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Abstract. We introduce the Musielak-Orlicz space of multifunctions Xm,ϕ and the set S
ϕ

F of

ϕ-integrable selections of F . We show that some decomposable sets in Musielak-Orlicz space

belong to Xm,ϕ. We generalize Theorem 3.1 from [6]. Also, we get some theorems on the space

Xm,ϕ and the set S
ϕ

F .

1. Introduction. Decomposability is a basic concept in Multivalued Analysis (see [7],

p. 174). A notion of decomposibility has been introduced by Rockafellar in [14]. A similar

but different notion has been introduced in [6] and [7] and we will use this notion. The

Musielak-Orlicz spaces of multifunctions were introduced and studied in [8]-[11]. The

Musielak-Orlicz space of multifunctions Xm,ϕ has been introduced in [11]. The aim of

this note is to obtain a generalization of Theorem 3.1 from [6] and Theorem 3.8, Chapter

2 from [7]. All definitions and theorems connected with Musielak-Orlicz spaces can be

found in [12]. Definitions and theorems connected with multifunctions can be found in

[1]-[7], [13] and [14].

Let (Ω, Σ, µ) be a measure space with a nonnegative, nontrivial σ-finite and complete

measure µ. Let ϕ be a ϕ-function, i.e., ϕ : Ω × R → R+, ϕ(t, u) is an even, continuous

function of u, equal to zero iff u = 0 and nondecreasing for u ≥ 0 for every t ∈ Ω,

is a measurable function of t ∈ Ω for every u ∈ R and limu→∞ ϕ(t, u) = ∞ for µ-a.e.

t ∈ Ω. Moreover, if ϕ(t, ·) is a convex function for every t ∈ Ω, then we shall say that the

ϕ-function ϕ is convex. Let Lϕ(Ω, Σ, µ) be the Musielak-Orlicz function space generated

by the modular

ρ(x) =

∫

Ω

ϕ(t, x(t))dµ.
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Let ‖ · ‖L
ϕ denote the Luxemburg norm in Lϕ(Ω, Σ, µ) if ϕ is convex. Let Y be a real

separable Banach space with the norm ‖ · ‖Y . Let Θ denote the zero element of Y . If

A, B ⊂ Y are nonempty then we denote

H(A, B) = max(sup
x∈A

inf
y∈B

‖x − y‖Y , sup
y∈B

inf
x∈A

‖x − y‖Y ).

Denote by E(Y ) the set of all nonempty and closed subsets of Y . Let

X = {F : Ω → 2Y : F (t) ∈ E(Y ) for every t ∈ Ω}.

Two multifunctions F, G ∈ X such that F (t) = G(t) for µ-a.e. t ∈ Ω will be treated

as the same element of X.

Now we introduce the function d(F, G) by the formula:

d(F, G)(t) = H(F (t), G(t)) for all F, G ∈ X and t ∈ Ω.

Let N be the set of all positive integers. Let 0 ∈ X be such that 0(t) = {Θ} for every

t ∈ Ω. Denote |F | = d(F,0) for every F ∈ X.

2. On the space Xm,ϕ and the set Sϕ
F

Definition 1. We say that F ∈ X is a step multifunction if

F (t) =
n

∑

k=1

χAk
(t)Bk for every t ∈ Ω

where χA is the characteristic function of the set A, Bk ∈ E(Y ) for k = 1, . . . , n, Ω =
⋃n

k=1 Ak, Ak ∈ Σ for k = 1, . . . , n and Ai ∩ Aj = ∅ for i 6= j.

Definition 2. We say that F ∈ X is measurable if there exists a sequence of step

multifunctions Fn ∈ X for every n ∈ N such that limn→∞ d(F, Fn)(t) = 0 for µ-a.e.

t ∈ Ω.

