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Abstract. We introduce a new braid-theoretic framework with which to understand the Leg-

endrian and transversal classification of knots, namely a Legendrian Markov Theorem without

Stabilization which induces an associated transversal Markov Theorem without Stabilization. We

establish the existence of a nontrivial knot-type specific Legendrian and transversal MTWS by

enhancing the Legendrian mountain range for the (2, 3)-cable of a (2, 3)-torus knot provided by

Etnyre and Honda, and showing that elementary negative flypes allow us to move toward maxi-

mal tb value without having to use Legendrian stabilization. In doing so we obtain new ways to

visualize convex tori and Legendrian divides and rulings, using tilings and braided rectangular

diagrams.

1. Introduction. For closed braid representations of topological links in S3 the Markov

Theorem without Stabilization (MTWS) [6] states that for a fixed braid index nb there

are a finite number of “modeled” isotopies (dependent only on nb and not on link type)

that take any oriented link represented as an nb-braid to a representative of minimal

braid index without the need for increasing the braid index via stabilization—an isotopy

essential in the classical Markov Theorem for closed braid equivalence. Moreover, once at

minimal braid index the MTWS states that there are again a finite number of “modeled”

isotopies (again, dependent only on the value of the braid index) that allow us to jump

between conjugacy classes of minimal index. These isotopies, which will grow in number

as nb grows, make up the MTWS calculus for closed braids [4].

Deciphering the inner structure of the MTWS calculus is a rich area for research. To

give an example, for nb = 3 the MTWS calculus is made up of four closed braid isotopies:
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positive braid preserving flypes; negative braid preserving flypes; positive destabilizations;

and, negative destabilizations [5, 8]. The MTWS calculus may also be calculated for

specified link classes: the calculus for the unlink and torus knots utilizes only exchange

moves and positive/negative destabilizations [3, 20]. (For readers not familiar with these

modeled braid isotopies, the introduction of [4] is a suitable source to consult.)

If we specialize the calculus to transversal 3-braid knots in the standard-symmetric

contact structure for R3(⊂ S3)—the kernel of the 1-form dz+r2dθ—we get an intriguing

glimpse of the structure within the MTWS calculus. Specifically, although positive desta-

bilizations, exchange moves, and positive braid preserving flypes are transverse isotopies,

closed braids which admit a negative braid preserving flype may not be transversally

simple—classified by their self-linking number [10]. In fact, transversal knots having a

closed braid representation of minimal index 3 which admit a negative flype but not a

positive flype are the first explicit examples of transversally non-simple knots [7].

The purpose of this note is to give evidence to a rich interplay between the structure

of the MTWS calculus and the classification structure of Legendrian and transversal

knot classes. This evidence comes from the synthesis of three different lines of inquiry:

characteristic foliations of convex tori in a contact structure [13, 16, 17]; standard tiling

of tori coming from singular braid foliations [2, 9]; and the representation of Legendrian

knots by rectangular diagrams [19].

This synthesis is brought to bear on the Etnyre–Honda “Legendrian mountain range”

classification of the Legendrian and transversal classes of the (2, 3)-cabling of the (2, 3)-

torus knot—the first implicit example of a non-simple transversal knot [14]. Our initial

result is an enhanced mountain range classification paradigm—a calculus structure im-

posed over the mountain range that enables one to “climb” the mountain without having

to stabilize. The implication of this enhanced classification structure is that buried within

the structure of the MTWS calculus lies a Legendrian MTWS. Next, employing a result

of Epstein, Fuchs and Meyer, this enhanced mountain range will “collapse” to an en-

hanced mountain trail yielding the classification of transversal classes with a transversal

MTWS calculus imposed—non-tranversal isotopies that allow us to jump between tran-

versal classes without negative (non-transversal) stabilization. By Bennequin’s classical

transversal result [1] and its Legendrian analogy [19], the isotopies in these specialized

Legendrian MTWS and transversal MTWS can be represented by isotopies on rectangular

closed braids and closed braids, respectively. Finally, there remain modeled isotopies of

the topological MTWS that are transversal isotopies—including positive destabilization

and exchange moves—and can be utilized to move between closed braid representatives

of the same transversal class without increasing the braid index.

