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Abstract. The paper introduces a notion of strictly convex metric space and strictly convex

metric space with round balls. These objects generalize the well known concept of strictly convex

Banach space. We prove some fixed point theorems in strictly convex metric spaces with round

balls.

1. Introduction. Usually we consider convex sets only in a vector space (by Minkowski

definition: a closed subset of Rn is convex provided it contains for any two of its points

the segment joining them (L. Blumenthal [1], p. 40)). But the notion of “convexity” in a

metric space is well-known from work of K. Menger [25]: a metric space (X, d) is said to be

(metrically) convex if for any two points x, y ∈ X (x 6= y) there exists a point z ∈ X such

that x 6= z 6= y and d(x, y) = d(x, z)+d(z, y). From works of K. Menger [25], T. Botts [2],

W. L. Klee [21], D. C. Kay and E. W. Womble [17], V. P. Soltan [28], T. H. Kim and

W. A. Kirk [18] there are two solid indications:

a) intersection of convex sets is a convex set;

b) closed balls are convex sets.

These two properties form in the considered space structure of convexity.

Several mathematicians have attempted to transfer the structure of convexity to

spaces that are not vector spaces. For example, to metric spaces—W. Takahashi [29],

J. P. Penot [27], W. A. Kirk [20], T. H. Kim and W. A. Kirk [18], to topological spaces—

M. R. Taskovič [30], C. D. Horvath [13] and to an arbitrary set (with the help of closure

operators)—A. Liepiņš [24].

2000 Mathematics Subject Classification: 52A01, 47H10, 54H25.

Key words and phrases: strictly convex Banach space, nonexpansive mappings, strictly con-
vex metric space, strictly convex metric space with round balls, normal structure, fixed point
theorem.

* Née Galiņa.
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In this article we study strictly convex metric spaces and strictly convex metric spaces

with convex round balls as a generalization of the concept of strictly convex Banach

space. Some interesting results in fixed point theory have been proved in strictly convex

Banach spaces, for example, M. Edelstein [9], [10], F. E. Browder [4] and R. Kannan [16]

(uniformly convex Banach space is also strictly convex), Z. Opial [26], W. G. Dotson [8],

K. Goebel and W. A. Kirk [12], P. Kuhfitting [23]. We prove also some fixed point

theorems in strictly convex metric spaces with round balls.

2. Definitions and some properties. Now we consider the class of strictly convex

spaces introduced by Clarkson and by Krein (see V. I. Istratescu [14]).

Definition 2.1. A normed linear space X is said to be strictly convex (or rotund) if the

boundary of its unit ball contains no line segments.

Many equivalent characterizations of strict convexity are known. For example, M. M.

Day ([7], p. 111) used the following definition: the unit ball B in a Banach space is rotund

if every open segment in B is disjoint from the boundary of B (see also other properties

[7], p. 112).

Let (X, d) be a metric space with metric d.

Definition 2.2 (I. Galiņa [11]). A set K ⊂ X is said to be convex if for each x, y ∈ K

and for each t ∈ [0, 1] there exists z ∈ K that satisfies

d(x, z) = td(x, y) and d(z, y) = (1 − t)d(x, y)

and the set

{z ∈ K | d(x, z) = td(x, y), d(z, y) = (1 − t)d(x, y), t ∈ [0, 1]}

is said to be the segment joining x and y (denoted [x, y]).

We note that according to this Definition 2.2 closed balls may be non-convex sets and

intersection of convex sets may be a non-convex set (see, for example, I. Galiņa [11]).

Therefore we define strictly convex metric spaces in following way.

Definition 2.3 (I. Galiņa [11]). A metric space (X, d) is said to be strictly convex if for

each x, y ∈ X and for each t ∈ [0, 1] there exists a unique z ∈ X that satisfies

d(x, z) = td(x, y) and d(z, y) = (1 − t)d(x, y).

This is not a new original definition; we can find it in, for example, W. Takahashi [29].