Denote:

Xm = {F ∈ X : F is measurable}, Xm,ϕ = {F ∈ Xm : |F | ∈ Lϕ(Ω, Σ, µ)},

It is easy to see that d(F, G) ∈ Lϕ(Ω, Σ, µ) if F, G ∈ Xm,ϕ.

By [7], Chapter 2, Theorem 1.35, if F ∈ Xm, then F is measurable and graph mea-

surable in the sense of [7], Chapter 2, Definition 1.1.

The space Xm,ϕ will be called the Musielak-Orlicz spaces of multifunctions.

By Lϕ((Ω, Σ, µ), Y ) we will denote the set of all strongly measurable functions f :

Ω → Y such that ‖f(·)‖Y ∈ Lϕ(Ω, Σ, µ).

In [11] the following was proved:

Theorem 1. Let Fn ∈ Xm,ϕ for every n ∈ N. If for every ǫ > 0 and every a > 0 there

exists K > 0 such that
∫

Ω
ϕ(t, ad(Fm, Fn)(t))dµ < ǫ for all m, n > K, then there exists

F ∈ Xm,ϕ such that
∫

Ω
ϕ(t, ad(Fn, F )(t))dµ → 0 as n → ∞ for every a > 0.

Corollary 1. Let the ϕ-function ϕ be convex, then the function

Dϕ(F, G) = ‖d(F, G)‖L
ϕ

for all F, G ∈ Xm,ϕ is a metric in Xm,ϕ, so < Xm,ϕ, Dϕ > is a complete metric space.
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Let F ∈ X. Denote

Sϕ
F = {f ∈ Lϕ((Ω, Σ, µ), Y ) : f(t) ∈ F (t)µ a.e.}.

Definition 3. The ϕ-function ϕ will be called locally integrable if
∫

A
ϕ(t, u)dµ < ∞ for

every u > 0 and A ∈ Σ with µ(A) < ∞.

Applying the proof of Proposition 3.3, Proposition 2.17 and Remark 3.4 Chapter 2

from [7] we easily obtain the following:

Lemma 1. Let the ϕ-function ϕ be locally integrable and fulfil the condition ∆2, then for

every F ∈ Xm such that Sϕ
F 6= ∅ there exists a sequence {fn} ⊂ Lϕ((Ω, Σ, µ), Y ) such

that F (t) = {fn}(t) for µ-a.e. t ∈ Ω.

Corollary 2. Let the ϕ-function ϕ be locally integrable and fulfil the condition ∆2. Let

F, G ∈ Xm be such that Sϕ
F = Sϕ

G 6= ∅, then F (t) = G(t) for µ-a.e. t ∈ Ω.

Lemma 2. Let the ϕ-function ϕ be locally integrable, convex and fulfil the condition ∆2.

Let F ∈ Xm and the sequence {fn} ⊂ Lϕ((Ω, Σ, µ), Y ) be such that F (t) = {fn}(t) for

µ-a.e. t ∈ Ω. Then for every f ∈ Sϕ
F , every a > 0, every ǫ > 0, there exists a finite mea-

surable partition {A1, . . . , An} of Ω such that
∫

Ω
ϕ(t, a‖f(t)−

∑n
i=1 χAi

(t)fi(t)‖Y )dµ < ǫ.

Proof. We may assume that f(t) ∈ F (t) for every t ∈ Ω. Let a, ǫ > 0 be arbitrary. Take

a strictly positive δ ∈ L1(Ω, Σ, µ) satisfying
∫

Ω
δdµ < ǫ

3 . Then there exists a countable

measurable partition {Bi} of Ω such that

ϕ(t, a‖f(t) − fn(t)‖Y ) < δ(t) for every t ∈ Bn.