It is reasonable to conjecture that this stratification in the MTWS calculus special-

ized to the (2, 3)-cabling of the (2, 3)-torus knot is prototypical. That is, coming out

of the topological MTWS calculus there is a Legendrian MTWS calculus for all Legen-

drian links which will collapse to a transversal MTWS calculus; and what remains will

be the transversal isotopies of the MTWS. We advocate that understanding this strati-

fying structure is important to the study of contact geometric knot theory, and certain

knot types immediately suggest a parallel analysis, for example cables of positive torus

knots [15]. In this vein, we also take note of H. Matsuda’s work on Stallings’ links and
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their connection with additional structural aspects of the MTWS calculus landscape [18].

From a rudimentary understanding of Matsuda’s calculation for determining the MTWS

calculus for 4-braids or a review of such modeled isotopies as that in Figure 8 of [6] we

are lead to insert a cautionary remark. Not every Legendrian sequence

±stabilization→ isotopy→ ±destabilization

corresponds to an elementary flype. Although the modeled isotopy in Figure 8 of [6] is in

the transversal setting, it is illustrative of the central issue. The “isotopy” portion of such

a sequence can be highly complex—this particular modeled isotopy requires repeated uses

of exchange moves. Thus, for the present note an argument is needed to establish that

such a Legendrian sequence coming from moving between differing classes having the

same coordinate address on the Legendrian mountain is realized by an elementary flype.

The outline of this note is as follows. In §2 we state our main theorem, Theorem 2.1,

which establishes a Legendrian MTWS for the (2, 3)-cabling of the (2, 3)-torus knot. In

§3 we begin to work toward justifying this theorem by exhibiting a braided rectangular

diagram of one of the Legendrian representatives of the (2, 3)-cabling of the (2, 3)-torus

knot. This requires us to develop a synthesis of convex tori, standard tilings and braided

rectangular diagrams. In §4 we prove our main theorem. We conclude with an appendix

in §5 that further develops our synthesis of convex tori and tilings.

2. A knot-type specific Legendrian and transversal MTWS

2.1. Background. Consider S3, viewed as the one-point compactification of R3. In this

context, the standard contact structure on S3 can be thought of as the closure of the

standard contact structure on R3, given in cylindrical coordinates as the kernel of the

1-form dz + r2dθ. We denote this standard tight contact structure by ξsym in R3. Given

a topological knot type K, we can restrict ourselves to look at representatives that are

everywhere tangent to ξsym. These are called Legendrian knots, and we say that two

Legendrian knots are Legendrian isotopic if they can be connected by a 1-parameter

family of Legendrian knots. Similarly, we can restrict ourselves to look at representatives

that are everywhere transverse to ξsym. These are called transversal knots, and we say that

two transversal knots are transversally isotopic if they can be connected by a 1-parameter

family of transversal knots.

Both Legendrian and transversal knots have classical invariants, besides the topologi-

cal knot type, that are preserved under Legendrian and transversal isotopies, respectively.

The Legendrian invariants are the rotation number, denoted by r, and the Thurston–

Bennequin number, denoted by tb. The transversal invariant is the self-linking number,

denoted by sl. A thorough discussion of these invariants, as well as general background

to Legendrian and transversal knots, is provided in the excellent survey article by Etnyre

found in [13].

2.2. Etnyre and Honda’s Legendrian mountain range. For any topological knot

type K, one can represent the Legendrian isotopy classes as points on a two-dimensional

grid, where the two coordinates are given by the values of (r, tb) for that class. For K,

there is a maximum value for the Thurston–Bennequin number, and thus this represen-

tation takes the shape of a mountain range; see Figure 1. If there are multiple isotopy
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classes having the same value of (r, tb), this can be represented by drawing circles around

the central point, one for each multiple isotopy class. Note that any mountain range is

symmetric about the r = 0 axis. Arrows pointing down and to the left represent Legen-

drian negative stabilization, which we symbolically refer to as S−; arrows pointing down

and to the right represent Legendrian positive stabilization (S+).

Fig. 1. The Legendrian mountain range for a (2, 3)-cable of a (2, 3)-torus knot. A central dot
and concentric circles represent multiple isotopy classes at a given value of (r, tb). Arrows down

and to the left represent Legendrian negative stabilization; arrows down and to the right
represent Legendrian positive stabilization. K+, K−, L+, and L− are defined in [14].

