appears in literature. We mention one example.

Example 2.5 ([COSW’04, Theorem 1.1] and [BB’08, p. 208]). The spanning-tree poly-
nomial of a connected finite graph is Hurwitz-stable and also stable.

3. Stable polynomial

3.1. Multivariate stable polynomials. First, we state two basic properties of stable
polynomials.

Theorem 3.1 ([Wa’11, Lemma 2.4]). The following operations preserve stability in
C[z1, . . . , zn].

(a) Specialization: For any a ∈ C with Im(a) ≥ 0, f → f(a, z2, . . . , zn).
(b) Inversion: If degz1(f) = d, f → zd1f(−z−1

1 , z2, . . . , zn).

Next, the following theorems give us systematic ways to construct stable polynomials.
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Theorem 3.2 ([BB’08, Proposition 2.4]). Let Ai, 1 ≤ i ≤ n, be complex, semi-positive
definite m ×m matrices and B be an m ×m Hermitian matrix. Then, f(z1, . . . , zn) =
det[z1A1 + . . .+ znAn +B] is stable.

As a consequence of Theorem 3.2, we have:

Theorem 3.3 ([Br’07, p. 308]). Let Z = diag(z1, . . . , zn) be a diagonal matrix. If A is
an n× n Hermitian matrix, then both det(Z +A) and det(E +AZ) are stable.

If n = 2, then the converse of Theorem 3.2 holds for a real stable polynomial.

Theorem 3.4 ([BB’10, Theorem 1.13], characterization of real stable polynomials with
two variables). Let f(x, y) ∈ R[x, y]. Then f is real stable if and only if it can be written
as

f(x, y) = ±det[xA+ yB + C], (3.1)

where A and B are positive semi-definite matrices and C is a symmetric matrix of the
same order.

The following theorem claims that the stability of multivariate polynomials can be
reduced to the stability of univariate polynomials.

Theorem 3.5 ([Wa’11, Lemma 2.3]). A polynomial f ∈ C[z1, . . . , zn] is stable if and
only if for any (a1, . . . , an) ∈ Rn and (b1, . . . , bn) ∈ Rn+ (i.e. bj > 0, 1 ≤ j ≤ n),
f(a1 + b1t, . . . , an + bnt) ∈ C[t] is stable.

If a polynomial is of special type, the stability problem could be slightly simpler.

Theorem 3.6 ([Br’07, Theorem 5.6]). Let f ∈ R[z1, . . . , zn] be a multi-affine polynomial
(i.e. each variable zj has degree at most 1 in each term). Then f is stable if and only if
for all (x1, . . . , xn) ∈ Rn and for 1 ≤ i, j ≤ n, ∆ij(f)(x1, . . . , xn) ≥ 0, where ∆ij(f) =
∂f
∂zi

∂f
∂zj
− ∂2f

∂zi∂zj
f .

Remark 3.7. If f is not multi-affine, then in Theorem 3.6, the “only if” part holds, but
the “if” part does not.

Example 3.8 ([Br’07, Example 5.7]). Let f = a00 + a01y + a10x+ a11xy, aij ∈ R. Then

∆12(f) = −
[
a00 a01
a10 a11

]
. Therefore, f is stable if and only if det[aij ] ≤ 0.

Theorem 3.9 ([WW’09, p. 1]). Suppose f ∈ C[z1, . . . , zn] is homogeneous. Then, f is
Hurwitz-stable if and only if f is stable.

3.2. Real stable univariate polynomials. Real stable univariate polynomials have
many deep properties. Since we are particularly interested in these polynomials, we will
spend more space for them.

We begin with the following interesting theorem.

Theorem 3.10 ([Br’07, p. 307]). Let f(z) = a0z
n + a1z

n−1 + . . . + an ∈ R[z], a0 6= 0,
aj ≥ 0, 0 ≤ j ≤ n. Suppose f(z) is real stable. If aiak 6= 0 for i < k, then for any j,
i < j < k, aj 6= 0. Therefore, if an 6= 0, then all aj 6= 0, for 1 ≤ j ≤ n.
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Theorem 3.10 shows that a sequence of the coefficients of a real stable polynomial is
worth studying.

