DECOMPOSABLE SETS AND MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS

ANDRZEJ KASPERSKI

Institute of Mathematics, Silesian University of Technology Kaszubska 23, 44-100 Gliwice, Poland E-mail: Andrzej.Kasperski@polsl.pl

Abstract. We introduce the Musielak-Orlicz space of multifunctions $X_{m,\varphi}$ and the set S_F^{φ} of φ -integrable selections of F. We show that some decomposable sets in Musielak-Orlicz space belong to $X_{m,\varphi}$. We generalize Theorem 3.1 from [6]. Also, we get some theorems on the space $X_{m,\varphi}$ and the set S_F^{φ} .

1. Introduction. Decomposability is a basic concept in Multivalued Analysis (see [7], p. 174). A notion of decomposibility has been introduced by Rockafellar in [14]. A similar but different notion has been introduced in [6] and [7] and we will use this notion. The Musielak-Orlicz spaces of multifunctions were introduced and studied in [8]-[11]. The Musielak-Orlicz space of multifunctions $X_{m,\varphi}$ has been introduced in [11]. The aim of this note is to obtain a generalization of Theorem 3.1 from [6] and Theorem 3.8, Chapter 2 from [7]. All definitions and theorems connected with Musielak-Orlicz spaces can be found in [12]. Definitions and theorems connected with multifunctions can be found in [1]-[7], [13] and [14].

Let (Ω, Σ, μ) be a measure space with a nonnegative, nontrivial σ -finite and complete measure μ . Let φ be a φ -function, i.e., $\varphi : \Omega \times R \to R_+, \varphi(t, u)$ is an even, continuous function of u, equal to zero iff u = 0 and nondecreasing for $u \ge 0$ for every $t \in \Omega$, is a measurable function of $t \in \Omega$ for every $u \in R$ and $\lim_{u\to\infty} \varphi(t, u) = \infty$ for μ -a.e. $t \in \Omega$. Moreover, if $\varphi(t, \cdot)$ is a convex function for every $t \in \Omega$, then we shall say that the φ -function φ is convex. Let $L^{\varphi}(\Omega, \Sigma, \mu)$ be the Musielak-Orlicz function space generated by the modular

$$\rho(x) = \int_{\Omega} \varphi(t, x(t)) d\mu.$$

²⁰⁰⁰ Mathematics Subject Classification: 46E30, 46E99, 28B20.

Key words and phrases: separable Banach space, decomposable set, Musielak-Orlicz space of multifunctions, L^{φ} selector.

The paper is in final form and no version of it will be published elsewhere.

Let $\|\cdot\|_{\varphi}^{L}$ denote the Luxemburg norm in $L^{\varphi}(\Omega, \Sigma, \mu)$ if φ is convex. Let Y be a real separable Banach space with the norm $\|\cdot\|_{Y}$. Let Θ denote the zero element of Y. If $A, B \subset Y$ are nonempty then we denote

$$H(A,B) = \max(\sup_{x \in A} \inf_{y \in B} ||x - y||_Y, \sup_{y \in B} \inf_{x \in A} ||x - y||_Y).$$

Denote by E(Y) the set of all nonempty and closed subsets of Y. Let

$$X = \{F : \Omega \to 2^Y : F(t) \in E(Y) \text{ for every } t \in \Omega\}.$$

Two multifunctions $F, G \in X$ such that F(t) = G(t) for μ -a.e. $t \in \Omega$ will be treated as the same element of X.

Now we introduce the function $\mathbf{d}(F, G)$ by the formula:

 $\mathbf{d}(F,G)(t) = H(F(t),G(t))$ for all $F, G \in X$ and $t \in \Omega$.

Let **N** be the set of all positive integers. Let $\mathbf{0} \in X$ be such that $\mathbf{0}(t) = \{\Theta\}$ for every $t \in \Omega$. Denote $|F| = \mathbf{d}(F, \mathbf{0})$ for every $F \in X$.

2. On the space $X_{m,\varphi}$ and the set S_F^{φ}

DEFINITION 1. We say that $F \in X$ is a step multifunction if

$$F(t) = \sum_{k=1}^{n} \chi_{A_k}(t) B_k \text{ for every } t \in \Omega$$

where χ_A is the characteristic function of the set $A, B_k \in E(Y)$ for $k = 1, ..., n, \Omega = \bigcup_{k=1}^n A_k, A_k \in \Sigma$ for k = 1, ..., n and $A_i \cap A_j = \emptyset$ for $i \neq j$.