The Legendrian mountain range for a (2, 3)-cable of a (2, 3)-torus knot is shown in

Figure 1, and was established by Etnyre and Honda in [14]. The following structure is

included in this mountain range:

1. At tb = 5 and r = 2, the outer circle represents L+ while the inner dot represents

S+(K+); these are different Legendrian isotopy classes at the same values for the

classical invariants. A similar relationship holds for L− and S−(K−).

2. Sk+(L−) is not Legendrian isotopic to Sk+(S−(K−)) for any k; similarly Sk−(L+) is

not Legendrian isotopic to Sk−(S+(K+)) for any k. Also S2
+(L−) is not Legendrian

isotopic to S2
−(L+).

3. S−(Sk+(L−)) = S−(Sk+(S−(K−))) and S+(Sk−(L+)) = S+(Sk−(S+(K+))) for all k.

Of particular interest for this note is that in order to move from L+ to the maximal

tb representative K+, one must first stabilize, and then destabilize twice. The main goal

of this note is to show how to accomplish this movement toward maximal tb without

stabilization.

2.3. The Legendrian MTWS for the (2,3)-cable of a (2,3)-torus knot. We are

now in a position to state our main theorem.

Theorem 2.1. Let K(2,3) be the (2, 3)-cable of a (2, 3)-torus knot. Then Legendrian pos-

itive and negative destabilizations, along with elementary negative flypes, are sufficient

to take a Legendrian representative of K(2,3) to a representative at maximal Thurston–

Bennequin number, modulo Legendrian isotopy. In particular, we have the following:

1. Sk+(L−) is related by an elementary negative flype to Sk+(S−(K−)), for any k.

2. Sk−(L+) is related by an elementary negative flype to Sk−(S+(K+)), for any k.
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The structure of this theorem yields an enhanced Legendrian mountain range for

the (2, 3)-cable of a (2, 3)-torus knot, depicted in Figure 2. In this figure, black lines

moving “down” the mountain range and to the right represent positive stabilization;

similarly, black lines moving “down” the mountain range and to the left represent negative

stabilization. The new elements are the gray vertical lines connecting central dots to

concentric circles either displaced above or below the central dots; these vertical lines

represent elementary negative flypes. The variable z is a dummy variable; z = 0 represents

all stabilizations of K+ or K−, z > 0 represents negative stabilizations of L+, and z < 0

represents positive stabilizations of L−.

Fig. 2. Shown is the enhanced Legendrian mountain range for a (2, 3)-cable
of a (2, 3)-torus knot. The gray vertical lines indicate negative flypes

performed on braided rectangular diagrams in two axes.

2.4. The induced transversal MTWS for the (2,3)-cable of a (2,3)-torus knot.

The following theorem of Epstein, Fuchs, and Meyer connects the Legendrian classifica-

tion of a knot type to its transversal classification. T+ denotes the positive transverse

push-off of a Legendrian knot.

Theorem 2.2 (Epstein, Fuchs, Meyer). Let K1 and K2 be two Legendrian knots. Then

the transversal knots T+(K1) and T+(K2) are transversally isotopic if and only if Sm− (K1)

and Sn−(K2) are Legendrian isotopic for some m and n (where m and n could be zero).

This theorem allows us to obtain the transversal MTWS for the (2, 3)-cable of a (2, 3)-

torus knot by taking positive transverse push-offs and collapsing the enhanced Legendrian

mountain range to an enhanced transversal trail. We thus obtain the following corollary:

Corollary 2.3. Let K(2,3) be the (2, 3)-cable of a (2, 3)-torus knot. Then negative braid

destabilizations, along with elementary negative flypes, are sufficient to take a transver-

sal representative of K(2,3) to a representative at maximal self-linking number, modulo

transversal isotopy. In particular, T+(L+) is related by an elementary negative flype to

T+(S+(K+)).
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Shown in Figure 3 is the enhanced transversal trail depicting the structure in this

corollary.

Fig. 3. Shown are the transverse isotopy classes for a (2, 3)-cable of a (2, 3)-torus knot.
The vertical arrow represents an elementary negative flype of braids, and the horizontal arrows

represent negative braid stabilization.