In 1992 the author of this article has proved (I. Galiņa [11]) that the following conditions

are equivalent in a Banach space X:

1. ∀x, y ∈ X : ||x + y|| = ||x|| + ||y|| ⇒ ((∃λ > 0 : x = λy) ∨ (x = 0) ∨ (y = 0));

2. ∀x, y ∈ X ∀t ∈ [0, 1] ∃!z ∈ X : ||x − z|| = t||x − y||, ||z − y|| = (1 − t)||x − y||.

Since the first condition is equivalent to strict convexity of a Banach space (see, for

example, V. I. Istratescu [14]), we conclude that strictly convex Banach spaces indeed

are strictly convex metric spaces.
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It is easy to prove that intersection of convex sets (in the sense of Definition 2.2) is

a convex set in a strictly convex metric space (I. Galiņa [11]). But there exist strictly

convex metric spaces in which closed balls are not convex.

Example 2.1 (I. Bula and J. Vı̄ksna [6]). Let X be an unbounded angle that is strictly

less than 2 radians, with one side on the axis of polar coordinates and with vertex

at the origin. We choose two arbitrary points x = (r1, ϕ1) and y = (r2, ϕ2) (in polar

coordinates).

The distance between x and y is defined by

d(x, y) = |ϕ1 − ϕ2|min{r1, r2} + |r1 − r2|.

This space (X, d) is a strictly convex metric space in which closed balls are not convex.

Since we cannot guarantee that closed balls in a strictly convex metric space are

convex sets, we make the following definition.

Definition 2.4 (I. Bula [5]). A strictly convex metric space (X, d) is said to have round

balls if

∀a, b, c ∈ X(a 6= b)∀z ∈ [a, b](a 6= z 6= b), d(c, z) < max{d(c, a), d(c, b)}. (2.1)

It can be proved that the condition

∀a, b, c ∈ X (a 6= b) ∀z ∈ [a, b] (a 6= z 6= b) d(c, z) ≤ max{d(c, a), d(c, b)}

is equivalent to convexity of closed balls. This strict inequality (2.1) shows that if a and

b belong to the boundary of the ball B(c, r) then z does not belong to this sphere, i.e., a

sphere does not contain straight line segments, and therefore in Definition 2.4 we speak

of round balls.

We can prove one significant result

Assertion 2.1. Every strictly convex normed linear space X is a space with round balls.

Proof. Let a, b, c ∈ X, a 6= b and z ∈ [a, b], a 6= z 6= b. Since X is strictly convex space,

∃!t ∈]0, 1[ such that z = ta + (1 − t)b.

Since for every α, β ∈ R, 0 ≤ α < β and every t, 0 < t < 1 we have α < tα+(1−t)β <

β, it follows that

‖c − z‖ = ‖c − (ta + (1 − t)b)‖ = ‖(t + (1 − t))c − (ta + (1 − t)b)‖

= ‖t(c − a) + (1 − t)(c − b)‖ ≤ t‖c − a‖ + (1 − t)‖c − b‖

< max{‖c − a‖, ‖c − b‖} (2.2)

if ‖c − a‖ 6= ‖c − b‖. If ‖c − a‖ = ‖c − b‖ then from the inequalities (2.2) it follows that

‖c − z‖ ≤ ‖c − a‖ = ‖c − b‖. From ‖c − z‖ = ‖c − a‖ = ‖c − b‖ it follows that the points

a, b, z belong to a sphere with center at c and radius r = ‖c − z‖, but this means that

this sphere contains line segments (z ∈ [a, b]!)—this contradicts the strict convexity of X.

Therefore ‖c − z‖ < ‖c − a‖ = ‖c − b‖.

We notice that well known metric spaces R and R2 with Euclidean metric and each

of their convex subsets are strictly convex metric spaces and strictly convex metric spaces

with round balls. But R2 with maximum metric or modulus metric is not a strictly convex

metric space. In Example 2.1 we have shown that there exists a strictly convex metric
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space where closed balls are not convex—that is an example of a space that is not a

strictly convex metric space with round balls.