DEFINITION 2. We say that $F \in X$ is *measurable* if there exists a sequence of step multifunctions $F_n \in X$ for every $n \in \mathbf{N}$ such that $\lim_{n\to\infty} \mathbf{d}(F, F_n)(t) = 0$ for μ -a.e. $t \in \Omega$.

Denote:

 $X_m = \{ F \in X : F \text{ is measurable} \}, \quad X_{m,\varphi} = \{ F \in X_m : |F| \in L^{\varphi}(\Omega, \Sigma, \mu) \},$

It is easy to see that $\mathbf{d}(F,G) \in L^{\varphi}(\Omega,\Sigma,\mu)$ if $F,G \in X_{m,\varphi}$.

By [7], Chapter 2, Theorem 1.35, if $F \in X_m$, then F is measurable and graph measurable in the sense of [7], Chapter 2, Definition 1.1.

The space $X_{m,\varphi}$ will be called the Musielak-Orlicz spaces of multifunctions.

By $L^{\varphi}((\Omega, \Sigma, \mu), Y)$ we will denote the set of all strongly measurable functions $f : \Omega \to Y$ such that $||f(\cdot)||_Y \in L^{\varphi}(\Omega, \Sigma, \mu)$.

In [11] the following was proved:

THEOREM 1. Let $F_n \in X_{m,\varphi}$ for every $n \in \mathbf{N}$. If for every $\epsilon > 0$ and every a > 0 there exists K > 0 such that $\int_{\Omega} \varphi(t, \mathbf{ad}(F_m, F_n)(t)) d\mu < \epsilon$ for all m, n > K, then there exists $F \in X_{m,\varphi}$ such that $\int_{\Omega} \varphi(t, \mathbf{ad}(F_n, F)(t)) d\mu \to 0$ as $n \to \infty$ for every a > 0.

COROLLARY 1. Let the φ -function φ be convex, then the function

$$D_{\varphi}(F,G) = \|\mathbf{d}(F,G)\|_{\varphi}^{L}$$

for all $F, G \in X_{m,\varphi}$ is a metric in $X_{m,\varphi}$, so $\langle X_{m,\varphi}, D_{\varphi} \rangle$ is a complete metric space.

Let $F \in X$. Denote

$$S_F^{\varphi} = \{ f \in L^{\varphi}((\Omega, \Sigma, \mu), Y) : f(t) \in F(t)\mu \text{ a.e.} \}.$$

DEFINITION 3. The φ -function φ will be called *locally integrable* if $\int_A \varphi(t, u) d\mu < \infty$ for every u > 0 and $A \in \Sigma$ with $\mu(A) < \infty$.

Applying the proof of Proposition 3.3, Proposition 2.17 and Remark 3.4 Chapter 2 from [7] we easily obtain the following:

LEMMA 1. Let the φ -function φ be locally integrable and fulfil the condition Δ_2 , then for every $F \in X_m$ such that $S_F^{\varphi} \neq \emptyset$ there exists a sequence $\{f_n\} \subset L^{\varphi}((\Omega, \Sigma, \mu), Y)$ such that $F(t) = \overline{\{f_n\}(t)}$ for μ -a.e. $t \in \Omega$.

COROLLARY 2. Let the φ -function φ be locally integrable and fulfil the condition Δ_2 . Let $F, G \in X_m$ be such that $S_F^{\varphi} = S_G^{\varphi} \neq \emptyset$, then F(t) = G(t) for μ -a.e. $t \in \Omega$.

LEMMA 2. Let the φ -function φ be locally integrable, convex and fulfil the condition Δ_2 . Let $F \in X_m$ and the sequence $\{f_n\} \subset L^{\varphi}((\Omega, \Sigma, \mu), Y)$ be such that $F(t) = \overline{\{f_n\}(t)}$ for μ -a.e. $t \in \Omega$. Then for every $f \in S_F^{\varphi}$, every a > 0, every $\epsilon > 0$, there exists a finite measurable partition $\{A_1, \ldots, A_n\}$ of Ω such that $\int_{\Omega} \varphi(t, a \| f(t) - \sum_{i=1}^n \chi_{A_i}(t) f_i(t) \|_Y) d\mu < \epsilon$.