Definition 3.11 ([Wi’90, p. 126]). A sequence {c0, c1, . . . , cn} of positive numbers is
called unimodal if there exist indices r, s such that

c0 ≤ c1 ≤ . . . ≤ cr = cr+1 = . . . = cr+s ≥ cr+s+1 ≥ . . . ≥ cn. (3.2)

Further, {c0, c1, . . . , cn} is called log-concave if

cj−1cj+1 ≤ c2
j for j = 1, 2, . . . , n− 1. (3.3)

If “≤” is replaced by “<” in (3.3), then it is called strictly log-concave.

The following theorem is well-known.

Theorem 3.12 ([Wi’90, Proposition p. 127]). If a positive sequence {c0, c1, . . . , cn} is
log-concave, then it is unimodal.

Now we have an important result.

Theorem 3.13 ([Wi’90, p. 126]). Let f(z) = a0z
n + a1z

n−1 + . . . + an ∈ R[z], a0 6= 0,
an 6= 0. Suppose aj ≥ 0, 0 ≤ j ≤ n. If f is real stable (and hence aj > 0 for all j ≥ 0),
then {a0, a1, . . . , an} is strictly log-concave, and hence it is unimodal.

The concept defined below is well-studied and plays an important role in the theory
of stable polynomials.

Definition 3.14 ([Br’07, p. 310]). Let f, g ∈ R[z] be univariate polynomials. Suppose f, g
are real stable (i.e. all zeros are real). Let α1 ≤ α2 ≤ . . . ≤ αn and β1 ≤ β2 ≤ . . . ≤ βm
be the zeros of f and g, respectively. Then we say that the zeros {αj} and {βk} are
interlaced (or we simply say that f and g are interlaced), if the following is satisfied:

(i) |m− n| ≤ 1,
(ii) they can be ordered so that
(a) if n = m, then

α1 ≤ β1 ≤ α2 ≤ β2 ≤ . . . ≤ αn ≤ βn,
or β1 ≤ α1 ≤ β2 ≤ α2 ≤ . . . ≤ βn ≤ αn;

(b) if n = m+ 1, then

α1 ≤ β1 ≤ α2 ≤ β2 ≤ . . . ≤ αm ≤ βm ≤ αm+1(= αn);

(c) if m = n+ 1, then

β1 ≤ α1 ≤ β2 ≤ α2 ≤ . . . ≤ αn ≤ βn+1(= βm).

Suppose that (the zeros of) f and g are interlaced. Let ĝi = g(z)
z−βi

, 1 ≤ i ≤ m.

Lemma 3.15 ([Wa’11, p. 56]). If deg(f) ≤ deg(g) and the zeros of g are simple, then
there is a unique real sequence {a, b1, . . . , bm} such that f = ag + b1ĝ1 + . . .+ bmĝm.

Theorem 3.16 ([Wa’11, Exercise 2.5]). Let f, g ∈ R[z] be real stable polynomials such
that fg has only simple zeros. Suppose n = deg f ≤ deg g = m and β1 < β2 < . . . < βm
are the zeros of g. Then the following are equivalent:
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(a) The zeros of f and g are interlaced.
(b) The sequence {f(β1), f(β2), . . . , f(βm)} alternates in sign (strictly).
(c) In f = ag +

∑m
j=1 bj ĝj, all of b1, . . . , bm have the same sign and are non-zero.

Definition 3.17 ([Wa’11, p. 56]). For f, g ∈ C[z], we define the Wronskian W [f, g] as
W [f, g] = f ′g − fg′. For f( 6= 0), g(6= 0) ∈ R[z], we say that two real stable f, g are in
proper position (denoted by f � g) if W [f, g] ≤ 0 on all real values.

