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Abstract. This is a short summary of a topological model of site-specific recombination, a

cellular reaction that creates knots and links out of circular double stranded DNA molecules.

The model is used to predict and characterise the topology of the products of a reaction on double

stranded DNA twist knots. It is shown that all such products fall into a small family of Montesinos

knots and links, meaning that the knot and link type of possible products is significantly reduced,

thus aiding their experimental identification. We also mention direct applications of the model.

1. Introduction. The central axis of the double helix of DNA molecules can sometimes

become circular, knotted or linked (Figure 1) and this can happen naturally or artificially

from topological enzymology experiments [2]. While knots and links in DNA are often

detrimental to the cell, theoretically and experimentally, they can be used as probes to

understand the cellular reactions that create them [1,2,8,16]. These reactions are usually

mediated by proteins, specialised machines that work hard to keep the bodies of living

organisms functioning.

One of the most notable examples of cellular reactions that involve DNA knots and

links is site-specific recombination, carried out by proteins called site-specific recom-

binases. This reaction mediates the process of genetic exchange (or altering of the DNA

sequence) via a reciprocal exchange between defined DNA sites. Such DNA exchanges
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have important purposes including the development of drug resistance by some bacteria.

Furthermore, these proteins are powerful tools for genomic engineering and have wide and

important applications in the agricultural and pharmaceutical industries [13]. However,

as a by-product, site-specific recombinases can often cause changes to the topology of

(the imaginary central axis of) a circular double stranded DNA molecule, the substrate

molecule, by changing its knot type or link type and creating the product molecule(s).

In this article we present a mathematical model of site-specific recombination that is

used to predict and characterise the topology of all products that can arise from reactions

of site-specific recombination on DNA twist knot substrates.

1.1. The biology of DNA. The primary structure of DNA refers to the structure as a

polymer molecule, which consists of building blocks called nucleotides. This can be seen in

the left-most image of Figure 1. Each nucleotide consists of three parts: a 5-carbon sugar

(where each carbon is numbered from 1 to 5), a phosphate group and a nucleobase (one

of Guanine (G), Cytosine (C), Adenine (A), Thymine (T)) attached to the 1′-carbon

of the sugar. A DNA strand is made by forming a phosphodiester bond between the

3′- and the 5′-carbon atoms of adjacent sugar rings in each nucleotide.

Figure 1. Left : The primary structure of DNA.
Middle: A secondary structure of DNA, the double helix.

Right : A circular conformation of the tertiary structure of DNA,
a relaxed, closed circular DNA. (Modified from [2].)

The secondary structure of DNA addresses the way in which two or more DNA strands

are arranged in space. In 1953, James Watson and Francis Crick published a paper

determining the famous double helix structure (illustrated in the middle image of Figure 1)

where each strand follows a right-handed helical path around the central axes of the helix

and they are held together by the pairing of bases, via the formation of hydrogen bonds

between complementary bases (C with G, A with T). Note that DNA can adopt a variety

of conformations. The double helix is also referred to as the B-form DNA and other

popular structures include the A-form DNA and the Z-form DNA. However, the B-form
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is the most prevalent naturally (in vivo) and experimentally (in vitro) occurring form, so

only this one is considered here.

The tertiary structure of DNA describes the conformation of the imaginary central

axis of the double helix in space. Supercoiled DNA is a conformation adopted by covalently

closed circular molecules that are under torsional stress and that, as a result, coil around

themselves (leftmost image of Figure 2). Supercoiling is measured mathematically by the

difference in linking number of the two backbone strands, between a relaxed molecule

and the same molecule under torsional stress. Most naturally occurring DNA is found

negatively supercoiled, and therefore supercoiling has many important implications in

cell. For a more in-depth discussion see [2, 19] and references therein.

The central axis of the double helix can also be linear, closed circular, supercoiled

or knotted or linked in the mathematical sense. Examples of knotted and linked DNA

also appear in nature. The mitochondrial DNA of trypanosomes is naturally found as a

massive non-trivial link of thousands of components, resembling a medieval mesh [11].