Notation. Because we are interested in a particular knot type, for ease of notation the

topological knot type of a (2, 3)-torus knot will be denoted by K, and the topological knot

type of a (2, 3)-cable of a (2, 3)-torus knot will be denoted by K(2,3). The torus peripheral

to K on which K(2,3) resides will be denoted by T .

3. A braided rectangular diagram of L+. We will prove Theorem 2.1 by explicitly

demonstrating the necessary elementary negative flypes using braided rectangular dia-

grams for the Legendrian knots in question. In order to do so, we must justify that the

braided rectangular diagrams which we are using do actually correspond to representa-

tives of the different Legendrian isotopy classes in Figure 1. We begin that process in this

section by constructing a braided rectangular diagram for L+ in Figure 1 and justifying

that construction.

A note should be made here that the particular braided rectangular diagram for L+

first appeared in [19], along with the braided rectangular diagram resulting from a flype,

as shown in Figure 10. These two diagrams were further studied in the context of knot

Floer homology in [23], and from the combination of [19, 14, 23] one can indirectly

conclude that these two diagrams represent L+ and S+(K+), respectively. However, a

direct proof of why these diagrams represent L+ and S+(K+) has not been presented.

We do so in this section and the next to make explicit the structural connections between

these independent lines of inquiry.

3.1. L+ as a Legendrian ruling. Any torus in (S3, ξsym) can be perturbed to be

convex, meaning there exists a vector field everywhere transverse to the torus whose

flow preserves the contact structure. Recall that the characteristic foliation induced by

the contact structure on a convex torus can be assumed to have a standard form, where

there are 2n parallel Legendrian divides and a one-parameter family of Legendrian rulings.

Parallel push-offs of the Legendrian divides gives a family of 2n dividing curves, referred

to as Γ. For a particular convex torus, the slope of components of Γ is fixed; however,

the Legendrian rulings can take on any slope other than that of the dividing curves by

Giroux’s Flexibility Theorem [16].

The knots in Figure 1 are either Legendrian rulings or Legendrian divides on convex

tori [14]. For these convex tori, denoted by T , two coordinate systems can be used. One
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coordinate system, denoted by CK, has a meridian of T having slope 0 and the preferred

longitude of T having slope ∞. The other coordinate system on T , denoted by C′K, has a

meridian having slope 0, while the curve having slope∞ is found in the following manner:

Take the torus, peripheral to the unknot, on which K resides, and call it T0. Since T is

peripheral to a representative of K on T0, T will intersect T0 in two parallel curves.

The slope of these curves on T is given the value ∞ in C′K. As shown in [14], L+ is a

Legendrian ruling on a convex torus that has two Legendrian divides of slope − 2
11 in C′K.

L+ intersects each of these Legendrian divides once in a positive intersection. Moreover,

the solid torus with boundary slope − 2
11 is one which fails to thicken, meaning any solid

torus containing it also has boundary slope − 2
11 .

3.2. A convex torus representing K with slope(Γ) = − 2
11

. Our goal in this sub-

section is to construct a solid torus representing K whose torus boundary has slope(Γ) =

− 2
11 . To do so, we will connect convex tori and Legendrian knots to the work of Menasco

and Matsuda on standardly tiled tori and transversal knots represented as closed braids.

Fig. 4. Positive hyperbolic singularities are indicated by a +, negative hyperbolic singularities
by a −. Positive elliptic singularities are indicated by a gray dot, negative elliptic singularities

by a gray square. K(2,3) is indicated in black.

We first briefly review definitions found in [20] and [21]. Consider (R3, {z − axis}) ⊂
(S3,A), where A is the axis of a transverse braid, S3 = R3∪∞, and A = {z−axis}∪∞. In

our case, this transverse braid will lie on a torus. Let (ρ, θ, z) be the cylindrical coordinate
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system. We denote the braid fibration by H = {Hθ |0 ≤ θ < 2π}. This will induce a

singular braid foliation on the surface of the torus, where the singularities are either

elliptic (where the torus intersects A) or hyperbolic (where the torus is tangent to a

particular Hθ). Both the braid axis and the Hθ’s have an orientation, and thus the

singularities will be either positive or negative depending on whether the orientation of

the torus agrees or disagrees with these orientations. For our torus T , singularities are

joined by arcs which lie in a particular Hθ, and each singularity will be connected to four

other singularities via arcs. The braid foliation on the torus is then said to be a standard

tiling. The particular standard tiling for the T that we will need is found in [21], and is

shown in Figure 4, along with a knot that is everywhere transverse to the foliation, and

hence a braid.