If the zeros of f and g are interlaced, then either W [f, g] ≤ 0 or W [f, g] ≥ 0 on all
real values and hence f � g or g � f [Wa’11, p. 56].

Theorem 3.18 ([Wa’11, p. 57], Hermite–Kakeya–Obreschkoff Theorem). Let f, g ∈ R[z].
Then all non-zero polynomials in {af + bg : a, b ∈ R} are real-rooted if and only if

(1) f, g are real stable and
(2) f � g, g � f or f = g = 0.

In graph theory, the concept of interlacedness has been used in [GR’01], and for
example, the following theorem is reproved.

Theorem 3.19 ([GR’01, p. 195]). Peterson graph does not have Hamilton cycles.

Conjecture 3.20 (See [GR’01, p. 354]). The sequence of the coefficients of the chromatic
polynomial is unimodal.

This conjecture is still open. However, a similar conjecture for the Tutte polynomial
is false [Sc’93].

4. Knot polynomials

4.1. Hoste’s conjecture. In 2002, based on his extensive calculations of the zeros of
the Alexander polynomials, Hoste made the following conjecture.

Conjecture 4.1 (J. Hoste, 2002). Let K be an alternating knot and ∆K(t) the Alexander
polynomial of K. Then for any zero α of ∆K(t), Re(α) > −1.

One of the key observations is that Conjecture 4.1 is equivalent to

Conjecture 4.2. Under the same assumption, ∆K(−(t+1)) ∈ R[t] is strongly Hurwitz-
stable.

Using Lyapunov matrices, the following theorem is proved.

Theorem 4.3 ([LM’11, Theorem 1]). Let K be a 2-bridge knot (or link). Then
∆K(−(t + 3)) and ∆K(t + 6) are strongly Hurwitz-stable. Equivalently, any zero α of
∆K(t) satisfies

−3 < Re(α) < 6. (4.1)

For other special results, see [LM’11, Theorems 3,4 and 5].

Remark 4.4. A. Stoimenow proves in [St’11] that for a 2-bridge knot (or link) K, any
zero α of ∆K(t) satisfies ∣∣∣∣√α− 1√

α

∣∣∣∣ ≤ 2. (4.2)
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This implies
−1 ≤ Re(α) ≤ 3 +

√
8 = 5.8284 . . . (4.3)

It should be noted that for a non-alternating knot, neither a lower bound nor an upper
bound of Re(α) exist [LM’11, Examples 1 and 2]. Further, we think that an upper bound
of Re(α) does exist only for a family of 2-bridge knots or links. In fact, the following
theorem holds.

Theorem 4.5. There exists an infinite sequence of alternating (Montesinos) knots
K1,K2, . . . ,Km, . . . such that

(1) for any m ≥ 1, the Alexander polynomial of Km has only real zeros, and
(2) the maximal value of the zeros of ∆Km(t) is at least m+ 1.

Therefore, in general, an upper bound of Re(α) does not exist, even for alternating
knots. However, an upper bound may exist for some family of the Alexander polynomials.
For example, let An be the set of all Alexander polynomials of degree n of alternating
knots.

Conjecture 4.6. There exist a real number δn > 0 such that for any zero α of ∆K(t)
in An

Re(α) ≤ δn (4.4)

It is known that Conjecture 4.6 is false for non-alternating knots [LM’11, Example 2].
If the Alexander polynomial of an alternating knot K is stable, then all zeros of ∆K(t)

are positive and hence Conjecture 4.1 holds. Therefore, in the next Subsection 4.2, we
discuss stable Alexander polynomials of knots or links.

4.2. Real stable Alexander polynomials. We say that an oriented link (or knot) L
is special alternating if L has an alternating diagram without nested Seifert circles.

We say that a knot (or link) K is real stable, or simply, stable, if ∆K(t) is real stable.

Proposition 4.7. For (non-trivial) special alternating knots, ∆K(−(t + 1)) is strongly
Hurwitz-stable, but ∆K(t) is not real stable.