The concept of normal structure has been worked out by M. Brodskij and D. Mil-

man [3] in 1948 (in Banach spaces). This concept has been widely studied and has many

variations, for example, W. Takahashi [29], J. P. Penot [27]. We use

Definition 2.5. A convex set K in a metric space X is said to have normal structure

if each bounded convex subset H ⊂ K with at least two points contains a nondiametral

point y ∈ H, i.e.,

∃y ∈ H : sup{d(x, y) | x ∈ H} < diamH = sup{d(x, z) | x, z ∈ H}.

We can prove the following result

Lemma 2.1 (I. Bula [5]). Every convex and bounded set in a strictly convex metric space

X with round balls has normal structure.

3. Fixed points. A topological space X is said to have the fixed-point property if

every continuous map of X into X has at least one fixed point. A well-known Tychonoff

theorem asserts: if X is a locally convex topological linear space and K is a compact

convex subset of X then K has the fixed-point property. But V. L. Klee [22] shows that

any convex non-compact subset of a locally convex metrizable topological linear space

lacks the fixed-point property. Fixed-point property in an arbitrary topological linear

space is an important unsolved problem. We give only some positive results.

Inspired by fixed point theorems where the condition of normal structure is used we

can prove

Theorem 3.1 (I. Bula [5]). Let (X, d) be a strictly convex metric space with round balls.

Let K ⊂ X be convex and compact set. If f : K → K is a nonexpansive mapping then f

has a fixed point in K.

We can prove similar theorems not only for nonexpansive mappings but also for

following mappings

Definition 3.1 (R. Kannan [15], [16]). A self-mapping f of a metric space (X, d) is said

to be a Kannan type mapping if for each pair x, y ∈ X

d(f(x), f(y)) ≤
1

2
(d(x, f(x)) + d(y, f(y)).

It may be noted that nonexpansiveness implies the continuity of the mapping while

the Kannan type has no such implications.

If the mapping is Kannan type then ∀x, y ∈ X

d(f(x), f(y)) ≤
1

2
(d(x, f(x)) + d(y, f(y)) ≤ max{d(x, f(x)), d(y, f(y))}.

We prove

Theorem 3.2. Let (X, d) be a strictly convex metric space with round balls. Let K ⊂ X

be a nonempty convex and compact set. If f : K → K is a continuous mapping and

∀x, y ∈ X : d(f(x), f(y)) ≤ max{d(x, f(x)), d(y, f(y))} (3.1)

then f has a unique fixed point in K.
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Proof. From Zorn’s lemma in the collection of all nonempty convex and closed subsets of

K each of which is mapped into itself by f there exists a minimal element K0. We show

that K0 consists of a single point. Suppose diamK0 > 0.

Since K0 is a convex and bounded set (K0 ⊂ compact set K), by Lemma 2.1 K0 has

normal structure, i.e.,

∃x ∈ K0 : sup{d(x, y) | y ∈ K0} = r < diamK0.

We denote the convex closed hull of the set f(K0) with cof(K0) = K1. Since f(K0) ⊂

K0 and f is continuous then

K1 = cof(K0) ⊂ coK0 = K0, f(K1) ⊂ f(K0) ⊂ cof(K0) = K1.

The minimality of K0 implies K1 = K0.

Put

C =
(

⋂

y∈K0

B(y, r)
)

∩ K0.

It is nonempty (since x ∈ C), convex (by Lemma 2.1 closed balls are convex sets) and

closed (as the intersection of closed sets).

We define

C1 =
(

⋂

y∈f(K0)

B(y, r)
)

∩ K0.

Since f(K0) ⊂ K0 then C1 ⊃ C. If z ∈ C1 then

f(K0) ⊂ B(z, r) and K0 = K1 = cof(K0) ⊂ B(z, r)

(because B(z, r) is a closed and convex set) therefore C ⊃ C1. It follows that C = C1.

Now we define

M =
(

⋂

y∈f(C)

B(y, r)
)

∩ C.