Fig. 5. A rectangular block presentation for the positive trefoil K, with blocks in gray
and discs in white. The boundary of a regular neighborhood N of this collection of blocks

and discs forms the torus T . A meridian curve of T is indicated by the letter m.

We want to see how T can be embedded in S3. We first construct the solid torus for

which T is the boundary. This solid torus can be represented using a rectangular block

diagram, as described in [21]. In particular, take a collection of discs of common radius

whose centers are on the braid axis and which are parallel to the xy-plane. We then attach

to each disc a unique rectangular-shaped block whose bottom edge is on the boundary of

the disc. The top edges of the blocks are also attached to discs in a one-to-one fashion.

We do this so that the block-disc collection deformation retracts to a positive trefoil K.

A rectangular block diagram for K is shown in Figure 5, where blocks are in gray and

discs in white. A regular neighborhood of the block-disc collection forms a solid torus N

whose boundary is T . Negative elliptic singularities are just below the centers of the

discs, while positive elliptic singularities are just above the centers of the discs. Negative

hyperbolic singularities occur just to the left of the left edges of blocks, while positive

hyperbolic singularities occur just to the right of the right edges of blocks. A salient

feature is that the left side of a block shares the same angular position as the right side
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of a block below it. This implies that the associated negative hyperbolic singularity on T
actually occurs before the positive hyperbolic singularity in the θ-ordering.

Our knot of interest, K(2,3) ∈ K(2,3), is a transverse braid on the surface of T . We can

visualize this braid as being superimposed on the rectangular block diagram of T . This

yields a braided rectangular diagram consisting of a collection of vertical and horizontal

arcs, as defined in [21] and [19]. The braided rectangular diagram for K(2,3) is shown

in Figure 6. Notice that K(2,3) has vertical arcs that go down along the front of the

blocks, two blocks at a time, except for the one vertical arc in the upper left corner that

passes behind one of the blocks. The vertical arcs passing in front of two blocks at a time

should be understood as running between the negative singularity that comes from the

left edge of the top block, and the positive singularity that comes from the right edge of

the bottom block. It is clear that this knot has intersection number three with a meridian;

by drawing the preferred longitude on the surface of T , one can confirm that the knot

has intersection number two with that longitude, and hence is a (2, 3)-cabling. This is

the same knot pictured in Figure 4.

Fig. 6. K(2,3) on the rectangular block diagram of T . Vertical arcs going down the front of two
consecutive blocks actually pass between the negative singularity that comes from the left edge

of the top block, and the positive singularity that comes from the right edge of the bottom
block.

We now connect the braid foliation to the characteristic foliation induced by the

contact structure.

Lemma 3.1. Suppose that the transverse braid K(2,3) lies on a standardly tiled torus T ,

with the tiling induced by the braid fibration. Then we may assume that K(2,3) lies on a

standardly tiled torus T , where the characteristic foliation is also a standard tiling.
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Proof. In our block-disc collection, we choose a radius r large enough so that at the

boundary of the discs, the contact planes are ε-close to being in the half planes Hθ. We

then slightly tilt the blocks so that their sides are aligned with the contact planes at the

large radius r. Taking a neighborhood of this new block-disc presentation will give a solid

torus on whose boundary the elliptic singularities will be positive-negative pairs where

the z-axis intersects the discs, and the hyperbolic singularities will be positive-negative

pairs that occur on the edges of each of the blocks. The characteristic foliation is thus a

standard tiling. We can do this while keeping the transverse isotopy class of the knot the

same, and while maintaining the fact that the braid foliation is a standard tiling.

Fig. 7. G++ superimposed on T . Elliptic singularities are dots;
hyperbolic singularities are indicated by an x.

On a tiling, we can define four graphs, Gεδ, that consist of elliptic singularities of

parity ε connected by arcs that pass through hyperbolic singularities of parity δ. For a

standard tiling, the components of G++ and G−− form a collection of an even number of

parallel, homotopically non-trivial simple closed curves on the torus [20]. Now G++ and

G−− are piecewise Legendrian curves. By a small isotopy of T near the braid axis, we

may smooth out the corners and assume that G++ and G−− are Legendrian curves. In

Figure 7, we show G++ superimposed on the rectangular block presentation for T . We

have labelled the positive hyperbolic singularities with a black x, and the positive elliptic

singularities with a black dot.