In fact, ∆K(t) has only zeros on the unit circle in C.

Proposition 4.8. If a knot K is stable, then the signature σ(K) of K is zero.

In fact, if the signature is not zero, ∆K(t) has a zero on the unit circle. However, the
converse of Proposition 4.8 is false.

The following Example 4.9 shows that for links, Proposition 4.8 does not hold.

Example 4.9. Let L be a pretzel link P (2, 4, 4), oriented so that L is a special alternating
3-component link. Then the reduced Alexander polynomial ∆L(t) = 8(t−1)2 that is stable
while σ(L) = 2.

From now on, we assume that a knot or link is always oriented. First we consider
2-bridge knots and links.

Let K(r) be a 2-bridge knot or link of type r = β
α , −α ≤ β ≤ α. We may assume

without loss of generality that one of α and β is even. Let r = [2a1, 2a2, . . . , 2am],
aj 6= 0, 1 ≤ j ≤ m, be the even (negative) continued fraction expansion of r, e.g.,
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[a, b, c, d] = 1/(a − 1/(b − 1/(c − 1/d))). We assume 2-bridge links are oriented as in
Figure 1.

Fig. 1

By convention, 2
3 = [2, 2] represents 31 and 2

5 = [2,−2] represents 41, while 1
4 = [4]

represents a non-fibred link, 3
4 = [2, 2, 2] represents a fibred torus link.

The first family of stable knots is given in the following theorem.

Theorem 4.10 ([LM’11, Theorem 2]). If the sequence {2a1, 2a2, . . . , 2am} alternates in
sign, i.e. ajaj+1 < 0, for 1 ≤ j ≤ m− 1, then K(r) is stable.

The converse is not necessarily true.

Example 4.11. Let r = [2,−2,−2a, 2b]. Then K(r) is stable if (i) b = 1 and a ≥ 4 or
(ii) b ≥ 2 and a ≥ 3. For example, if r = 32

81 = [2,−2,−8, 2], then ∆K(r)(t) = (2t2−5t+2)2,
which is real stable.

In case of 2-bridge links, there are many real stable links corresponding to non-
alternating even continued fractions.

Example 4.12. Let r = [2a, 2b,−2c], a, b, c > 0. Then ∆K(r)(t) is stable if and only if
a ≥ c.

Now let rm = [2a1,−2a2, . . . , (−1)m−12am], aj > 0, for 1 ≤ j ≤ m. Since K(rm) is
real stable, we have a sequence of real stable 2-bridge knots or links, {K(rm),m ≥ 1}.
The following theorem shows that two consecutive knots K(rm) and K(rm+1) have an
interesting property.

Theorem 4.13. Let r = [2a1,−2a2, . . . , (−1)m−12am], aj > 0, 1 ≤ j ≤ m, and r′ =
[2a1,−2a2, . . . , (−1)m−22am−1]. Then the zeros of ∆K(r)(t) and ∆K(r′)(t) are all simple,
distinct and they are interlaced. To be more precise, let 0 < α1 < α2 < . . . < αm and
0 < β1 < β2 < . . . < βm−1 be the zeros of ∆K(r)(t) and ∆K(r′)(t), respectively. Then
α1 < β1 < α2 < β2 < . . . < αm−1 < βm−1 < αm.

Remark 4.14. If aj = c > 0 for all j, 1 ≤ j ≤ m, Theorem 4.13 is implicitly proven in
[LM’11, Theorem 5].

Further, we have:
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Theorem 4.15 ([LM’11, Remark 2]). Let sk = [2,−2, . . . , (−1)k−12]. Let αk be the max-
imal zero of ∆K(sk)(t). Then

lim
k→∞

αk = 3 +
√

8. (4.5)

Therefore, the upper bound of Re(α) in (4.3) is the limit of the sequence of the
largest zeros of ∆K(sk)(t). We notice that K(sk) is a fibred knot. Therefore, we propose
the following conjecture stronger than Conjecture 4.6.

