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Abstract. We introduce the Musielak-Orlicz space of multifunctions X, and the set S§ of
p-integrable selections of F. We show that some decomposable sets in Musielak-Orlicz space
belong to X, ,. We generalize Theorem 3.1 from [6]. Also, we get some theorems on the space
Xm,, and the set S%.

1. Introduction. Decomposability is a basic concept in Multivalued Analysis (see [7],
p. 174). A notion of decomposibility has been introduced by Rockafellar in [14]. A similar
but different notion has been introduced in [6] and [7] and we will use this notion. The
Musielak-Orlicz spaces of multifunctions were introduced and studied in [8]-[11]. The
Musielak-Orlicz space of multifunctions X, , has been introduced in [11]. The aim of
this note is to obtain a generalization of Theorem 3.1 from [6] and Theorem 3.8, Chapter
2 from [7]. All definitions and theorems connected with Musielak-Orlicz spaces can be
found in [12]. Definitions and theorems connected with multifunctions can be found in
[1]-[7], [13] and [14].

Let (2,3, ) be a measure space with a nonnegative, nontrivial o-finite and complete
measure u. Let ¢ be a ¢-function, i.e., ¢ : Q@ X R — Ry, (¢, u) is an even, continuous
function of u, equal to zero iff u = 0 and nondecreasing for v > 0 for every t € €2,
is a measurable function of ¢t € § for every u € R and lim, . ¢(t,u) = oo for p-a.e.
t € Q. Moreover, if (¢, -) is a convex function for every ¢ € Q, then we shall say that the
-function ¢ is convex. Let L¥ (€, X, 1) be the Musielak-Orlicz function space generated
by the modular

plz) = / (2 ().
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Let || - |4 denote the Luxemburg norm in L?(Q,%, u) if ¢ is convex. Let Y be a real
separable Banach space with the norm || - ||y. Let © denote the zero element of Y. If
A, B CY are nonempty then we denote

H(A, B) = max(sup inf ||z — y|ly, sup inf ||z —y|y).
zcAYEB yeB TEA

Denote by E(Y) the set of all nonempty and closed subsets of Y. Let
X ={F:Q—2Y:F(t) € B(Y) for every t € Q}.

Two multifunctions F,G € X such that F(t) = G(t) for p-a.e. t € Q will be treated
as the same element of X.
Now we introduce the function d(F, G) by the formula:
d(F,G)(t) = H(F(t),G(t)) for all F,G € X and t € Q.

Let N be the set of all positive integers. Let 0 € X be such that 0(t) = {©} for every
t € Q. Denote |F| = d(F,0) for every F € X.

2. On the space X,, , and the set S}

DEFINITION 1. We say that F' € X is a step multifunction if

F(t)= ZXA’C (t) By, for every t € Q2
k=1

where x4 is the characteristic function of the set A, By € E(Y) for k =1,...,n, Q =
Up_q Ak, Ay €S fork=1,...,nand A;NA; =0 for i # j.

DEFINITION 2. We say that F' € X is measurable if there exists a sequence of step
multifunctions F,, € X for every n € N such that lim, . d(F, F,,)(t) = 0 for p-a.e.
t e

Denote:
Xm ={F € X : Fis measurable}, X,,,={F€X,, :|F|eL?(Q,X,un},

It is easy to see that d(F,G) € L¥(Q, X, pu) if F,G € Xy .

By [7], Chapter 2, Theorem 1.35, if F' € X,,, then F is measurable and graph mea-
surable in the sense of [7], Chapter 2, Definition 1.1.

The space X,,,, will be called the Musielak-Orlicz spaces of multifunctions.

By L?((2,%,1),Y) we will denote the set of all strongly measurable functions f :
Q — Y such that ||f(-)||ly € LP(Q, X, p).

In [11] the following was proved:

THEOREM 1. Let F,, € X, , for every n € N. If for every € > 0 and every a > 0 there
exists K > 0 such that [, o(t,ad(F,, F,)(t))dp < € for all m,n > K, then there exists
F e Xy, such that [, ¢(t,ad(F,, F)(t))dp — 0 as n — oo for every a > 0.

COROLLARY 1. Let the ¢-function ¢ be convex, then the function
Dy(F,G) = ||d(F,G)| g

for all F,G € Xy, 15 a metric in Xy, p, 50 < X o, Dy > is a complete metric space.
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Let F' € X. Denote
SE={feL?((Q,%,pn),Y): f(t) € F(t)u a.e.}.

DEFINITION 3. The p-function ¢ will be called locally integrable if [, o(t, u)dp < oo for
every u > 0 and A € ¥ with u(A) < oco.