Take an integer n such that

∞
∑

k=n+1

∫

Bk

ϕ(t, 2a‖f(t)‖Y )dµ <
2

3
ǫ,

∞
∑

k=n+1

∫

Bk

ϕ(t, 2a‖f1(t)‖Y )dµ <
2

3
ǫ,

and define a finite measurable partition {A1, . . . , An} as follows:

A1 = B1 ∪
(

∞
⋃

i=n+1

Bi

)

and Aj = Bj for j = 2, . . . Then we have

∫

Ω

ϕ(t, a‖f(t) −
n

∑

m=1

χAm
(t)fm(t)‖Y )dµ =

n
∑

m=1

∫

Am

ϕ(t, a‖f(t) − fm(t)‖Y )dµ

=

n
∑

m=1

∫

Bm

ϕ(t, a‖f(t)− fm(t)‖Y )dµ +

∞
∑

m=n+1

∫

Bm

ϕ(t, a‖f(t) − f1(t)‖Y )dµ

≤

∫

Ω

δ(t)dµ +
1

2

∞
∑

k=n+1

∫

Bk

ϕ(t, 2a‖f(t)‖Y )dµ +
1

2

∞
∑

k=n+1

∫

Bk

ϕ(t, 2a‖f1‖Y )dµ < ǫ.

Definition 4. Let M be a set of measurable functions f : Ω → Y . We call M decom-

posable (with respect to Σ) if f1, f2 ∈ M and A ∈ Σ imply χAf1 + χΩ\Af2 ∈ M .
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Theorem 2. Let the ϕ-function ϕ be locally integrable, convex and fulfil the condition

∆2. Let M be a nonempty and closed subset of Lϕ((Ω, Σ, µ), Y ). Then there exists an

F ∈ Xm such that M = Sϕ
F if and only if M is decomposable.

Proof. It is clear that Sϕ
F is necessarily decomposable and closed (with respect to norm)

in Lϕ((Ω, Σ, µ), Y ). To prove the converse, let M be a nonempty, closed, decomposable

subset of Lϕ((Ω, Σ, µ), Y ). By Lemma 1, there exists a sequence {fn} ⊂ Lϕ((Ω, Σ, µ), Y )

such that {fn(t)} is dense in Y for each t ∈ Ω. For each i ∈ N and a > 0, let

ri(a) = inf

{
∫

Ω

ϕ(t, a‖fi(t) − g(t)‖Y )dµ : g ∈ M

}

and choose a sequence {gij} ⊂ M such that
∫

Ω

ϕ(t, a‖fi(t) − gij(t)‖Y )dµ → ri(a).

Define F ∈ Xm by F (t) = {gij(t)}. We shall prove M = Sϕ
F . For each f ∈ Sϕ

F , ǫ > 0

and a > 0, by Lemma 2 we can take a finite measurable partition {A1, . . . , An} of Ω and

{h1, . . . , hn} ⊂ {gij} such that
∫

Ω

ϕ(t, a‖f(t) −
n

∑

k=1

χAk
hk(t)‖Y )dµ < ǫ.

Since
∑n

k=1 χAk
hh ∈ M , this implies f ∈ M . Hence Sϕ

F ⊂ M . Now suppose M 6= Sϕ
F .

Then there exist an f ∈ M and A ∈ Σ with 0 < µ(A) < ∞, and a δ > 0 such that

inf
i,j

‖f(t) − gij(t)‖ ≥ δ, for t ∈ A.

Take an integer i, fixed in the rest of the proof, such that the set

B = A ∩ {t ∈ Ω : ‖f(t) − fi(t)‖Y < δ/3}

has a positive measure, and let

g′j = χBf + χΩ\Bgij , j ∈ N.

Then, since {g′j} ⊂ M and for t ∈ B

‖fi(t) − gij(t)‖Y ≥ ‖f(t) − gij(t)‖Y − ‖f(t) − fi(t)‖Y > 2δ/3

it follows that for j ∈ N
∫

Ω

ϕ(t, a‖fi(t) − gij(t)‖Y )dµ − ri(a)

≥

∫

Ω

ϕ(a‖fi(t) − gij(t)‖Y )dµ −

∫

Ω

ϕ(a‖fi(t) − g′j(t)‖Y )dµ

=

∫

B

ϕ(t, a‖fi(t) − gij(t)‖Y )dµ −

∫

B

ϕ(t, a‖fi(t) − (t)‖Y )dµ

≥

∫

B

(ϕ(t, 2aδ/3) − ϕ(t, aδ/3))dµ > 0,

because ϕ is strictly increasing with respect to u > 0. Letting j go to infinity, we have a

contradiction.
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We have for ϕ(t, u) = up for every t ∈ Ω, where 1 ≤ p < ∞, Theorem 3.1 from [6].