Conjecture 4.16. The upper bound δn in (4.4) is attained by a fibred alternating stable
knot of genus n

2 .

This is obviously true for n = 2.
In the following example, we construct a series of stable knots which is a slight gen-

eralization of K(sk).

Example 4.17. Let Fn be a Seifert surface obtained by applying Seifert’s algorithm to the
diagram in Figure 2, where 2mi and 2`j indicate the number of half twists in the bands.
Fn is a Murasugi sum of two disks each attached with n twisted bands. Fn is denoted by
Fn(2m1, . . . , 2mn|2`1, . . . , 2`n) and its boundary by Kn(2m1, . . . , 2mn|2`1, . . . , 2`n). For
example, K1(2|2) is 31, K1(2| − 2) is 41 and K2(2, 4|−2,−2) is 1013.

Fig. 2

Theorem 4.18. Suppose mj > 0 and `j < 0 for all j, 1 ≤ j ≤ n. Then

(1) Kn(2m1, . . . , 2mn|2`1, . . . , 2`n) is a real stable alternating knot of genus n.
(2) The maximal (real positive) value of the zero α(n) of the Alexander polynomial of

a knot Kn(2, . . . , 2| − 2, . . . ,−2) is larger than n+ 1. Further, for n ≥ 2, the zeros
of ∆Kn(2,...,2|−2,...,−2)(t) and (t− 1)∆Kn−1(2,...,2|−2,...,−2)(t) are interlaced.

Experimentally, α(n) is approximated by a quadratic polynomial f(x):

f(x) = 0.405121x2 + 0.411943x+ 2.05373.

Finally, let ∆K(t) =
∑2n
j=0(−1)jcjt2n−j , cj > 0, be the Alexander polynomial of an

alternating knot K. Then the trapezoidal conjecture claims:

Conjecture 4.19 ([Fox’62]). There is an integer k, 1 ≤ k ≤ n, such that

c0 < c1 < . . . < ck = ck+1 = . . . = c2n−k > c2n−k+1 . . . > c2n. (4.6)

By applying Theorem 3.13, on ∆K(−t), we obtain
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Theorem 4.20. The Alexander polynomial of a real stable alternating knot
satisfies the trapezoidal conjecture. Therefore, the trapezoidal conjecture holds for
Kn(2m1, . . . , 2mn|2`1, . . . , 2`n) if mj > 0 and `j < 0 for all j.

4.3. Circular stable polynomials. In this subsection, we discuss another type of sta-
bility.

Definition 4.21 ([BB’09]). Let D be an open disk in C. A polynomial f(z) ∈ C[z] is
called D-stable if f(α) 6= 0 for any α ∈ D. In particular, if f(z) is D-stable with D the
open unit disk, i.e. D = {α ∈ C : |α| < 1}, we say f(z) is circular stable or c-stable.

Suppose f(z) is reciprocal, i.e. f(z) = ±znf(z−1) for some n. If f(z) is c-stable, then
all zeros α of f(z) are on the unit circle, i.e. |α| = 1.

We say that a knot (or link) K is c-stable if ∆K(t) is c-stable.

Proposition 4.22. Let K be a knot and deg ∆K(t) = 2n. If the signature of K is ±2n,
then K is c-stable, i.e. all zeros of ∆K(t) are on the unit circle. In particular, if K is a
special alternating knot, then K is c-stable.

The converse is not necessarily true. For example, 10130 is c-stable, but the signature
is 0. The Alexander polynomial is 2t4 − 4t3 + 5t2 − 4t+ 2.

By using the surface Fn(2m1, . . . , 2mn|2`1, . . . , 2`n), we can construct c-stable knots
or links.

Theorem 4.23. Consider the knot Kn(2m1, . . . , 2mn|2`1, . . . , 2`n).
For k = 1, 2, . . . ,

[
n+1

2
]
, if
`2k−1, `2k,ms−2k,ms−2k+1 ≥ k (4.7)

then Kn(2m1, . . . , 2mn|2`1, . . . , 2`n) is c-stable, where s = 2
[
n+1

2
]

+ 2.