Applying the proof of Proposition 3.3, Proposition 2.17 and Remark 3.4 Chapter 2
from [7] we easily obtain the following:

LEMMA 1. Let the p-function ¢ be locally integrable and fulfil the condition Ay, then for
every F € X, such that S} # 0 there exists a sequence {f,} C L?((,X,pn),Y) such
that F(t) = {fa}(t) for p-a.c. t € Q.

COROLLARY 2. Let the p-function ¢ be locally integrable and fulfil the condition Ay. Let
F,G € X, be such that S}, = S§& # 0, then F(t) = G(t) for p-a.e. t € Q.

LEMMA 2. Let the @-function @ be locally integrable, convex and fulfil the condition A,.
Let F € X,,, and the sequence {fn} C LP((2, 2, 1),Y) be such that F(t) = {fn}(t) for
p-a.e. t € Q. Then for every f € S§, every a > 0, every e > 0, there exists a finite mea-
surable partition {Ay, ..., An} of Q such that [, o(t,al| f(t)—=>07_1 xa,(t) fi(t)|ly)dp < e.

Proof. We may assume that f(t) € F(t) for every ¢t € Q. Let a,e > 0 be arbitrary. Take
a strictly positive § € LY(Q, X, u) satisfying fQ ddp < 5. Then there exists a countable
measurable partition {B;} of Q such that

o(t,allF(H) = Fa(D)lly) < 6(t) for every ¢ € By

Take an integer n such that

2 2
S [ et < e S [ et 2al i@l de < 2
By By,
k=n-+1 k=n-+1
and define a finite measurable partition {A4,,..., A, } as follows:
~Biu( U B:)
1=n—+1

and A; = Bj for j = 2,... Then we have

[ et.also Y OO = 3 [ a0~ a0l

m=1 m=1"Am
= e(t,al f(t) = fm(®)lly)du+ et all f(t) = f(t)lly)dp
Z_l/Bm v mzn:+1/ '
< [ s+ Z / (t2al O )+ 2 > [, ot 2al b e <.
k n+1

DEFINITION 4. Let M be a set of measurable functions f : Q@ — Y. We call M decom-
posable (with respect to ¥) if fi, fo € M and A € ¥ imply xaf1 + xo\af2 € M.
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THEOREM 2. Let the @-function ¢ be locally integrable, convexr and fulfil the condition
Ay. Let M be a nonempty and closed subset of L¥((Q2, 2, 1),Y). Then there exists an
F € X, such that M = S} if and only if M is decomposable.

Proof. 1t is clear that S} is necessarily decomposable and closed (with respect to norm)
in L?((Q, %, 1), Y). To prove the converse, let M be a nonempty, closed, decomposable
subset of L?((2, %, 1),Y). By Lemma 1, there exists a sequence {f,} C L¥((Q, %, 1), Y)
such that {f,,(t)} is dense in Y for each ¢ € Q. For each i € N and a > 0, let

7%®hﬁ{éwwMMG)g@WﬂWMgeM}

and choose a sequence {g;;} C M such that

1ywwMmewww~mw.

Define F € X,,, by F(t) = {gi;(t)}. We shall prove M = S%. For each f € S, e >0
and a > 0, by Lemma 2 we can take a finite measurable partition {Aj,..., A,} of Q and
{h1,...,hn} C{gsj} such that

/ng(t’a”f(t) B ZXAkhk(t)HY)d,u < €.

k=1
Since >"7_, xa,hn € M, this implies f € M. Hence S§ C M. Now suppose M # S§.
Then there exist an f € M and A € ¥ with 0 < p(A4) < oo, and a § > 0 such that

inf || f(t) — g4 (t)|| > 0, for t € A.
i,
Take an integer ¢, fixed in the rest of the proof, such that the set
B=An{teQ:|f(t) - fi(t)ly <d/3}
has a positive measure, and let

A

g; = xBf +Xxa\BYij, JEN.
Then, since {g}} C M and for t € B

1£i(®) = 9i5 DIy = 1 £() — 95, DIy — [IF @) = fi®)]ly >25/3
it follows that for j € N

té@@ﬂMKﬂ-%ﬂMWﬂu—mw)
zéwwmm—%@wmhlywm@—ywww
=/¢mwMmewww—/wwwmw4mmw
B B

> [ (o(t.208/3)  p(t,08/3))du > 0
B

because ¢ is strictly increasing with respect to u > 0. Letting j go to infinity, we have a
contradiction. m
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We have for ¢(t,u) = uP for every ¢ € {2, where 1 < p < 0o, Theorem 3.1 from [6].