If we compare Figure 7 with Figure 6, we can see that K(2,3) intersects G++ right after

the occurrence of the vertical arc that lies behind one of the blocks, and we can arrange

things so this is the only intersection. Similarly, if one imagines G−− on T , the only

intersection of K(2,3) with G−− occurs just before the occurrence of that same vertical

arc. This will be important in a coming subsection. Now in the coordinate system C′K,
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G++ intersects each meridian curve algebraically twice. Moreover, the slope∞ longitude

intersects the top right corner of each block, and thus intersects G++ once for each block.

The intersections of G++ with∞ are algebraically negative. Since there are eleven blocks,

the slope of G++ in C′K is − 2
11 .

The astute observer will notice that T is a convex torus with dividing curves that are

parallel push-offs of G++ and G−−, as such curves would separate the characteristic foli-

ation of our torus into positive and negative regions. We include the following proposition

to formalize this:

Lemma 3.2. Suppose T has a standard tiling that is the characteristic foliation. Then

we can isotop T , rel G++,G−−,G+−, and G−+ so that the resulting torus is standard

form convex, with the components of G++ and G−− as the Legendrian divides and the

components of G+− and G−+ being Legendrian rulings.

Proof. The proof is an application of manipulation lemmas for the characteristic foliation

found in [11]. In short, G++ and G−− can be made to be simple closed curves of positive

and negative singularities, respectively, by local manipulations of T that fix G++ and

G−−. Moreover, this can be done while fixing G+− and G−−; the resulting torus thus

has Legendrian rulings parallel to these two curves.

As a consequence we have that the rectangular block presentation of T indeed rep-

resents a standard form convex torus with slope(Γ) = − 2
11 . Moreover, there are two

Legendrian divides.

Fig. 8. Shown in dark gray is the annulus A connecting N to itself; the blocks of N
are in light gray. In black is one component of the dividing curves for the boundary

of one of the solid tori bound by N ∪N(A). The boundary slope is − 1
3
.
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3.3. The solid torus N representing K fails to thicken. From [14], we know that

the solid torus representing K with boundary slope − 2
11 which fails to thicken has a

particular complement in S3. Specifically, this complement consists of a regular neigh-

borhood of a Legendrian representative of the Hopf link, with boundary consisting of two

tori with boundary slopes − 1
3 and − 1

4 , joined by a standard convex annulus with bound-

aries Legendrian representatives of K. In this subsection we show that the complement of

a regular neighborhood of our block-disc collection is indeed this complement, and hence

our block-disc collection represents a solid torus which fails to thicken.

The proof is by picture. We begin by letting A be a standard convex annulus from N

to itself so that N ∪ N(A) is a thickened torus that bounds two solid tori representing

unknots. This is shown in Figure 8, where A is shown in dark gray and the blocks from N

are in light gray. Moreover, one component of the dividing curves for the boundary of

one of the solid tori is shown in black, after edge rounding. This is the solid torus that

the reader sits inside; we are looking out of the solid torus and seeing its torus boundary.

From this perspective, it is evident that this boundary slope is − 1
3 .

Fig. 9. Shown is the second solid torus bound by N ∪N(A) in blocks and discs
with darker shades of gray. The boundary slope of this solid torus is − 1

4
.

Now note that the other solid torus bound by N∪N(A) has a block-disc representation

as shown in Figure 9. There, the blocks of N are transparent, while the blocks and discs

of the solid torus are two shades of gray. It is evident that G++, and hence the dividing

curves, have slope − 1
4 .

This gives the correct solid tori in the complement of N ; the standard convex annulus

A′ connecting them can be obtained by taking a longitudinal slice through the I-invariant

neighborhood N(A). Thus N is indeed the solid torus which fails to thicken from [14].

We will refer to the braided rectangular diagram for the (2, 3)-cabling of K, as shown in

Figure 6, as D.
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Remark. There exists a solid torus representing K with boundary slope − 2
11 that does

thicken to a solid torus with boundary slope − 1
5 , i.e., one that is contained in a standard

neighborhood of a (2, 3)-torus knot at maximal Thurston–Bennequin value. We include a

block-disc presentation illustrating this in the Appendix.