Example 4.24. K1(2|2) is 31, K1(2|4) is 52, K2(2, 2|2, 2) is 51 and K2(2, 4|2, 2) is 73.

Now, using Möbius transformation, we can find a correspondence between circular
stable knots and real stable links, and real stable knots and circular stable links.

Let ϕ : C→ C be a Möbius transformation defined by ϕ(z) = 1−zi
z−i .

Remark 4.25. ϕ maps the interior of the unit disk to the upper half-plane. In particular,
the unit circle (resp. the real line) is mapped on the real line (resp. the unit circle). Also,
ϕ(0) = i, ϕ(−1) = −1 and ϕ(1) = 1.

Theorem 4.26. Let K be a c-stable knot (resp. real stable knot). Let
{
α1,

1
α1
, . . . , αn,

1
αn

}
be the zeros of ∆K(t), i.e. ∆K(t) = c0

∏n
j=1(t − αj)

∏n
j=1
(
t − 1

αj

)
. Let ϕ(αj) = βj, for

1 ≤ j ≤ n. Then ϕ
( 1
αj

)
= 1

βj
, 1 ≤ j ≤ n, and

a

n∏
j=1

(t− βj)
n∏
j=1

(
t− 1

βj

)
= ∆̂K(t), where a = c0

n∏
j=1

(
αj + 1

αj

)
,

is an integer polynomial of degree 2n, and it is stable (resp. c-stable).

Proposition 4.27. ∆̂K(t) is reciprocal, and |∆̂K(1)| = 2n. Therefore ∆̂K(t) is a
Hosokawa polynomial of some link (of multi-components). Further we have |∆̂K(−1)| =
2n|∆K(−1)|.
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Example 4.28.

(1) Let ∆K(t) = t2−t+1, which is c-stable. Since α = 1−
√

3i
2 and 1

α = 1+
√

3i
2 , β = 1

2+
√

3
and 1

β = 2+
√

3. Therefore, ∆̂K(t) = (t−β)(t− 1
β ) = t2−4t+1, where a = α+ 1

α = 1.
(2) ∆K(t) = mt2− (2m− 1)t+m, m > 0, is c-stable, and ∆̂K(t) = (2m− 1)t2− 4mt+

(2m− 1) is stable.
(3) ∆K(t) = t4 − t3 + t2 − t + 1 is c-stable, and ∆̂K(t) = t4 + 4t3 − 14t2 + 4t + 1 is

stable.
(4) ∆K(t) = 2t4− 4t3 + 5t2− 4t+ 2 is c-stable, and ∆̂K(t) = t4− 16t3 + 34t2− 16t+ 1

is stable.
(5) Let ∆K(t) = t6− t5 + t3− t+ 1 (i.e. the Alexander polynomial of the torus knot of

type (3, 4)), which is c-stable. Then ∆̂K(t) = 3t6− 12t5− 7t4 + 40t3− 7t2− 12t+ 3.
The zeros of ∆̂K(t) are all real, and two of them are negative.

Example 4.29.

(1) ∆K(t) = t2 − 3t+ 1 is stable, and ∆̂K(t) = 3t2 − 4t+ 3 is c-stable.
(2) ∆K(t) = mt2 − (2m+ 1)t+m, m > 0, is stable, and ∆̂K(t) = (2m+ 1)t2 − 4mt+

(2m+ 1) is c-stable.
(3) ∆K(t) = 2t4−12t3+21t2−12t+2 is stable, and ∆̂K(t) = 17t4−48t3+66t2−48t+17

is c-stable.

4.4. Alexander polynomials of links. The Alexander polynomial of a link is a mul-
tivariate real polynomial. The stability problem for links is also an interesting problem,
but it may be much harder. In this subsection, we discuss this problem.

Let ∆L(t1, . . . , tn) be the Alexander polynomial of an n-component link L.