LEMMA 3. Let the @-function @ be locally integrable, convex and fulfil the condition A,.
Let F € X, and S} # 0. Then for every a > 0

sup[p(allf()lly) : f € SEl = /qup{so(t,alleY) tx e F(t)du.
Proof. Let a > 0 be fixed. Denote
m?(t) = suplp(t, allz]ly) : x € F(t)]
for every t € Q. Tt is easy to see that m® is measurable (see Proposition 2.24, Chapter 2

from [7]).
For every f € S}, p-a.e. t € Q we have o(t,al|f(t)||y) < m®(t) so

wwwwwﬂJE%SAmWWL

If fo € S“’ and p(a||fo(:)|]ly) = oo we are done. Thus assume that p(a ||f0( Hy) is finite.
If [, m®(t)dp = 0, then the proof is evident, so we can assume that [, m®(t)du > 0. If
m®(t) = +o0 on the set of positive measure the proof is also evident, so we can assume
that m®(t) is ﬁnite u—a e.

Let g < [, m®(t)du. We will produce an f € S§ such that 3 < p(al f(-)|ly) and
this will finish the proof. Let Q = |J,,cn ©n with Q,, C Q,,41 and p(£2,) < oo for every
n € N. Also let 6 : Q@ — R, \ {0} be an L1(Q, %, i) function. Define A,, = Q, N {t € Q:
p(t;allfo(®)]ly) <n} and

ma(t) — 28 if  teA,,met) <n,
me(t) = nfy, if teA,,mt)>n,
o(t,allfo®)|ly), if teQ\A,.
Evidently m2 € LY(Q, %, u) and m? | m® in p-measure. So passing to a subsequence if
necessary, we may assume that m ( ) 1T m®(t) p-a.e. Thus by the monotone convergence
theorem, we deduce that there exists no € N such that § < fQ o (t)dp. Let

Ga(t) = F(t){z €Y : o(t,allz]y) = mno(b‘)}
for every t € Q. By modifying G, on a u-null set, we may assume that G, # () for every
t € Q and then G, is graph-measurable so (see [7], Chapter 2, Theorems 2.1 and 2.14)
there exists g : 2 — Y which is a strongly measurable selection of G,. Let
Cn = N{t €Q:lg(t)lly <n}

and f, = xc,9 + Xa\c, fo- It is easy to see that C,, € X. Since S}, is decomposable, we
have f, € S} and

mwmwwlgmwmwww+é\wwwmwmw

n

2/ﬂ%ﬁﬂu+/ ot all fol)lly) — m2, (£)ldu.

Cn

Note that x(Q\ C) — 0 and [, m& (t)dp > f, so for some n; € N we have
P(allfnl(')HY) >p. .
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By Theorem 2 and Lemma 3 we obtain the following:

THEOREM 3. Let the @-function ¢ be locally integrable, convexr and fulfil the condition
Ay. Let M be a nonempty, bounded, decomposable and closed subset of L?((2, %, u),Y).
Then there exists an F € X,,, , such that M = S§.

Proof. By Theorem 2, F' € X,,, by Lemma 3 we have |F| € L¥(,3,u),s0 F € X, . =

COROLLARY 3. Let the -function @ be locally integrable, convexr and fulfil the condition
Ay. Let M be a nonempty, bounded, decomposable and closed subset of L¥((Q, %, 1), Y)
and let M(t) = {f(t): f € M} be a closed subset of Y for every t € Q1. Then there exists
an F € Xy, , such that M(t) = F(t) p-a.e.

Proof. Denote SE(t) = {f(t) : f € S§} for every t € Q. By Lemma 1 we have SE(t) C
F(t) € SE(t) p-a.e. So by the assumptions we have F(t) = SE(t) p-a.e. m

REMARK 1. Let the ¢-function ¢ be locally integrable, convex and fulfil the condition
Ay If F € X, then ST is a bounded and closed subset of L¥((Q,%, 1), Y).

THEOREM 4. Let the p-function ¢ be locally integrable, convex and fulfils the Ao condi-
tion. Let F1, Fy € X,, and S, ,S7, # 0. Let F(t) = Fi(t) + Fa(t) for every t € Q, then
S¢ = SF. + 5%,

Proof. Tt is easy to see that I € X,,, so S}, is closed, hence S§. + S, C SF. On the other

hand by Lemma 1 we may find {f1,,} C S and {fam} C SE such that Fy(t) = {fin(t)}
and Fy(t) = {fom(t)} p-a.e. Evidently F(t) = {fin(t) + fam(t)} p-a.e. By Lemma 2 for
f € S% and € > 0 we can find {A;,..., A} a finite E-partition of Q and positive integers

Ni,...,Nr,M1,...,my such that

@

! L
1760 = X xan i )+ fom ()| | <
k=1
Hence f € S§ + 5% ,s0 S =S7 + 57, =

For ¢(t,u) = uP for every t € Q, where 1 < p < +o00, we have Proposition 3.28,
Chapter 2 from [7].

3. Final remark. The results of this paper can be extended to the case that the -
function ¢ is not convex but only strictly increasing with respect to u. Clearly we must
then use the F-norm in Musielak-Orlicz space.
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