DNA knots and links arise more prevalently as products of topological enzymology ex-

periments (see [9] and references therein). In these experiments small DNA plamids of

length between 3 and 5 kilobasepairs (kb) are artificially constructed and acted on by a

particular site-specific recombinase that leaves a footprint in the form of changing the

topology of the initial molecule. The products of the reaction are then used to probe into

the mechanisms of enzymes acting on DNA. Torus knots and links T (2,m) and twist

knots C(2, r) are the most commonly occurring knots and links in DNA (Table 1 in [5]).

1.2. The biology of site-specific recombination. The main function of site-specific

recombinases is to mediate DNA sequence rearrangements at specific sites. This is carried

out by inserting, deleting, and inverting DNA segments.

Minimally, site-specific recombination requires one or two substrate DNA molecules,

containing two short specific segments called the specific sites and a pair of dimer proteins

that mediate the reaction. Each specific site is 30–40 bp in length, contains an inverted

pair of recognition sequences, that bind one dimer of recombinases, and a point of break-

age and rejoining of the DNA, called the cross-over sites. Most of the time the cross-over

sites are non-palindromic, so they can be assigned an orientation. If the specific sites are

on a single DNA molecule, they can either be in direct orientation or in inverted orient-

ation. Depending on the initial arrangement of the specific sites, and recombinase used,

site-specific recombination has one of three possible outcomes: integration, excision or in-

version of the DNA sequence flanked by the inverted recognition sequences in the specific

sites. Larger site-specific recombination systems may also require additional proteins and

sites (accessory proteins and enhancer sequences).

The reaction starts when a pair of recombinases first bind at each of the two recog-

nition sites and, possibly after trapping some number of supercoils, the cross-over sites

are brought together and juxtaposed forming the recombinase complex (juxtaposed spe-

cific sites with proteins attached) and a synaptic complex (the whole substrate molecule

with specific sites juxtaposed). The DNA is cleaved, exchanged and resealed. Finally, the

proteins dissociate, releasing the product molecule and completing the reaction. This is

illustrated in Figure 2.
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During the intermediate step, once the cross-over sites have been cleaved, multiple

rounds of strand exchange can occur before resealing the DNA. This is called processive

recombination. The entire process of recombination (including releasing and rebinding)

can also occur multiple times, either at the same specific sites or at different specific

sites. This process is called distributive recombination. In this work the term substrate is

used to refer specifically to the DNA prior to the first cleavage. Processive recombination

is treated as one extended process, given an initial substrate with several intermediate

exiting points for the reaction.

Site-specific recombinases can be broadly divided into two subfamilies based, amongst

other important factors, on based on their mechanisms of exchanging the DNA sequences:

serine recombinases, which can perform processive recombination and tyrosine recom-

binases which can not. For a more detailed exposition of the biology of site-specific

recombination please refer to [9].

Figure 2. A simple system of site-specific recombination. Note that in every image, the black
line represents the imaginary central axis of the double helix of the duplex DNA molecule.

The grey dots represent the four recombinase subunits, the bold arrows represent the specific
sites and the black circle represents B, the recombinase complex.

1.3. Examples of other topology tools that are useful in the investigation of

site-specific recombination. A variety of topological tools have been used for analys-

ing enzyme mechanisms and product knots and links of site-specific recombination (and

other important reactions yielding DNA knots and links).

• Linking number [3] — used to study the structure of negatively supercoiled circular

DNA in solution.

• Schubert’s classification of 4-plats [20] — used to study interwinding in linked and

knotted DNA.

• Jones polynomial [21] — used to work out a relationship between the polynomials

associated with the substrate molecule and the product molecules obtained by site-

specific recombination.

• Tangle model [8] — uses results in Dehn surgery to reveal possible mechanisms

of recombination reactions that change the topology of an unknotted substrate

molecule to a 2-bridge knot or link.
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• Band surgery [16] — used to characterise the mechanism of unlinking torus links,

mediated by Cre recombinase.

• Rational sub tangle replacement [1] — similar idea to the tangle model, but for a

reaction that does not change the topology of the molecule.