It is nonempty since x ∈ C and sup{d(x, y)|y ∈ K0} = r, i.e., x ∈ B(y, r), ∀y ∈ f(C),

that is convex and closed set as intersection of convex and closed sets.

We choose freely z ∈ M ⊂ C and y ∈ f(C). Then exists w ∈ C such that y = f(w).

Thereby

d(y, f(z)) = d(f(w), f(z)) ≤ max {(d(w, f(w)), d(z, f(z))} .

Since w, z ∈ C ⊂ K0 then f(w), f(z) ∈ K0 and therefore d(w, f(w)) ≤ r, d(z, f(z)) ≤ r

by definition of C. Therefore d(f(z), y) ≤ r for any y ∈ f(C), i.e., f(z) ∈ M or f : M →

M . The minimality of K0 implies M = K0. But

diam M ≤ r < diamK0.

From the obtained contradiction we conclude that diamK0 = 0 and K0 = {x∗} and

therefore f(x∗) = x∗.

The uniqueness of the fixed point follows from condition (3.1).

Corollary 3.1. Let (X, d) be a strictly convex metric space with round balls. Let K ⊂ X

be a convex and compact set. If f : K → K is a continuous mapping with (3.1) and

F = {fi | f0 = f, fi : K → K, i = 1, 2, . . .} is a commutative family of mappings then

there exists a unique common fixed point for the family F .
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Proof. By Theorem 3.2 the mapping f has a unique fixed point x∗ ∈ K. This point is a

common fixed point for the family F . Since

∀fi ∈ F : fi(x
∗) = fi(f(x∗)) = f(fi(x

∗)), i = 1, 2, . . . ,

then fi(x
∗), i = 1, 2, . . ., are fixed points for f . By uniqueness it follows that fi(x

∗) = x∗,

i = 0, 1, 2, . . ..

Remarks. 1. A simple example shows that if the conditions of Theorem 3.2 hold but f

is not continuous then it may lack a fixed point.

We fix x0, y0 ∈ K, x0 6= y0. The mapping f : K → K for every x ∈ K is defined by

f(x) =

{

x0, x 6= x0

y0, x = x0.

Then f satisfies (3.1) (but is not Kannan type): since ∀x, y ∈ K (x 6= x0, y 6= x0)

d(f(x), f(y)) = 0 and if x = x0 then

d(f(x0), f(y)) = d(y0, x0) ≤ max{d(x0, f(x0)), d(y, f(y))} = max{d(x0, y0), d(y, x0)}.

2. Let M = {a1, a2, a3}, and define the metric in M

d(ai, aj) =

{

0, i = j,

1, i 6= j.

The set M is compact but not convex. The mapping f : M → M defined as f(a1) = a2,

f(a2) = a3, f(a3) = a1 is continuous and satisfies condition (3.1) but lacks a fixed point.

3. Let B denote the unit ball in the Hilbert space l2 with norm ‖x‖ =
√

∑

∞

i=1 x2
i <

∞. This space, being a uniformly convex space, is a strictly convex space (also with

round balls), the unit ball is convex but weakly compact. In this situation there exists a

continuous mapping without fixed point. See for example W. A. Kirk [19].

4. Examples showing that strict convexity and round balls are necessary conditions

in Theorem 3.2 are not easy to find. Obviously these examples are connected with the

unsolved problem of existence of fixed points for a continuous mapping in a convex and

compact set in an arbitrary space. Theorem 3.2 gives only sufficient conditions for the

solution of this problem.
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[24] A. Liepiņš, A cradle-song for a little tiger on fixed points, Topological Spaces and their

Mappings, Riga, 1983, 61–69.

[25] K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), 75–163.

[26] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive

mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.

[27] J. P. Penot, Fixed point theorems without convexity, Bull. Soc. Math. France 60 (1979),

129–152.

[28] V. P. Soltan, Introduction to the Axiomatic Theory of Convexivity, Kishinev (Moldova),

1984 (in Russian).

[29] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kōdai Math.
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