Proof. We may assume that $f(t) \in F(t)$ for every $t \in \Omega$. Let $a, \epsilon > 0$ be arbitrary. Take a strictly positive $\delta \in L^1(\Omega, \Sigma, \mu)$ satisfying $\int_{\Omega} \delta d\mu < \frac{\epsilon}{3}$. Then there exists a countable measurable partition $\{B_i\}$ of Ω such that

$$\varphi(t, a \| f(t) - f_n(t) \|_Y) < \delta(t)$$
 for every $t \in B_n$.

Take an integer n such that

$$\sum_{k=n+1}^{\infty} \int_{B_k} \varphi(t, 2a \| f(t) \|_Y) d\mu < \frac{2}{3}\epsilon, \qquad \sum_{k=n+1}^{\infty} \int_{B_k} \varphi(t, 2a \| f_1(t) \|_Y) d\mu < \frac{2}{3}\epsilon,$$

and define a finite measurable partition $\{A_1, \ldots, A_n\}$ as follows:

$$A_1 = B_1 \cup \left(\bigcup_{i=n+1}^{\infty} B_i\right)$$

and $A_j = B_j$ for j = 2, ... Then we have

$$\begin{split} \int_{\Omega} \varphi(t, a \| f(t) - \sum_{m=1}^{n} \chi_{A_m}(t) f_m(t) \|_Y) d\mu &= \sum_{m=1}^{n} \int_{A_m} \varphi(t, a \| f(t) - f_m(t) \|_Y) d\mu \\ &= \sum_{m=1}^{n} \int_{B_m} \varphi(t, a \| f(t) - f_m(t) \|_Y) d\mu + \sum_{m=n+1}^{\infty} \int_{B_m} \varphi(t, a \| f(t) - f_1(t) \|_Y) d\mu \\ &\leq \int_{\Omega} \delta(t) d\mu + \frac{1}{2} \sum_{k=n+1}^{\infty} \int_{B_k} \varphi(t, 2a \| f(t) \|_Y) d\mu + \frac{1}{2} \sum_{k=n+1}^{\infty} \int_{B_k} \varphi(t, 2a \| f_1 \|_Y) d\mu < \epsilon. \blacksquare$$

DEFINITION 4. Let M be a set of measurable functions $f : \Omega \to Y$. We call M decomposable (with respect to Σ) if $f_1, f_2 \in M$ and $A \in \Sigma$ imply $\chi_A f_1 + \chi_{\Omega \setminus A} f_2 \in M$.

THEOREM 2. Let the φ -function φ be locally integrable, convex and fulfil the condition Δ_2 . Let M be a nonempty and closed subset of $L^{\varphi}((\Omega, \Sigma, \mu), Y)$. Then there exists an $F \in X_m$ such that $M = S_F^{\varphi}$ if and only if M is decomposable.

Proof. It is clear that S_F^{φ} is necessarily decomposable and closed (with respect to norm) in $L^{\varphi}((\Omega, \Sigma, \mu), Y)$. To prove the converse, let M be a nonempty, closed, decomposable subset of $L^{\varphi}((\Omega, \Sigma, \mu), Y)$. By Lemma 1, there exists a sequence $\{f_n\} \subset L^{\varphi}((\Omega, \Sigma, \mu), Y)$ such that $\{f_n(t)\}$ is dense in Y for each $t \in \Omega$. For each $i \in \mathbf{N}$ and a > 0, let

$$r_i(a) = \inf \left\{ \int_{\Omega} \varphi(t, a \| f_i(t) - g(t) \|_Y) d\mu : g \in M \right\}$$

and choose a sequence $\{g_{ij}\} \subset M$ such that

$$\int_{\Omega} \varphi(t, a \| f_i(t) - g_{ij}(t) \|_Y) d\mu \to r_i(a).$$

Define $F \in X_m$ by $F(t) = \overline{\{g_{ij}(t)\}}$. We shall prove $M = S_F^{\varphi}$. For each $f \in S_F^{\varphi}$, $\epsilon > 0$ and a > 0, by Lemma 2 we can take a finite measurable partition $\{A_1, \ldots, A_n\}$ of Ω and $\{h_1, \ldots, h_n\} \subset \{g_{ij}\}$ such that

$$\int_{\Omega} \varphi(t, a \| f(t) - \sum_{k=1}^{n} \chi_{A_k} h_k(t) \|_Y) d\mu < \epsilon$$