1.4. Definitions and notation. A twist knot, denoted by C(±2, r), is a double of the

unknot with v twists. It has two non-parallel rows of crossings, one with ±2 crossings

and the other with |r| ≥ 1. A torus knot or link, denoted by T (2,m), has one row of

m crossings. It is a knot if m is odd, and a link if m is even.

Let J denote the substrate C(2, v), and B denote the smallest region containing

the four bound recombinase molecules and the two juxtaposed cross-over sites. B is

a topological ball. It is assumed that for site-specific recombinases that utilise enhancer

sequences and/or accessory proteins, these are sequestered from the recombinase complex,

and call it a productive synapse. Figure 3 illustrates recombinase complexes that are, and

that are not productive synapses.

Figure 3. Left : Two examples of a productive synapse.
Right : A recombinase complex that is not a productive synapse.

Figure 4. F (p, q, r, s, t, u) is a small family of Montesinos knots and links. All predicted
product knots and links fall with in this family. Note that all not knots and links in this family
arise as products of recombination on twist knots (for example, this family has links with up to

three components, but three component links cannot arise as products of site-specific
recombination on knots).

The main result of the model exposed bellow shows that all possible product knots

and links of the reaction fall within family F (p, q, r, s, t, u) of knots and links illustrated in
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Figure 4, which can be obtained from the numerator closure of a Montesinos tangle that

is a sum of three rational tangles ( p
p+q + r

r+s + t
t+u ). The variables p, q, r, s, t, u describe

the number of crossings between the central axis of two DNA duplexes in that particular

row or column of crossings. These variables can be positive, negative or zero. t, r, p can

take horizontal and vertical zero crossings but only horizontal non-zero crossings. u, s, q

can only take (both zero and non-zero) vertical crossings.

1.5. Motivation for our model. As mentioned before, site-specific recombination can

change the topology of closed circular DNA. Knowing the precise nature of DNA knots

and links that arise can help understand details of the mechanisms of the proteins that

lead to topological changes in the DNA substrates, either by carrying out topological

enzymology experiments, or using topological tools such as those mentioned in Section 1.3.

In this work, given three biologically reasonable assumptions about how the enzymes

mediate the reaction, for which experimental evidence is given in [5], knots and links

that can be yielded as products of a non-distributive reaction starting with a twist knot

substrate are predicted and characterised. Since this model predicts the exact topology

of the products, e.g. chirality, it can help experimental biologists restrict the knot and

link types of the products that can arise. This is especially important since it is a week

known fact that that there are more than 17 million knots with minimal crossing number

at most 16 [7] and the available experimental tools that identify the topology of DNA

molecules sometimes are not enough.

Twist knots are ubiquitous in DNA, both in vivo and in vitro. Most DNA inside

prokaryotic cells are supercoiled, and in the lab most experiments done with site-specific

recombinases use small supercoiled circular DNA molecules. This supercoiling promotes

strand collision and DNA entanglement. A simple crossing change in such a molecule can

result in the knotting of the DNA into twist knots (Figure 5).

Figure 5. Twist knots are ubiquitous in DNA. It only takes one crossing change
to change a supercoiled unknotted DNA molecule to a twist knot.

Together with torus knots and links, twist knots are the most common products of

site-specific recombination on substrates that are unknots, unlinks and torus knots and

links. This is illustrated in Table 1 in [4]. Also, in multiple rounds of processive and

distributive recombination on these substrates, twist knots can become substrates of

further rounds of recombination. For example, in [12] site-specific recombination on an
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unknot substrate with inverted specific sites, mediated by the recombinase Gin, yields

unknots, trefoils, figure-of-eight knots and the knot 52 (all twist knots) as products of

four rounds of processive recombination on an unknotted substrate. This is illustrated in

Figure 6. Also, a composite knot on six crossings, the granny knot C(−2, 1)]C(−2, 1) was

analysed to be a product of distributive recombination on two trefoils, each a product

from the first round of recombination.

Figure 6. Twist knots arise in vitro (and in vivo) as products of site-specific recombination
on substrates that are unknots, unlinks and torus knots and links. In this example,

processive recombination mediated by Gin recombinase on an unknot substrate yields
the knots illustrated.