Lemma 3. Let the ϕ-function ϕ be locally integrable, convex and fulfil the condition ∆2.

Let F ∈ Xm and Sϕ
F 6= ∅. Then for every a > 0

sup[ρ(a‖f(·)‖Y ) : f ∈ Sϕ
F ] =

∫

Ω

sup{ϕ(t, a‖x‖Y ) : x ∈ F (t)}dµ.

Proof. Let a > 0 be fixed. Denote

ma(t) = sup[ϕ(t, a‖x‖Y ) : x ∈ F (t)]

for every t ∈ Ω. It is easy to see that ma is measurable (see Proposition 2.24, Chapter 2

from [7]).

For every f ∈ Sϕ
F , µ-a.e. t ∈ Ω we have ϕ(t, a‖f(t)‖Y ) ≤ ma(t) so

sup[ρ(a‖f(·)‖Y ) : f ∈ Sϕ
F ] ≤

∫

Ω

ma(t)dµ.

If f0 ∈ Sϕ
F and ρ(a‖f0(·)‖Y ) = ∞ we are done. Thus assume that ρ(a‖f0(·)‖Y ) is finite.

If
∫

Ω
ma(t)dµ = 0, then the proof is evident, so we can assume that

∫

Ω
ma(t)dµ > 0. If

ma(t) = +∞ on the set of positive measure the proof is also evident, so we can assume

that ma(t) is finite µ-a.e.

Let β <
∫

Ω
ma(t)dµ. We will produce an f ∈ Sϕ

F such that β < ρ(a‖f(·)‖Y ) and

this will finish the proof. Let Ω =
⋃

n∈N
Ωn with Ωn ⊂ Ωn+1 and µ(Ωn) < ∞ for every

n ∈ N. Also let δ : Ω → R+ \ {0} be an L1(Ω, Σ, µ) function. Define An = Ωn ∩ {t ∈ Ω :

ϕ(t, a‖f0(t)‖Y ) ≤ n} and

ma
n(t) =











ma(t) − δ(t)
n

, if t ∈ An, ma(t) ≤ n,

n − δ(t)
n

, if t ∈ An, ma(t) > n,

ϕ(t, a‖f0(t)‖Y ), if t ∈ Ω \ An.

Evidently ma
n ∈ L1(Ω, Σ, µ) and ma

n ↑ ma in µ-measure. So passing to a subsequence if

necessary, we may assume that ma
n(t) ↑ ma(t) µ-a.e. Thus by the monotone convergence

theorem, we deduce that there exists n0 ∈ N such that β <
∫

Ω
ma

n0
(t)dµ. Let

Ga(t) = F (t) ∩ {x ∈ Y : ϕ(t, a‖x‖Y ) ≥ ma
n0

(t)}

for every t ∈ Ω. By modifying Ga on a µ-null set, we may assume that Ga 6= ∅ for every

t ∈ Ω and then Ga is graph-measurable so (see [7], Chapter 2, Theorems 2.1 and 2.14)

there exists g : Ω → Y which is a strongly measurable selection of Ga. Let

Cn = Ωn ∩ {t ∈ Ω : ‖g(t)‖Y ≤ n}

and fn = χCn
g + χΩ\Cn

f0. It is easy to see that Cn ∈ Σ. Since Sϕ
F is decomposable, we

have fn ∈ Sϕ
F and

ρ(a‖fn(·)‖Y ) =

∫

Cn

ϕ(t, a‖g(t)‖Y )dµ +

∫

Ω\Cn

ϕ(t, a‖f0(t)‖Y )dµ

≥

∫

Ω

ma
n0

(t)dµ +

∫

Ω\Cn

[ϕ(t, a‖f0(t)‖Y ) − ma
n0

(t)]dµ.