Since $\sum_{k=1}^{n} \chi_{A_k} h_h \in M$, this implies $f \in M$. Hence $S_F^{\varphi} \subset M$. Now suppose $M \neq S_F^{\varphi}$. Then there exist an $f \in M$ and $A \in \Sigma$ with $0 < \mu(A) < \infty$, and a $\delta > 0$ such that

$$\inf_{i,j} \|f(t) - g_{ij}(t)\| \ge \delta, \text{ for } t \in A$$

Take an integer i, fixed in the rest of the proof, such that the set

$$B = A \cap \{t \in \Omega : \|f(t) - f_i(t)\|_Y < \delta/3\}$$

has a positive measure, and let

$$g'_j = \chi_B f + \chi_{\Omega \setminus B} g_{ij}, \quad j \in \mathbf{N}.$$

Then, since $\{g'_j\} \subset M$ and for $t \in B$

$$\|f_i(t) - g_{ij}(t)\|_Y \ge \|f(t) - g_{ij}(t)\|_Y - \|f(t) - f_i(t)\|_Y > 2\delta/3$$

it follows that for $j \in \mathbf{N}$

$$\begin{split} \int_{\Omega} \varphi(t, a \| f_i(t) - g_{ij}(t) \|_Y) d\mu &- r_i(a) \\ &\geq \int_{\Omega} \varphi(a \| f_i(t) - g_{ij}(t) \|_Y) d\mu - \int_{\Omega} \varphi(a \| f_i(t) - g'_j(t) \|_Y) d\mu \\ &= \int_B \varphi(t, a \| f_i(t) - g_{ij}(t) \|_Y) d\mu - \int_B \varphi(t, a \| f_i(t) - (t) \|_Y) d\mu \\ &\geq \int_B (\varphi(t, 2a\delta/3) - \varphi(t, a\delta/3)) d\mu > 0, \end{split}$$

because φ is strictly increasing with respect to u > 0. Letting j go to infinity, we have a contradiction.

We have for $\varphi(t, u) = u^p$ for every $t \in \Omega$, where $1 \le p < \infty$, Theorem 3.1 from [6].

LEMMA 3. Let the φ -function φ be locally integrable, convex and fulfil the condition Δ_2 . Let $F \in X_m$ and $S_F^{\varphi} \neq \emptyset$. Then for every a > 0

$$\sup[\rho(a||f(\cdot)||_Y) : f \in S_F^{\varphi}] = \int_{\Omega} \sup\{\varphi(t, a||x||_Y) : x \in F(t)\}d\mu.$$

Proof. Let a > 0 be fixed. Denote

$$m^{a}(t) = \sup[\varphi(t, a \| x \|_{Y}) : x \in F(t)]$$

for every $t \in \Omega$. It is easy to see that m^a is measurable (see Proposition 2.24, Chapter 2 from [7]).

For every $f \in S_F^{\varphi}$, μ -a.e. $t \in \Omega$ we have $\varphi(t, a \| f(t) \|_Y) \leq m^a(t)$ so

$$\sup[\rho(a\|f(\cdot)\|_Y): f \in S_F^{\varphi}] \le \int_{\Omega} m^a(t) d\mu.$$

If $f_0 \in S_F^{\varphi}$ and $\rho(a \| f_0(\cdot) \|_Y) = \infty$ we are done. Thus assume that $\rho(a \| f_0(\cdot) \|_Y)$ is finite. If $\int_{\Omega} m^a(t) d\mu = 0$, then the proof is evident, so we can assume that $\int_{\Omega} m^a(t) d\mu > 0$. If $m^a(t) = +\infty$ on the set of positive measure the proof is also evident, so we can assume that $m^a(t)$ is finite μ -a.e.