Example 4.30. Let ∆L(r)(x, y) be the Alexander polynomial of a 2-bridge link L(r).
If r = [2,−2k, 2], k > 0, then ∆L(r)(x, y) is real stable. In fact, ∆L(r)(x, y) = k −
(k + 1)(x+ y) + kxy, k > 0. This is stable by Example 3.8.

As a slight generalization of Theorem 4.10, we asked the following question.

Question 4.31. Let r = [2a1, 2a2, . . . , 2am], m odd. If ajaj+1 < 0, 1 ≤ j ≤ m− 1, then
is ∆L(r)(x, y) real stable?

The answer is No. One negative example is the following.

Example 4.32. Let r = [4,−2, 2]. Then ∆L(r)(x, y) = (x + y) − (2x2 + 3xy + 2y2) +
(xy2+x2y). Although ∆L(r)(t, t) = 2−7t+2t2 is stable, ∆L(r)(x, y) is not stable. Because,
if ∆L(r)(x, y) is stable, then f(x, y) = x2∆L(r)(−x−1, y) must be stable (Theorem 3.1(b)).
Since f(x, y) = −2 − (x − y) + 3xy − (xy2 − x2y) − 2x2y2 , it follows that f(x, x) =
−2 + 3x− 2x2 must be stable. But, f(x, x) is obviously not stable.

A 2-bridge link with an alternating continued fraction has a very interesting property.
In fact, the following theorem is proven.

Theorem 4.33. Let r = [2a1, 2a2, . . . , 2am], m odd. Suppose that ajaj+1 < 0, for
1 ≤ j ≤ m − 1. Reverse the orientation of one component of L(r) and denote the result
by L′(r). Then the reduced Alexander polynomial of L(r) is stable and that of L′(r) is
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c-stable. The Alexander polynomial of L(r) may be unstable as a multivariate polynomial.
(See Example 4.32.)

Furthermore, there are many non-2-bridge links with this property. One of such links
is shown in Figure 3. The (2 variable) Alexander polynomial ∆L(x, y) is ∆L(x, y) =
8 − 12(x + y) + (6x2 + 31xy + 6y2) − (x3 + 24x2y + 24xy2 + y3) + (6x3y + 31x2y2 +
6xy3)−12(x3y2 +x2y3)+8x3y3. Now the reduced Alexander polynomial of L is ∆L(t) =
(t− 1)∆L(t, t) = (t− 1)(8− 24t+ 43t2 − 50t3 + 43t4 − 24t5 + 8t6), and ∆L(t) is c-stable.
On the other hand, let L′ be the link obtained from L by reversing the orientation of one
component. Then ∆L′(t) = (t− 1)t3∆L′(t, t−1) = (t− 1)(1− 12t+ 48t2 − 78t3 + 48t4 −
12t5 + t6) = (t− 1)(t2 − 6t+ 1)(t2 − 3t+ 1)2 is stable. However, ∆L(x, y) is not stable as
a multivariate polynomial, since [y3∆L(x,−y−1)]x=y = 1− x6, that is not stable.

We note that the links we considered above are alternating.

Fig. 3

Question 4.34. Does the stability of the multivariate Alexander polynomial of a link
have some connection with this property?

4.5. Open questions

Question 4.35. To what extent does the stability property of the Alexander polynomial
of an alternating knot K reflect topological properties of K?

Question 4.36. Characterize stable alternating knots or c-stable alternating knots.

Question 4.37. Let K be a c-stable knot and L be a stable link obtained by Möbius
transformation. What can we say about L? Does there exist a geometric way to construct
L from K?

Question 4.38. If the zeros of ∆K1(t) and ∆K2(t) are interlaced, how are K1 and K2
related geometrically?

Note added in proof. Conjecture 3.20 on the unimodality for chromatic polynomi-
als has been solved by June Huh, Milnor numbers of projective hypersurfaces and the
chromatic polynomial of graphs, J. Amer. Math. Soc. 25 (2012), 907–927.
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