3.4. A braided rectangular diagram for L+. We now have the following lemma:

Lemma 3.3. The braided rectangular diagram D represents the Legendrian isotopy class

of L+.

Proof. By Giroux’s Flexibility Theorem, there is an isotopy of our convex torus such that

the dividing curves remain fixed, but the resulting torus is still standard form convex,

with Legendrian rulings that are (2, 3)-cablings on our convex torus. Moreover, we can

accomplish this isotopy in the following way. First imagine splitting our torus into two

annuli bounded by the two Legendrian divides. One of the annuli contains the portion

of our knot that is parallel to the current Legendrian rulings (which recall are parallel

translates of G−+ and G+−). We leave this annulus fixed. We isotop the other annulus

using Giroux’s Flexibility Theorem for surfaces with Legendrian boundary, so that the

boundary of this annulus is still two curves of singularities, and the new rulings on the

whole torus are (2, 3)-torus knots. In this way the rulings will intersect each dividing

curve once, and each Legendrian divide once. Because this isotopy kept the dividing

curves fixed, we may still model our torus using a rectangular block presentation. The

portion of our knot that went behind the block will join up with a ruling that runs parallel

to the Legendrian divides throughout the rest of its support. Thus we would construct

the braided rectangular diagram for our knot precisely the way we would construct the

knot in [21]. So the rectangular diagram in Figure 6 from [21] is a rectangular diagram for

the Legendrian representative of a (2, 3)-cable of a (2, 3)-torus knot that is a Legendrian

ruling on a convex torus with Legendrian divides of slope − 2
11 , and which bounds a

solid torus that fails to thicken. Moreover, using formulas for the rotation number and

Thurston–Bennequin number established in [19], one can calculate that for the diagram

in Figure 6, r = 2 and tb = 5. Thus the diagram in Figure 6 is a braided rectangular

diagram for L+ in [14].

4. Proof of Theorem 2.1. We begin with L+. It is the outer circle at (r, tb) = (2, 5)

in Figure 1, and we know from [14] that its Legendrian isotopy class does not Legendrian

destabilize. We claim that the inner dot at (r, tb) = (2, 5), which is S+(K+), is represented

by the braided rectangular diagram shown in [21] obtained by performing an elementary

negative flype to the braided rectangular diagram of L+. This elementary negative flype

can be thought of as forcing a Legendrian positive destabilization (which looks like a

negative braid destabilization in the braided diagram) that can only be performed if a

Legendrian positive stabilization occurs. This results in (r, tb) still being (2, 5). L+ and

the diagram after the flype are shown in Figure 10.

We now need to show that after the flype, the resulting knot destabilizes after a

sequence of Legendrian isotopies, thus proving that it is indeed S+(K+). In particular,

consider Figure 11. Part (a) is the knot obtained from L+ following the elementary

negative flype. Indicated in (a) is a vertical arc in gray toward the left of the diagram. If
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Fig. 10. L+ is drawn in (a). An elementary negative flype, seen as a Legendrian positive
stabilization and Legendrian positive destabilization occurring on the gray arcs,

is used to obtain the knot in (b).

Fig. 11. Moving from (a) to (b) to (c) can be accomplished by a sequence of Legendrian moves
that reveal a Legendrian positive destabilization, indicated by the shaded box.

we move this to the right via a Legendrian isotopy, we can perform a Legendrian flip on

the gray horizontal arc and then slide this horizontal arc upward over a black horizontal

arc. After reversing the original flip, we obtain the knot in (b). In (b), we now focus in

on the dashed arcs. We can slide the right dashed vertical arc to the left, and then do a

Legendrian flip on the horizontal dashed arc. We can then slide that horizontal arc down

over two black horizontal arcs. After reversing the flip, we obtain (c). In (c), there is now

a Legendrian positive destabilization indicated by the shaded box. If we perform this
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Fig. 12. Shown is K+.

destabilization, we arrive at K+ in the Legendrian mountain range in Figure 1. Taking

(c) in Figure 11 and doing a Legendrian flip and some Legendrian isotopies, we obtain

K+ as drawn in Figure 12.