2. Prediction knot and link type of products of site-specific recombination

2.1. Assumptions of our model. This model is based on three assumptions. Evidence

that these assumptions are biologically reasonable is given in Section 2 of [5]. Only the

mathematical statement for each assumption is presented here. For more details please

refer to our papers [6, 18].

The first assumption describes possible conformations of the pre-recombinant juxta-

posed cross-over sites.

Mathematical Assumption 1. B ∩ J consists of two arcs and there is a projection of

B ∩ J which has at most one crossing between the two arcs, and no crossings within a

single arc.

The second assumption describes the synaptic complex.

Mathematical Assumption 2. Let C = R3\B. J has a spanning surface D such that

D ∩ ∂B consists of exactly two arcs, the two arcs are co-planar and D ∩ C is unknotted

relative to ∂B.

Recall that a spanning surface of a knot K is a surface F with ∂F = K. The sentence

D ∩ C is unknotted relative to ∂B can be understood intuitively to mean that ∂D ∩ C

(with ∂B fixed) is not a satellite knot or link.

The third assumption describes possible conformations of the post-recombinant jux-

taposed crossover sites, both with a tyrosine recombinase and a serine recombinase.

Mathematical Assumption 3 for tyrosine recombinases. After non-distributive

recombination mediated by a tyrosine recombinase, there is a projection of the cross-over

sites which has at most one crossing (Figure 7, (1)–(8)).
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Mathematical Assumption 3 for serine recombinases. After each round of pro-

cessive, non-distributive recombination mediated by a serine recombinase, there is pre-

cisely one additional crossing between the cross-over sites (Figure 7, (1)–(10)).

Figure 7. Projections of the post-recombinant forms of the synaptic complex: (1)–(8) for
tyrosine recombinases and (1)–(10) for serine recombinases. Note that forms with hooks

((5), (6), (7), (8)) have projection with one crossing but no projections with zero crossings.
The row of n vertical and horizontal crossings ((9) and (10) respectively) are products

of more than one round of processive recombination.

2.2. Results. Given the three assumptions in the previous section it is shown that

products of non-distributive site-specific recombination on twist knots with a tyrosine

recombinase (Theorem 1) or with a serine recombinase (Theorem 2) fall within the family

of knots and links F (p, q, r, s, t, u), illustrated in Figure 4. Here the proofs are summarised.

See [6] for more details.

2.2.1. Products of non-distributive site-specific recombination belong to one family of

knots and links

Theorem 1 (Tyrosine recombinases). Suppose that Assumptions 1, 2 and 3 hold for a

particular tyrosine recombinase-DNA complex. Then the only possible products of (non-

distributive) recombination on a twist knot C(2, v) are:

• torus knots and links T (2,m) for m = v, v ± 1, v ± 2,

• twist knots C(2, s) for s = v ± 1, v ± 2,

• clasp knots C(r, v) for r = ±2,±3, 4,

• the connected sums T (2,±2)]C(2, v),

• a member of the family F (p, q, r, s, t, u) with r = 2, |t| ≤ 2, p = 0.

Theorem 2 (Serine recombinases). Suppose that Assumptions 1, 2 and 3 hold for a

particular serine recombinase-DNA complex. Then the only possible products of n rounds

of processive (non-distributive) recombination on a twist knot C(2, v) are:

• torus knots T (2, v ± n),

• twist knots C(2, s) for s = v, v ± n,

• clasp knots C(r, v) for r = ±n,±n + 2,

• a connected sum T (2,±n)]C(2, v),

• a member of the family F (p, q, r, s, t, u) with r = 2, t = ±n and p = 0.

Idea of the proof. Step 1. Use Assumption 2 and topological arguments involving spanning

surfaces of twist knots to prove that the synaptic complex can only take one of five possible

forms illustrated in Figure 8.
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Step 2. Use Assumptions 1 and 3 to find the pre-recombinant and post-recombinant

forms of the recombinase complex B for both tyrosine recombinases and serine recom-

binases.