Let $\beta < \int_{\Omega} m^a(t) d\mu$. We will produce an $f \in S_F^{\varphi}$ such that $\beta < \rho(a \| f(\cdot) \|_Y)$ and this will finish the proof. Let $\Omega = \bigcup_{n \in \mathbb{N}} \Omega_n$ with $\Omega_n \subset \Omega_{n+1}$ and $\mu(\Omega_n) < \infty$ for every $n \in \mathbb{N}$. Also let $\delta : \Omega \to R_+ \setminus \{0\}$ be an $L^1(\Omega, \Sigma, \mu)$ function. Define $A_n = \Omega_n \cap \{t \in \Omega : \varphi(t, a \| f_0(t) \|_Y) \le n\}$ and

$$m_n^a(t) = \begin{cases} m^a(t) - \frac{\delta(t)}{n}, & \text{if} \quad t \in A_n, m^a(t) \le n, \\ n - \frac{\delta(t)}{n}, & \text{if} \quad t \in A_n, m^a(t) > n, \\ \varphi(t, a \| f_0(t) \|_Y), & \text{if} \quad t \in \Omega \setminus A_n. \end{cases}$$

Evidently $m_n^a \in L^1(\Omega, \Sigma, \mu)$ and $m_n^a \uparrow m^a$ in μ -measure. So passing to a subsequence if necessary, we may assume that $m_n^a(t) \uparrow m^a(t) \mu$ -a.e. Thus by the monotone convergence theorem, we deduce that there exists $n_0 \in \mathbf{N}$ such that $\beta < \int_{\Omega} m_{n_0}^a(t) d\mu$. Let

$$G_a(t) = F(t) \cap \{ x \in Y : \varphi(t, a \| x \|_Y) \ge m_{n_0}^a(t) \}$$

for every $t \in \Omega$. By modifying G_a on a μ -null set, we may assume that $G_a \neq \emptyset$ for every $t \in \Omega$ and then G_a is graph-measurable so (see [7], Chapter 2, Theorems 2.1 and 2.14) there exists $g: \Omega \to Y$ which is a strongly measurable selection of G_a . Let

$$C_n = \Omega_n \cap \{t \in \Omega : \|g(t)\|_Y \le n\}$$

and $f_n = \chi_{C_n} g + \chi_{\Omega \setminus C_n} f_0$. It is easy to see that $C_n \in \Sigma$. Since S_F^{φ} is decomposable, we have $f_n \in S_F^{\varphi}$ and

$$\rho(a\|f_n(\cdot)\|_Y) = \int_{C_n} \varphi(t, a\|g(t)\|_Y) d\mu + \int_{\Omega \setminus C_n} \varphi(t, a\|f_0(t)\|_Y) d\mu$$
$$\geq \int_{\Omega} m_{n_0}^a(t) d\mu + \int_{\Omega \setminus C_n} [\varphi(t, a\|f_0(t)\|_Y) - m_{n_0}^a(t)] d\mu.$$

Note that $\mu(\Omega \setminus C_n) \to 0$ and $\int_{\Omega} m_{n_0}^a(t) d\mu > \beta$, so for some $n_1 \in \mathbf{N}$ we have

$$\rho(a\|f_{n_1}(\cdot)\|_Y) > \beta. \blacksquare$$

By Theorem 2 and Lemma 3 we obtain the following:

THEOREM 3. Let the φ -function φ be locally integrable, convex and fulfil the condition Δ_2 . Let M be a nonempty, bounded, decomposable and closed subset of $L^{\varphi}((\Omega, \Sigma, \mu), Y)$. Then there exists an $F \in X_{m,\varphi}$ such that $M = S_F^{\varphi}$.

Proof. By Theorem 2, $F \in X_m$, by Lemma 3 we have $|F| \in L^{\varphi}(\Omega, \Sigma, \mu)$, so $F \in X_{m,\varphi}$.

COROLLARY 3. Let the φ -function φ be locally integrable, convex and fulfil the condition Δ_2 . Let M be a nonempty, bounded, decomposable and closed subset of $L^{\varphi}((\Omega, \Sigma, \mu), Y)$ and let $M(t) = \{f(t) : f \in M\}$ be a closed subset of Y for every $t \in \Omega$. Then there exists an $F \in X_{m,\varphi}$ such that $M(t) = F(t) \mu$ -a.e.

Proof. Denote $S_F^{\varphi}(t) = \{f(t) : f \in S_F^{\varphi}\}$ for every $t \in \Omega$. By Lemma 1 we have $S_F^{\varphi}(t) \subset F(t) \subset \overline{S_F^{\varphi}(t)} \ \mu$ -a.e. So by the assumptions we have $F(t) = S_F^{\varphi}(t) \ \mu$ -a.e.