This proves that L+ and S+(K+) are related by an elementary negative flype. More-

over, if we perform k Legendrian negative stabilizations on L+ and S+(K+) away from

the support of the flype, we can perform them so that the rectangular diagrams of Sk−(L+)

and Sk−(S+(K+)) differ by an elementary negative flype.

To complete the proof of the theorem we turn our attention to L− and S−(K−).

To obtain braided rectangular diagrams for these knots we examine a general braided

rectangular diagram K at (r, tb). We take this braided rectangular diagram of K, and

imagine it as projected onto a square. We then flip the square along the diagonal that

runs from the top right to the bottom left. This is a topological isotopy of K. One

then reverses the orientation, yielding vertical arcs that pass over horizontal arcs, with

vertical arcs pointing down and horizontal arcs pointing to the right. This gives the

braided rectangular diagram for the knot at (−r, tb).

Fig. 13. In (a) is L−; in (b) is S−(K−). They are related by an elementary negative flype
in the horizontal braid axis.
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In particular, we show L− and S−(K−) in Figure 13. To get from L− to S−(K−), one

forces a Legendrian negative destabilization which results in an accompanying Legendrian

negative stabilization, as indicated in the gray arcs. The move from L− to S−(K−) is

an elementary negative flype in the horizontal braid axis. A flip of the vertical arcs is

a Legendrian isotopy, and so one can show as before that the knot in (b) Legendrian

negatively destabilizes, and in fact is S−(K−). Moreover, we again have that Sk+(L−)

and Sk+(S−(K−)) are related via an elementary negative flype by performing the positive

stabilizations outside the support of the original flype. This concludes the proof.

5. Appendix: A convex torus that admits a thickening. The goal of this section

is to provide a block-disc presentation for a solid torus representing the (2, 3)-torus knot

with boundary slope − 2
11 that thickens to a standard neighborhood of a (2, 3)-torus

knot at maximal Thurston–Bennequin value. To do this, we will (1) begin with our

previous solid torus of slope − 2
11 that fails to thicken; (2) show how to perturb it (without

thickening) to obtain a solid torus with slope − 1
5 ; and (3) show how to thin the solid

torus with slope − 1
5 to a new one with slope − 2

11 .

Fig. 14. In (a) is the solid torus representing K with boundary slope − 2
11

that fails to thicken.
A Legendrian divide is indicated in black. In (b) is the solid torus representing K with
boundary slope − 1

5
. A Legendrian divide is indicated in black. Elliptic and hyperbolic

singularities removed by Giroux elimination are in darker gray.

In Figure 14 we show in (a) the solid torus that fails to thicken, as established in §3.

The graph G++, which recall represents a Legendrian divide, is indicated in black, con-

necting elliptic and hyperbolic singularities. The slope of this curve is − 2
11 in the C′ fram-

ing. Note that two blocks are in a darker shade of gray. We then make one of these dark

gray blocks thinner, and one thicker, in order to arrive at the block-disc presentation of

a solid torus in (b). There the elliptic and hyperbolic singularities of G++ are indicated,

but note that G++ forms a simple closed curve with two trees extending off of it; the

simple closed curve is indicated in black, the trees in gray. We can perturb this convex

torus to be in standard form by using Giroux elimination along the gray trees to remove

singularities, resulting in a black Legendrian divide with slope − 1
5 in the C′ framing.
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Fig. 15. In (a) is the solid torus with boundary slope − 1
5
; a Legendrian divide is in black, and

two blocks are in dark gray. To get to (b), we fix these two blocks and their adjacent discs, and
then thin the other blocks and discs, totally removing some discs. The result is a standard

convex torus with slope − 2
11

that admits a thickening.

We now show how to thin this solid torus to obtain one with boundary slope − 2
11 .

Refer to Figure 15, where in (a) we have redrawn the solid torus with boundary slope

− 1
5 ; a Legendrian divide is in black, and two blocks are in dark gray. To get to (b) we

fix these two blocks and their adjacent discs, and then thin the other blocks and discs,

eliminating some discs entirely. Then with a small perturbation of the solid torus, which

we can accomplish by thinning, we can obtain the Legendrian divide indicated in black

in (b), which has slope − 2
11 . Reversing this thinning process then results in a thickening

of this solid torus with boundary slope − 2
11 to a standard neighborhood of a (2, 3)-torus

knot at maximal Thurston–Bennequin value.
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