Note that µ(Ω \ Cn) → 0 and
∫

Ω
ma

n0
(t)dµ > β, so for some n1 ∈ N we have

ρ(a‖fn1
(·)‖Y ) > β.
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By Theorem 2 and Lemma 3 we obtain the following:

Theorem 3. Let the ϕ-function ϕ be locally integrable, convex and fulfil the condition

∆2. Let M be a nonempty, bounded, decomposable and closed subset of Lϕ((Ω, Σ, µ), Y ).

Then there exists an F ∈ Xm,ϕ such that M = Sϕ
F .

Proof. By Theorem 2, F ∈ Xm, by Lemma 3 we have |F | ∈ Lϕ(Ω, Σ, µ), so F ∈ Xm,ϕ.

Corollary 3. Let the ϕ-function ϕ be locally integrable, convex and fulfil the condition

∆2. Let M be a nonempty, bounded, decomposable and closed subset of Lϕ((Ω, Σ, µ), Y )

and let M(t) = {f(t) : f ∈ M} be a closed subset of Y for every t ∈ Ω. Then there exists

an F ∈ Xm,ϕ such that M(t) = F (t) µ-a.e.

Proof. Denote Sϕ
F (t) = {f(t) : f ∈ Sϕ

F } for every t ∈ Ω. By Lemma 1 we have Sϕ
F (t) ⊂

F (t) ⊂ Sϕ
F (t) µ-a.e. So by the assumptions we have F (t) = Sϕ

F (t) µ-a.e.

Remark 1. Let the ϕ-function ϕ be locally integrable, convex and fulfil the condition

∆2. If F ∈ Xm,ϕ, then Sϕ
F is a bounded and closed subset of Lϕ((Ω, Σ, µ), Y ).

Theorem 4. Let the ϕ-function ϕ be locally integrable, convex and fulfils the ∆2 condi-

tion. Let F1, F2 ∈ Xm and Sϕ
F1

, Sϕ
F2

6= ∅. Let F (t) = F1(t) + F2(t) for every t ∈ Ω, then

Sϕ
F = Sϕ

F1
+ Sϕ

F2
.

Proof. It is easy to see that F ∈ Xm, so Sϕ
F is closed, hence Sϕ

F1
+ Sϕ

F2
⊂ Sϕ

F . On the other

hand by Lemma 1 we may find {f1n} ⊂ Sϕ
F1

and {f2m} ⊂ Sϕ
F2

such that F1(t) = {f1n(t)}

and F2(t) = {f2m(t)} µ-a.e. Evidently F (t) = {f1n(t) + f2m(t)} µ-a.e. By Lemma 2 for

f ∈ Sϕ
F and ǫ > 0 we can find {A1, . . . , AI} a finite Σ-partition of Ω and positive integers

n1, . . . , nI , m1, . . . , mI such that

∥

∥

∥

∥

∥

∥
f(·) −

I
∑

k=1

χAk
(f1nk

(·) + f2mk
(·))

∥

∥

∥

Y

∥

∥

∥

L

ϕ
< ǫ.

Hence f ∈ Sϕ
F1

+ Sϕ
F2

, so Sϕ
F = Sϕ

F1
+ Sϕ

F2
.

For ϕ(t, u) = up for every t ∈ Ω, where 1 ≤ p < +∞, we have Proposition 3.28,

Chapter 2 from [7].

3. Final remark. The results of this paper can be extended to the case that the ϕ-

function ϕ is not convex but only strictly increasing with respect to u. Clearly we must

then use the F -norm in Musielak-Orlicz space.
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