Step 3. Glue the post-recombinant forms of B to each of the forms of the synaptic

complex, yielding the predicted knot and link types of the products of recombination.

Step 4. Show that each of these products falls within F (p, q, r, s, t, u).

Figure 8. Top row : possible forms of the synaptic complex, according to the assumptions.
Bottom row : the corresponding pre-recombinant recombinase-complex B.

Note. All the products predicted in these two theorems fall within family

F (p, q, r, s, t, u). However, not all knots and links in family F (p, q, r, s, t, u) are predicted

to arise as products of recombination. In particular, F (p, q, r, s, t, u) contains links with

up to three components. However, it is impossible to yield a three component link from

recombination on a knot.

Note. Theorems 1 and 2 distinguish between the chirality of the product DNA mo-

lecules, since using our model we can work out the exact conformation of all possible

products of site-specific recombination starting with a particular twist knot substrate and

site-specific recombinase. For example, starting with the twist knot substrate C(2,−1),

which is more commonly known as a negative trefoil, then according to the model, site-

specific recombination mediated by a tyrosine recombinase can yield T (2,−5), which is

also the negative 51 knot, but can never yield T (2,+5) = (+)51.

2.2.2. Characterisation of products of distributive recombination

Corollary 1. Any products whose knot or link type is not listed in Theorems 1 and 2

must arise from distributive recombination.

2.2.3. The growth of product knots and links is proportional to n5

Theorem 3. The number of putative knots and links resulting from site-specific recom-

bination on a substrate that is the twist knot C(2, v) with minimal crossing number equal

to n grows linearly with n5.

Proof. Step 1. Note that while the knots and links in F (p, q, r, s, t, u) have at most six

non-adjacent rows containing p, q, r, s, t, u signed crossings respectively, it does not follow

that the minimal crossing number of such a knot or link is |p|+ |q|+ |r|+ |s|+ |t|+ |u|.
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For example, if the knot or link does not admit, a reduced alternating diagram it is quite

possible that the number of crossings can be significantly reduced. So, a priori, there is

no reason to believe that the number of knots and links in this product family should

grow linearly with n5.

Step 2. Find all distinct, non-trivial subfamilies of knots and links in F (p, q, r, s, t, u).

Step 3. Find an upper bound on the number of knots and links in each subfamily as

a function of its minimal crossing number. The subfamilies fall into four cases:

Reduced alternating. By Murasugi [15] and Thistlethwaite [17], these knots and links

have n = |p|+ |q|+ |r|+ |s|+ |t|+ |u|.
Reduced Montesinos. By Lickorish and Thistlethwaite [14], these knots and links

have n = |p|+ |q|+ |r|+ |s|+ |t|+ |u|.
Hara–Yamamoto. By Hara–Yamamoto [10], knots and links K that are Hara–Yama-

moto cannot be isotoped to a diagram that is either reduced alternating or reduced

Montesinos, but have n = |p|+ |q|+ |r|+ |s|+ |t|+ |u|.
Other. Knots and links with projections that can be isotoped to be either reduced

alternating or reduced Montesinos have n 6= |p|+ |q|+ |r|+ |s|+ |t|+ |u|.

Since the number of prime knots and links (links with up to two components and

counting chiral pairs separately) with minimal crossing number n grows exponentially as

a function of n [7], Theorem 3 says that the total number of product knots and links

in F (p, q, r, s, t, u) with minimal crossing number = n grows linearly with n5. Hence,

the calculation n5/en gives the proportion of all knots and links which are putative

recombination products and as n increases, n5/en decreases exponentially rapidly to

zero.

2.3. Applications. A more in detail discussion of applications of this model can be

found in [18]. There is also an explicit algorithm for using the model for very specific

systems.

These applications fall into four broad categories: Application 1 : theorem model can

help determine the order of products of processive recombination. Application 2 : in the

common situations where the products of site-specific recombination have minimal cross-

ing number one more than the minimal crossing number of the substrate, theorem model

can help reduce the number of possibilities for these products. Application 3 : theorem

model can help characterise previously uncharacterised data. Application 4 : theorem

model can help distinguish between products of processive and distributive recombina-

tion.
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