REMARK 1. Let the φ -function φ be locally integrable, convex and fulfil the condition Δ_2 . If $F \in X_{m,\varphi}$, then S_F^{φ} is a bounded and closed subset of $L^{\varphi}((\Omega, \Sigma, \mu), Y)$.

THEOREM 4. Let the φ -function φ be locally integrable, convex and fulfils the Δ_2 condition. Let $F_1, F_2 \in X_m$ and $S_{F_1}^{\varphi}, S_{F_2}^{\varphi} \neq \emptyset$. Let $F(t) = \overline{F_1(t) + F_2(t)}$ for every $t \in \Omega$, then $S_F^{\varphi} = \overline{S_{F_1}^{\varphi} + S_{F_2}^{\varphi}}$.

Proof. It is easy to see that $F \in X_m$, so S_F^{φ} is closed, hence $\overline{S_{F_1}^{\varphi} + S_{F_2}^{\varphi}} \subset S_F^{\varphi}$. On the other hand by Lemma 1 we may find $\{f_{1n}\} \subset S_{F_1}^{\varphi}$ and $\{f_{2m}\} \subset S_{F_2}^{\varphi}$ such that $F_1(t) = \overline{\{f_{1n}(t)\}}$ and $F_2(t) = \overline{\{f_{2m}(t)\}} \mu$ -a.e. Evidently $F(t) = \overline{\{f_{1n}(t) + f_{2m}(t)\}} \mu$ -a.e. By Lemma 2 for $f \in S_F^{\varphi}$ and $\epsilon > 0$ we can find $\{A_1, \ldots, A_I\}$ a finite Σ -partition of Ω and positive integers $n_1, \ldots, n_I, m_1, \ldots, m_I$ such that

$$\left\| \left\| f(\cdot) - \sum_{k=1}^{L} \chi_{A_k}(f_{1n_k}(\cdot) + f_{2m_k}(\cdot)) \right\|_Y \right\|_{\varphi}^L < \epsilon.$$

Hence $f \in \overline{S_{F_1}^{\varphi} + S_{F_2}^{\varphi}}$, so $S_F^{\varphi} = \overline{S_{F_1}^{\varphi} + S_{F_2}^{\varphi}}$.

For $\varphi(t, u) = u^p$ for every $t \in \Omega$, where $1 \leq p < +\infty$, we have Proposition 3.28, Chapter 2 from [7].

3. Final remark. The results of this paper can be extended to the case that the φ -function φ is not convex but only strictly increasing with respect to u. Clearly we must then use the *F*-norm in Musielak-Orlicz space.

References

- J. Appell, H. T. Nguyen and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math., N.S. 2 (1991) 385–395, 397–409.
- [2] Z. Artstein and J. A. Burns, Integration of compact set-valued functions, Pacific Journal of Math. 58 (1975), 297–307.
- [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston/Basel/Berlin, 1990.

- [4] S. De Blasi and A. Lasota, Daniell's method in the theory of the Aumann-Hukuhara integral of set-valued functions, Lincei Rend. Sc. fis. mat. e nat. 45 (1968), 252–256.
- S. De Blasi and A. Lasota, Characterization of the integral of set-valued functions, Lincei Rend. Sc. fis. mat. e nat. 46 (1969), 154–157.
- F. Hiai and H. Umegaki, Integrals, conditional expectation, and martingales of multivalued functions, J. Multival. Anal. 7 (1977), 149–182.
- [7] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis Vol. 1: Theory, Kluwer Academic Publishers, Dordrecht/Boston/London, 1997.
- [8] A. Kasperski, Musielak-Orlicz spaces of multifunctions, convergence and approximation, Commentationes Math. 34 (1994), 99–107.
- [9] A. Kasperski, Notes on approximation in Musielak-Orlicz spaces of multifunctions, Commentationes Math. 34 (1994), 109–122.
- [10] A. Kasperski, Notes on approximation in the Musielak-Orlicz spaces of vector multifunctions, Commentationes Math. Univ. Carolinae 35 (1994), 81–93.
- [11] A. Kasperski, Some approximation problems in Musielak-Orlicz spaces of multifunctions, Demonstratio Math. 37 (2004), 393–406.
- [12] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.
- [13] A. Pliś, Remark on measurable set-valued functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 857–859.
- [14] R. T. Rockafellar, Integrals which are convex functions, Pacific J. Math. 24 (1968), 525– 539.